-
A single screen terahertz frequency selective surface (FS) using the improved split ring resonators (SRRs) is designed in this paper. The resonance unit of an improved SRR consists of an open seam metal patch, while the physical size of the open seam metal patch will directly affect the stepped impedance characteristics. In the paper, LC equivalent circuit model for the improved SRR unit structure is established to extract the equivalent circuit model parameters. Then the relationship between the fundamental frequency of the FSS formula and the harmonics is obtained from the basic theory of the transmission line. Compared to the traditional uniform SRR, the control of multi-band in the improved SRR is more flexible. It is an outstanding characteristic for multi-band FSS design. Based on this characteristic, the triple-band terahertz FSS centered at 0.46, 0.86 and 1.03 THz respectively is designed successively, which can be used in radio astronomy application. By using HFSS 13.0 electromagnetic software simulation, many important indicators such as the key parameters that affect the transmission characteristics of the FSS, periodic intervals, miniaturization degree and the sensitivity of the incidence angle have been studied and analyzed. Both the theoretical analysis and simulated results demonstrate the validity of the method. The triple-band FSS using the improved SRR has a lot of reformative performances. It is shown that the reflection coefficients of triple-band FSS using the improved SRR are -37.6 dB, -13 dB, and -19.6 dB, respectively. On the other hand, it owns the stable frequency response characteristics in the 0°–60° range, which is beneficial to a large incidence angle. In addition, a high degree of miniaturization and the low loss characteristics are the another two significant advantages of this FSS. This triple-band FSS with improved SRR has potential applications in the terahertz frequency radio astronomy polarizer, beam splitter, mirror and resonator mirror, etc.
-
Keywords:
- frequency selective surface (FSS) /
- terahertz /
- triple-band /
- slip ring resonators
[1] Raymond D, Robert C, Vincent F, Harold S G, Neil M 2011 IEEE Trans. Terahertz Sci. Technol. 1 450
[2] Huang H Y, Ding S, Wang B Z, Zang R 2014 Chin. Phys. B 23 064101
[3] Leng W X, Ge L N, Xu S S, Zhan H L, Zhao K 2014 Chin. Phys. B 23 107804
[4] Li S S, Zhang H, Hou Y, Bai J J, Liu W W, Chang S J 2013 Applied Optics 52 3305
[5] Carelli P, Chiarello F, Cibella S, Di G A, Leoni R, Ortolani M, Torrioli G 2012 J Infrared Milli Terahz Waves 33 505
[6] Yuan C, Xu S L, Yao J Q, Zhao X L, Cao X L, Wu L 2014 Chin. Phys. B 23 018102
[7] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802
[8] Wang W J, Wangle J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 2014 物理学报 63 174101]
[9] Goussetis G, Feresidis A P 2010 IET Microw. Antennas Propag. 4 1105
[10] Campos A L P S, Segundo F C G D S, Manicoba R H C, Neto G A, Assuncao A G D 2012 Microwave Opt Technol Lett. 54 2321
[11] Ohira M, Deguchi H, Tsuji M, Shigesawa H 2004 IEEE Trans. Antennas Propagat. 52 2925
[12] Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 237302]
[13] Dubrovka R, Vazquez J, Parini C, Moore D 2006 IEE Proc. Microwaves Antenn. Propag 153 213
[14] Costa F, Monorchio A, Manara G 2012 IEEE Antenn. Propag. Mag. 54 35
[15] Claus J, Niels A M, Anders K 2009 Appl. Phys. Lett. 95 193108
[16] Wang H Q 2008 Systems Engineering and Electronics 30 2054 (in Chinese) [王焕青 2008 系统工程与电子技术 30 2054]
[17] Munk B(translated by Hou X Y) 2009 A Frequency Selective Surfaces Theory and Design(Beijing: Science Press) pp688-695 (in Chinese) [Munk B著 (侯新宇译) 2009 频率选择表面理论与设计(北京: 科学出版社)第 688–695 页]
[18] Wu Z, Wu Z B 2005 Acta Electron. Sin. 33 517 (in Chinese) [武哲, 武振波 2005 电子学报 33 517]
[19] Yan S, Vandenbosch G A E 2013 Appl. Phys. Lett. 102 103503
-
[1] Raymond D, Robert C, Vincent F, Harold S G, Neil M 2011 IEEE Trans. Terahertz Sci. Technol. 1 450
[2] Huang H Y, Ding S, Wang B Z, Zang R 2014 Chin. Phys. B 23 064101
[3] Leng W X, Ge L N, Xu S S, Zhan H L, Zhao K 2014 Chin. Phys. B 23 107804
[4] Li S S, Zhang H, Hou Y, Bai J J, Liu W W, Chang S J 2013 Applied Optics 52 3305
[5] Carelli P, Chiarello F, Cibella S, Di G A, Leoni R, Ortolani M, Torrioli G 2012 J Infrared Milli Terahz Waves 33 505
[6] Yuan C, Xu S L, Yao J Q, Zhao X L, Cao X L, Wu L 2014 Chin. Phys. B 23 018102
[7] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802
[8] Wang W J, Wangle J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 2014 物理学报 63 174101]
[9] Goussetis G, Feresidis A P 2010 IET Microw. Antennas Propag. 4 1105
[10] Campos A L P S, Segundo F C G D S, Manicoba R H C, Neto G A, Assuncao A G D 2012 Microwave Opt Technol Lett. 54 2321
[11] Ohira M, Deguchi H, Tsuji M, Shigesawa H 2004 IEEE Trans. Antennas Propagat. 52 2925
[12] Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 237302]
[13] Dubrovka R, Vazquez J, Parini C, Moore D 2006 IEE Proc. Microwaves Antenn. Propag 153 213
[14] Costa F, Monorchio A, Manara G 2012 IEEE Antenn. Propag. Mag. 54 35
[15] Claus J, Niels A M, Anders K 2009 Appl. Phys. Lett. 95 193108
[16] Wang H Q 2008 Systems Engineering and Electronics 30 2054 (in Chinese) [王焕青 2008 系统工程与电子技术 30 2054]
[17] Munk B(translated by Hou X Y) 2009 A Frequency Selective Surfaces Theory and Design(Beijing: Science Press) pp688-695 (in Chinese) [Munk B著 (侯新宇译) 2009 频率选择表面理论与设计(北京: 科学出版社)第 688–695 页]
[18] Wu Z, Wu Z B 2005 Acta Electron. Sin. 33 517 (in Chinese) [武哲, 武振波 2005 电子学报 33 517]
[19] Yan S, Vandenbosch G A E 2013 Appl. Phys. Lett. 102 103503
Catalog
Metrics
- Abstract views: 6805
- PDF Downloads: 205
- Cited By: 0