Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission

Yang Dong-Ru Cheng Yong-Zhi Luo Hui Chen Fu Li Xiang-Cheng

Citation:

Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission

Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng
PDF
HTML
Get Citation
  • In this paper, we propose a dual-polarization ultra-wideband metasurface with half-reflection and half-transmission based on a double-split-ring (DSR) structure operating in a terahertz (THz) frequency range. The designed metasurface can simultaneously control the circularly polarized (CP) wave and linearly polarized (LP) wave in reflection mode and transmission mode, covering an extensive THz frequency range. The unit-cell architecture of the metasurface consists of a periodic arrangement of the DSR structure made of metal, which is affixed to an ultra-thin dielectric substrate. By manipulating the size and rotation direction of the DSR structure, we achieve full phase coverage of 0–2π of the orthogonally polarized LP wave and CP wave across a frequency span of 0.3–1.2 THz, encompassing transmission and reflection scenarios. The relative bandwidths of the corresponding orthogonal LP wave and CP wave with an average amplitude of 0.45 reach 86% and 120%, respectively. Specifically, through numerical simulations, we demonstrate that the designed metasurface has the ability to achieve THz beam deflection and vortex beam generation while reflecting and transmitting LP wave and CP wave. The proposed dual-polarization ultra-wideband metasurface holds great promise for various applications in the terahertz frequency range. These findings pave the way for the development of flexible and versatile THz devices with expanded functionality, thereby opening up new possibilities for wavefront manipulation in metasurfaces.
      Corresponding author: Cheng Yong-Zhi, chengyz@wust.edu.cn ; Li Xiang-Cheng, lixiangcheng@wust.edu.cn
    • Funds: Project supported by the Natural Science Foundation Innovation Group Project of Hubei Province, China (Grant No. 2020CFA038) and the Key Research and Development Project of Hubei Province, China (Grant No. 2020BAA028).
    [1]

    郝宏刚, 冉雪红, 郑森, 唐逸豪, 阮巍 2022 电子与信息学报 44 114284741Google Scholar

    Hao H G, Ran X H, Zheng S, Tang Y H, Ruan W 2022 J. Electron. Inform. Technol. 44 114284741Google Scholar

    [2]

    刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠 2022 物理学报 71 230701Google Scholar

    Liu J Y, Li W Y, Liu Z X, Shu J Y, Zhao G Z 2022 Acta Phys. Sin. 71 230701Google Scholar

    [3]

    王俊瑶, 樊俊鹏, 舒好, 刘畅, 程用志 2021 光电工程 48 200319Google Scholar

    Wang J Y, Fan J P, Shu H, Liu C, Cheng Y Z 2021 Opto-Electronic Eng. 48 200319Google Scholar

    [4]

    Fan J P, Cheng Y Z 2020 J. Phys. D. Appl. Phys. 53 025109Google Scholar

    [5]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 33Google Scholar

    [6]

    He B, Liu J Q, Cheng Y Z, Chen F, Luo H, Li X C 2022 Physica E 144 115373Google Scholar

    [7]

    李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓 2021 物理学报 70 188701Google Scholar

    Li G Q, Shi H Y, Liu K, Li B L, Yi J J, Zhang A X, Xu Z 2021 Acta Phys. Sin. 70 188701Google Scholar

    [8]

    周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701Google Scholar

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar

    [9]

    Li N, Zhao J, Tang P, Cheng Y 2023 Phys. Status Solidi B 5 2300104

    [10]

    Cheng Y Z, Qian Y J, Luo H, Chen F, Cheng Z 2023 Physica E 146 115527Google Scholar

    [11]

    Liu M, Huo P, Zhu W, Zhang C, Zhang S, Song M, Zhang S, Zhou Q, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T 2021 Nat. Commun. 12 2230Google Scholar

    [12]

    Hou H S, Wang G M, Li H P, Guo W L, Cai T 2020 Opt. Express 19 27575

    [13]

    Zhu X Z, Cheng Y Z, Chen F, Luo H, Ling W 2022 J. Opt. Soc. Am. B 39 705Google Scholar

    [14]

    Cai T, Wang G M, Tang S W, Xu H X, Duan J W, Guo H J, Guan F X, Sun S L, He Q, Zhou L 2017 Phys. Rev. Appl. 8 034033Google Scholar

    [15]

    Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T, Cui T J 2019 Adv. Optical Mater. 7 1801429Google Scholar

    [16]

    Fan J P, Cheng Y Z, He B 2021 J. Phys. D. Appl. Phys. 54 115101Google Scholar

    [17]

    Li J, Cheng Y Z, Li X C 2022 Adv. Theor. Simul. 5 2200151Google Scholar

    [18]

    Zhang C B, Wang G M, Xu H X, Zhang X, Li H P 2020 Adv. Opt. Mater. 8 1901719Google Scholar

    [19]

    Zhang H C, Zhang X, Ma X L, Pu M B, Huang C, Zhang Z J, Wang Y X, Guo Y H, Luo J, Luo X G 2022 Opt. Express 30 36949Google Scholar

    [20]

    Mao R Q, Wang G M, Cai T, Liu K, Wang D P, Wu B 2020 Opt. Express 21 31216

    [21]

    Yang D R, Cheng Y Z, Luo H, Chen F, Wu, 2023 Adv. Theor. Simul. 4 2300162

    [22]

    Zhao J, Li N, Cheng Y 2023 Opt. Commun. 536 129372Google Scholar

    [23]

    Zhao Y, Alù A 2011 Phys. Rev. B 84 205428Google Scholar

    [24]

    Yang L J, Li J S 2022 Opt. Eng. 61 047105

    [25]

    Liu J Q, Cheng Y Z, Chen F, Luo H, Li X C 2023 J. Opt. Soc. Am. B 40 441Google Scholar

    [26]

    刘佳琪, 程用志, 陈浮, 罗辉, 李享成 2023 红外与激光工程 52 20220377Google Scholar

    Liu J Q, Cheng Y Z, Chen F, Luo H 2023 Infrared Laser Engineer. 52 20220377Google Scholar

  • 图 1  MS示意图 (a), (b)单元结构前视图和透视图; LPy波垂直入射下在(c) 0.4 THz, (d) 0.8 THz和(e) 1.1 THz处单元结构表面电流分布

    Figure 1.  Schematic diagram of MS: (a), (b) Front and perspective view of the unit-cell structure; the surface current distributions of the unit-cell structure under the normal incident LPy wave at (c) 0.4 THz, (d) 0.8 THz and (e) 1.1 THz.

    图 2  入射LP波和CP波通过单层MS转化成正交偏振波的(a1), (c1)反射系数(rxy, ryx, r–+, r+–)和(b1), (d1)透射系数(txy, tyx, t–+, t+–)以及(a2)—(d2)对应的相位

    Figure 2.  Reflection coefficient (rxy, ryx, r–+, r+–) (a1), (c1) and transmission coefficient (txy, tyx, t–+, t+–) (b1), (d1) of the orthogonal polarization wave for the normal incident LP wave and CP wave through the designed single-layer MS, and the corresponding phase (a2)–(d2).

    图 3  在0.5 THz, 8个不同单元结构的(a), (c)反射和透射(b), (d)正交LP和CP波的幅值和相位 (a), (b) LP波; (c), (d) CP波; 插图是一个具有(a), (b)传输相位和(c), (d)几何相位梯度分布的8个不同单元MS超单元结构

    Figure 3.  Amplitude and phase of the (a), (c) reflected and (b), (d) transmitted orthogonal LP and CP waves for 8 different unit-cells at 0.5 THz: (a), (b) LP wave; (c), (d) CP wave. The inset shows a supercell of the MS with 8 unit-cells with gradient distributions of (a), (b) propagation phase and (c), (d) geometric phase.

    图 4  (a), (b)在0.5 THz 时异常反射和折射的LP波在x-z平面电场分布; (c), (d)对应的归一化强度

    Figure 4.  (a), (b) Simulated electric field distributions of the abnormal reflection and refraction orthogonal LP wave in the x-z plane at 0.5 THz, and (c), (d) the corresponding normalized intensity.

    图 5  (a), (b)在0.8 THz时异常反射和折射的CP波在x-z平面中的电场分布; (c), (d)对应的归一化强度

    Figure 5.  (a), (b) Simulated electric field distributions of the abnormal reflection and refraction orthogonal CP wave in the x-z plane at 0.8 THz, and (c), (d) the corresponding normalized intensity.

    图 6  仿真得到的不同频率下正交LP波和CP波的(a), (c)反射角和(b), (d)折射角 (a), (b) LP波; (c), (d) CP波; 虚线是对应的理论计算得到的依赖于频率的正交LP和CP波反射和折射角

    Figure 6.  Simulated (a), (c) reflection and (b), (d) refraction angles of the orthogonal LP waves and CP waves via different frequencies: (a), (b) LP waves; (c), (d) CP waves. Dash lines indicate the theoretical calculation frequency-dependent reflection and refraction angles of the orthogonal LP and CP waves.

    图 7  所提出的生成不同OAM拓扑电荷涡旋光束的单层MS补偿相位分布 (a) l = +1; (b) l = –1; (c) l = +2; (d) l = –2

    Figure 7.  Compensating phase distribution of the proposed single-layer MS for the generated vortex beam with different OAM topological charges: (a) l = +1; (b) l = –1; (c) l = +2; (d) l = –2.

    图 8  在0.8 THz垂直入射的LP波通过设计的单层MS后拓扑电荷数为(a1)—(a4) l = +1, (b1)—(b4) l = –1, (c1)—(c4) l = +2, (d1)—(d4) l = –2的反射和透射涡旋光束的电场强度分布和对应的OAM模式纯度分布 (a1)—(d1)反射涡旋光束的电场强度分布; (a2)—(d2)透射涡旋光束的电场强度分布; (a3)—(d3)反射涡旋光束的OAM模式纯度分布; (a4)—(d4)透射涡旋光束的OAM模式纯度分布

    Figure 8.  Electric field intensity and the corresponding OAM mode purity distributions of the reflected and transmitted vortex beams with a topological charge of (a1)–(a4) l = +1, (b1)–(b4) l = –1, (c1)–(c4) l = +2 and (d1)–(d4) l = –2 for the normal incident LP wave at 0.8 THz: (a1)–(d1) Electric field intensity of reflected vortex beams; (a2)–(d2) electric field intensity of transmitted vortex beams; (a3)–(d3) OAM mode purity distributions of reflected vortex beams; (a4)–(d4) OAM mode purity distributions of transmitted vortex beams.

    图 9  在0.4 THz垂直入射的CP波通过设计的单层MS后拓扑电荷数为(a1)—(a4)l = +1, (b1)—(b4) l = –1, (c1)—(c4) l = +2和(d1)—(d4) l = –2的反射和透射涡旋光束电场强度分布和对应的OAM模式纯度分布 (a1)—(d1)反射涡旋光束的电场强度分布; (a2)—(d2)透射涡旋光束的电场强度分布; (a3)—(d3)反射涡旋光束的OAM模式纯度分布; (a4)—(d4)透射涡旋光束的OAM模式纯度分布

    Figure 9.  Electric field intensity and the corresponding OAM mode purity distributions of the reflected and transmitted vortex beams with a topological charge of (a1)–(a4) l = +1, (b1)–(b4) l = –1, (c1)–(c4) l = +2 and (d1)–(d4) l = –2 for the normal incident CP wave at 0.4 THz: (a1)–(d1) Electric field intensity of reflected vortex beams; (a2)–(d2) electric field intensity of transmitted vortex beams; (a3)–(d3) OAM mode purity distributions of reflected vortex beams; (a4)–(d4) OAM mode purity distributions of transmitted vortex beams.

    表 1  本文提出的MS与之前提出的结构性能对比

    Table 1.  Performance comparison of the proposed metasurface with the previous ones.

    文献结构配置偏振相对工作带宽实现的功能操作模式
    [12]三层CP20%偏折、聚焦反射/透射
    [13]二层CP35.3%偏射、聚焦透射
    [15]单层CP单个频点偏折、聚焦反射/透射
    [17]二层LP/CP单个频点透射、涡旋、聚焦透射
    五层LP13.7%涡旋、聚焦反射/透射
    [26]二层CP两个频点偏折、涡旋、聚焦透射
    本文单层LP/CP120%偏折、涡旋反射/透射
    DownLoad: CSV
  • [1]

    郝宏刚, 冉雪红, 郑森, 唐逸豪, 阮巍 2022 电子与信息学报 44 114284741Google Scholar

    Hao H G, Ran X H, Zheng S, Tang Y H, Ruan W 2022 J. Electron. Inform. Technol. 44 114284741Google Scholar

    [2]

    刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠 2022 物理学报 71 230701Google Scholar

    Liu J Y, Li W Y, Liu Z X, Shu J Y, Zhao G Z 2022 Acta Phys. Sin. 71 230701Google Scholar

    [3]

    王俊瑶, 樊俊鹏, 舒好, 刘畅, 程用志 2021 光电工程 48 200319Google Scholar

    Wang J Y, Fan J P, Shu H, Liu C, Cheng Y Z 2021 Opto-Electronic Eng. 48 200319Google Scholar

    [4]

    Fan J P, Cheng Y Z 2020 J. Phys. D. Appl. Phys. 53 025109Google Scholar

    [5]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 33Google Scholar

    [6]

    He B, Liu J Q, Cheng Y Z, Chen F, Luo H, Li X C 2022 Physica E 144 115373Google Scholar

    [7]

    李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓 2021 物理学报 70 188701Google Scholar

    Li G Q, Shi H Y, Liu K, Li B L, Yi J J, Zhang A X, Xu Z 2021 Acta Phys. Sin. 70 188701Google Scholar

    [8]

    周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701Google Scholar

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar

    [9]

    Li N, Zhao J, Tang P, Cheng Y 2023 Phys. Status Solidi B 5 2300104

    [10]

    Cheng Y Z, Qian Y J, Luo H, Chen F, Cheng Z 2023 Physica E 146 115527Google Scholar

    [11]

    Liu M, Huo P, Zhu W, Zhang C, Zhang S, Song M, Zhang S, Zhou Q, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T 2021 Nat. Commun. 12 2230Google Scholar

    [12]

    Hou H S, Wang G M, Li H P, Guo W L, Cai T 2020 Opt. Express 19 27575

    [13]

    Zhu X Z, Cheng Y Z, Chen F, Luo H, Ling W 2022 J. Opt. Soc. Am. B 39 705Google Scholar

    [14]

    Cai T, Wang G M, Tang S W, Xu H X, Duan J W, Guo H J, Guan F X, Sun S L, He Q, Zhou L 2017 Phys. Rev. Appl. 8 034033Google Scholar

    [15]

    Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T, Cui T J 2019 Adv. Optical Mater. 7 1801429Google Scholar

    [16]

    Fan J P, Cheng Y Z, He B 2021 J. Phys. D. Appl. Phys. 54 115101Google Scholar

    [17]

    Li J, Cheng Y Z, Li X C 2022 Adv. Theor. Simul. 5 2200151Google Scholar

    [18]

    Zhang C B, Wang G M, Xu H X, Zhang X, Li H P 2020 Adv. Opt. Mater. 8 1901719Google Scholar

    [19]

    Zhang H C, Zhang X, Ma X L, Pu M B, Huang C, Zhang Z J, Wang Y X, Guo Y H, Luo J, Luo X G 2022 Opt. Express 30 36949Google Scholar

    [20]

    Mao R Q, Wang G M, Cai T, Liu K, Wang D P, Wu B 2020 Opt. Express 21 31216

    [21]

    Yang D R, Cheng Y Z, Luo H, Chen F, Wu, 2023 Adv. Theor. Simul. 4 2300162

    [22]

    Zhao J, Li N, Cheng Y 2023 Opt. Commun. 536 129372Google Scholar

    [23]

    Zhao Y, Alù A 2011 Phys. Rev. B 84 205428Google Scholar

    [24]

    Yang L J, Li J S 2022 Opt. Eng. 61 047105

    [25]

    Liu J Q, Cheng Y Z, Chen F, Luo H, Li X C 2023 J. Opt. Soc. Am. B 40 441Google Scholar

    [26]

    刘佳琪, 程用志, 陈浮, 罗辉, 李享成 2023 红外与激光工程 52 20220377Google Scholar

    Liu J Q, Cheng Y Z, Chen F, Luo H 2023 Infrared Laser Engineer. 52 20220377Google Scholar

  • [1] Wang Dan, Li Jiu-Sheng, Guo Feng-Lei. Switchable ultra-broadband absorption and polarization conversion terahertz metasurface. Acta Physica Sinica, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [2] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] Jiang Chi, Geng Tao. The study of tight focusing characteristics of azimuthally polarized vortex beams and the implementation of ultra-long super-resolved optical needle. Acta Physica Sinica, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [4] Yu Bo, Zhuang Shu-Lei, Wang Zheng-Xin, Wang Man-Shi, Guo Lan-Jun, Li Xin-Yu, Guo Wen-Rui, Su Wen-Ming, Gong Cheng, Liu Wei-Wei. Nano-printing technology based double-spiral terahertz tunable metasurface. Acta Physica Sinica, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [5] Li Guo-Qiang, Shi Hong-Yu, Liu Kang, Li Bo-Lin, Yi Jian-Jia, Zhang An-Xue, Xu Zhuo. Multi-beam multi-mode vortex beams generation based on metasurface in terahertz band. Acta Physica Sinica, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [6] Xu Ping, Xiao Yu-Fei, Huang Hai-Xuan, Yang Tuo, Zhang Xu-Lin, Yuan Xia, Li Xiong-Chao, Wang Meng-Yu, Xu Hai-Dong. A new method of implementing simultaneous multiplexing holographic display of wavelength and polarization state with simple structure metasurface. Acta Physica Sinica, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [7] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [8] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] Zhang Jian-Zhu, Zhang Fei-Zhou, Su Hua, Hu Peng, Xie Xiao-Gang, Luo Wen. Analysis of beam deviation induced by thermal blooming effect when high-energy laser propagating up in atmosphere. Acta Physica Sinica, 2021, 70(24): 244202. doi: 10.7498/aps.70.20211138
    [10] Tian Bo-Yu, Zhong Zhe-Qiang, Sui Zhan, Zhang Bin, Yuan Xiao. Ultrafast azimuthal beam smoothing scheme based on vortex beam. Acta Physica Sinica, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [11] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [12] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [13] Cai Huai-Peng1\2, Gao Jian1\2, Li Bo-Yuan1\2, Liu Feng1\2, Chen Li-Ming1\2\3, Yuan Xiao-Hui1\2, Chen Min1\2, Sheng Zheng-Ming1\2\4\5, Zhang Jie1\2\3High order harmonics generation by relativistically circularly polarized laser-solid interaction. Acta Physica Sinica, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [14] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [15] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [16] Zhang Jin, Zhou Xin-Xing, Luo Hai-Lu, Wen Shuang-Chun. Cross polarization effects of vortex beam in reflection. Acta Physica Sinica, 2013, 62(17): 174202. doi: 10.7498/aps.62.174202
    [17] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [18] Li Yang-Yue, Chen Zi-Yang, Liu Hui, Pu Ji-Xiong. Generation and interference of vortex beams. Acta Physica Sinica, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [19] Qi Yun-Feng, Liu Chi, Zhou Jun, Chen Wei-Biao, Dong Jing-Xing, Wei Yun-Rong, Lou Qi-Hong. High power narrow linewidth single-frequency line-polarized fiber amplifier based on master-oscillator power amplifier technology. Acta Physica Sinica, 2010, 59(6): 3942-3947. doi: 10.7498/aps.59.3942
    [20] Kang Xiao-Ping, Lü Bai-Da. The second-order moment representation of nonparaxial vectorial Laguerre-Gaussian beams. Acta Physica Sinica, 2006, 55(9): 4563-4568. doi: 10.7498/aps.55.4563
Metrics
  • Abstract views:  3769
  • PDF Downloads:  98
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2023
  • Accepted Date:  23 May 2023
  • Available Online:  02 June 2023
  • Published Online:  05 August 2023

/

返回文章
返回