-
As one of the regulators of cationic concentration in cells, potassium channels play an important role in the depolarization and repolarization of nerve cell. KcsA (K+ conduction and selectivity architecture) channel is simple and has the commonness of potassium ion channel, which is often used as a template for potassium channel research. In this paper, Brownian dynamics (BD) method is used to simulate the electrical characteristics of the actual KcsA potassium channel systematically. The potential mean force (PMF) of ions in the channel under electrostatic field, the current-voltage characteristic curve of symmetric solution and asymmetric solution, the ion concentration distribution curve in the axial direction of the channel, and the conduction-concentration curve are obtained. The results show that the selectivity filter region of KcsA potassium channel blocks the passage of Cl– basically, showing a special selection characteristic of the passage of K+, that its current-voltage curve presents a basically linear distribution, and that the conductivity-concentration curve presents a trend of first increasing and then flattening. The basic characteristic is consistent with the experimental phenomenon. In addition, the influence of the THz field on the channel K+ current is also simulated and analyzed. Compared with applying only the same amplitude electrostatic field, the selected terahertz field of 0.6 THz, 1.2 THz, and 5 THz can reduce the PMF by affecting the interaction potential energy between ion pairs, thereby increasing the K+ current. The research in this paper not only deepens the understanding of the regularity of KcsA potassium ion channels, but also provides a new idea for studying other types of ion channels and the influence of terahertz field on the characteristics of ion channels.
-
Keywords:
- Brownian dynamics /
- KcsA potassium ion channel /
- potential of mean force /
- terahertz field
[1] Breedlove S M, Watson N V 2017 Behavioral Neuroscience (8th Ed.) (Sunderland, Massachusetts: Sinauer Associates, Inc) pp29,30
[2] Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A 2012 Chem. Rev. 112 6250Google Scholar
[3] Corry B, Chung S H 2006 Cell. Mol. Life. Sci. 63 301Google Scholar
[4] Tu B, Bai S Y, Chen M X, Xie Y, Zhang L B, Lu B Z 2014 Comput. Sci. Discov. 7 014002Google Scholar
[5] Im W, Roux B 2002 J. Mol. Biol. 322 851Google Scholar
[6] Im W, Seefeld S, Roux B 2000 Biophys. J. 79 788Google Scholar
[7] Lee K I, Jo S, Rui H, Egwolf B, Roux B, Pastor R W, Im W 2012 J. Comput. Chem. 33 331Google Scholar
[8] Chung S H, Hoyles M, Allen T, Kuyucak S 1998 Biophys. J. 75 793Google Scholar
[9] Noskov S Y, Im W, Roux B 2004 Biophys. J. 87 2299Google Scholar
[10] Kutzner C, Grubmüller H, Groot B L, Zachariae U 2011 Biophys. J. 101 755Google Scholar
[11] Lee K I, Rui H, Pastor R W, Im W 2011 Biophys. J. 100 611Google Scholar
[12] Boiteux C, Kraszewski S, Ramseyer C, Girardet C 2007 J. Mol. Model. 13 699Google Scholar
[13] Allen T W, Chung S H 2001 Biochim. Biophys. Acta 1515 83Google Scholar
[14] Chung S H, Allen T W, Kuyucak S 2002 Biophys. J. 82 628Google Scholar
[15] Chung S H, Allen T W, Kuyucak S 2002 Biophys. J. 83 263Google Scholar
[16] Allen T W, Kuyucak S, Chung S H 2000 Biophys. Chem. 86 1Google Scholar
[17] Jiang Y X, Lee A, Chen J Y, Cadene M, Chait B T, MacKinnon R 2002 Nature 417 523Google Scholar
[18] Sansoma M S P, Shrivastavab I H, Brighta J N, Tatec J, Capenera C E, Biggin P C 2002 Biochim. Biophys. Acta. 1565 294Google Scholar
[19] Horng T L, Chen R S, Leonardi M V, Franciolini F, Catacuzzeno L 2022 Front. Mol. Biosci. 9 1Google Scholar
[20] Li S C, Hoyles M, Kuyucak S, Chung S H 1998 Biophys. J. 74 37Google Scholar
[21] Chung S H, AllenT W, Hoyles M, Kuyucak S 1999 Biophys. J. 77 2517Google Scholar
[22] Hoyles M, Kuyucak S, Chung S H 1998 Phys. Rev. E. 58 3654Google Scholar
[23] Schirmer T, Phale P S 1999 J. Mol. Biol. 294 1159Google Scholar
[24] Sunhwan J, Taehoon K, Iyer V G, Jo S, Kim T, Iyer V G, Im W 2008 J. Comput. Chem. 29 1859Google Scholar
[25] Im W, Roux B 2001 J. Chem. Phys. 115 4850Google Scholar
[26] Berti C, Furini S, Gillespie D, Boda D, Eisenberg R S, Sangiorgi E, Fiegna C 2014 J. Chem. Theory. Comput. 10 2911Google Scholar
[27] Lemasurier M, Heginbotham L, Miller C 2001 J. Gen. Physiol. 118 303Google Scholar
[28] 薄文斐 2020 博士学位论文 (成都: 电子科技大学)
Bo W F 2020 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[29] Dalzell D R, McQuade J, Vincelette R, Ibey B, Payne J, Thomas R, Roach W P, Roth C L, Wilmink G J 2010 Proc. SPIE 7562 75620MGoogle Scholar
[30] Wei C, Zhang Y C, Li R, Wang S G, Wang T, Liu J H, Liu Z, Wang K J, Liu J S, Liu X M 2018 Biomed. Opt. Express 9 3998Google Scholar
-
-
[1] Breedlove S M, Watson N V 2017 Behavioral Neuroscience (8th Ed.) (Sunderland, Massachusetts: Sinauer Associates, Inc) pp29,30
[2] Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A 2012 Chem. Rev. 112 6250Google Scholar
[3] Corry B, Chung S H 2006 Cell. Mol. Life. Sci. 63 301Google Scholar
[4] Tu B, Bai S Y, Chen M X, Xie Y, Zhang L B, Lu B Z 2014 Comput. Sci. Discov. 7 014002Google Scholar
[5] Im W, Roux B 2002 J. Mol. Biol. 322 851Google Scholar
[6] Im W, Seefeld S, Roux B 2000 Biophys. J. 79 788Google Scholar
[7] Lee K I, Jo S, Rui H, Egwolf B, Roux B, Pastor R W, Im W 2012 J. Comput. Chem. 33 331Google Scholar
[8] Chung S H, Hoyles M, Allen T, Kuyucak S 1998 Biophys. J. 75 793Google Scholar
[9] Noskov S Y, Im W, Roux B 2004 Biophys. J. 87 2299Google Scholar
[10] Kutzner C, Grubmüller H, Groot B L, Zachariae U 2011 Biophys. J. 101 755Google Scholar
[11] Lee K I, Rui H, Pastor R W, Im W 2011 Biophys. J. 100 611Google Scholar
[12] Boiteux C, Kraszewski S, Ramseyer C, Girardet C 2007 J. Mol. Model. 13 699Google Scholar
[13] Allen T W, Chung S H 2001 Biochim. Biophys. Acta 1515 83Google Scholar
[14] Chung S H, Allen T W, Kuyucak S 2002 Biophys. J. 82 628Google Scholar
[15] Chung S H, Allen T W, Kuyucak S 2002 Biophys. J. 83 263Google Scholar
[16] Allen T W, Kuyucak S, Chung S H 2000 Biophys. Chem. 86 1Google Scholar
[17] Jiang Y X, Lee A, Chen J Y, Cadene M, Chait B T, MacKinnon R 2002 Nature 417 523Google Scholar
[18] Sansoma M S P, Shrivastavab I H, Brighta J N, Tatec J, Capenera C E, Biggin P C 2002 Biochim. Biophys. Acta. 1565 294Google Scholar
[19] Horng T L, Chen R S, Leonardi M V, Franciolini F, Catacuzzeno L 2022 Front. Mol. Biosci. 9 1Google Scholar
[20] Li S C, Hoyles M, Kuyucak S, Chung S H 1998 Biophys. J. 74 37Google Scholar
[21] Chung S H, AllenT W, Hoyles M, Kuyucak S 1999 Biophys. J. 77 2517Google Scholar
[22] Hoyles M, Kuyucak S, Chung S H 1998 Phys. Rev. E. 58 3654Google Scholar
[23] Schirmer T, Phale P S 1999 J. Mol. Biol. 294 1159Google Scholar
[24] Sunhwan J, Taehoon K, Iyer V G, Jo S, Kim T, Iyer V G, Im W 2008 J. Comput. Chem. 29 1859Google Scholar
[25] Im W, Roux B 2001 J. Chem. Phys. 115 4850Google Scholar
[26] Berti C, Furini S, Gillespie D, Boda D, Eisenberg R S, Sangiorgi E, Fiegna C 2014 J. Chem. Theory. Comput. 10 2911Google Scholar
[27] Lemasurier M, Heginbotham L, Miller C 2001 J. Gen. Physiol. 118 303Google Scholar
[28] 薄文斐 2020 博士学位论文 (成都: 电子科技大学)
Bo W F 2020 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[29] Dalzell D R, McQuade J, Vincelette R, Ibey B, Payne J, Thomas R, Roach W P, Roth C L, Wilmink G J 2010 Proc. SPIE 7562 75620MGoogle Scholar
[30] Wei C, Zhang Y C, Li R, Wang S G, Wang T, Liu J H, Liu Z, Wang K J, Liu J S, Liu X M 2018 Biomed. Opt. Express 9 3998Google Scholar
Catalog
Metrics
- Abstract views: 3892
- PDF Downloads: 95
- Cited By: 0