搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不同变系数和势场的分数系统中二次相位调控厄米-高斯光束动力学

谭超 梁勇 邹敏 雷同 陈龙 唐平华 刘明伟

引用本文:
Citation:

基于不同变系数和势场的分数系统中二次相位调控厄米-高斯光束动力学

谭超, 梁勇, 邹敏, 雷同, 陈龙, 唐平华, 刘明伟

Dynamics of quadratic phase controlled Hermite-Gaussian beams in fractional systems based on different variable coefficients and potentials

Tan Chao, Liang Yong, Zou Min, Lei Tong, Chen Long, Tang Ping-Hua, Liu Ming-Wei
PDF
HTML
导出引用
  • 本文基于带有不同变系数和势的分数薛定谔方程, 研究了二次相位调制(QPM)下厄米-高斯光束的演化特性. 在自由空间中, 光束聚焦位置随着正QPM系数的增加或莱维指数的减小而变大. QPM为负时, 光束聚焦消失. 在余弦调制和QPM共同作用下, 光束的传输不再遵循余弦规律振荡, 而是表现出一大一小的呼吸结构, 其演化周期会随调制频率的增加而降低. 引入线性调制时, 分裂光束的运动轨迹呈现抛物线状. 在线性调制和QPM共同影响下, 光束呈现出聚焦或聚焦消失的特性. 当考虑幂函数调制和正QPM共同影响时, 在莱维指数较小时, 光束在一定传输距离内保持不失真的直线传输. 当线性势作用时, 光束的分裂随着线性系数的增加而逐渐消失, 最终呈现周期性演化. 在加入QPM后, 光束会得到明显放大. 另外, 光束演化周期与线性系数成反比, 横向振幅随着莱维指数的增加而变大. 当抛物势和QPM共同作用时, 光束会呈现出自动聚焦, 散焦效应, 聚焦频率会随着莱维指数和抛物系数的增加而变大. 这些特性在光学操纵, 光学聚焦等领域具有潜在的应用价值.
    The Hermite-Gaussian (HG) beam has many potential advanced applications in optical communications, electron acceleration, nonlinear optics and bio-optical disease detection, owing to its distinctive mode and intensity distribution. The research on HG beam are significant in the development of optics, medicine and quantum technology. However, the controlling of the evolutions of HG beam with quadratic phase modulation (QPM) in fractional systems under variable coefficients and potentials has been rarely studied. In this work, the propagation dynamic behaviors of the HG beam with QPM are investigated based on the fractional Schrödinger equation (FSE) under different variable coefficients and potentials by using a split-step Fourier algorithm. In the free space, the focusing spot of the beam becomes larger as the positive QPM coefficient increases or the Lévy index decreases. The QPM coefficient has little effect on the focusing amplitude when the Lévy index is 2. When the QPM coefficient is negative, the focusing of the beam disappears. Under the joint action of cosine modulations and QPM, the transmission of the beam oscillates not by the cosine law, but presents a large and a small breathing structure. The positive and the negative coefficient of QPM only alter the breathing sequence. The evolution period and width of the beam decrease as the modulation frequency increases. The trajectory of split beams turns into a parabolic shape under the linear modulation. In the joint influence of linear modulations and QPM, the HG beam exhibits either focusing or not focusing. Furthermore, the focusing position and focal plane of the beam decrease as the Lévy index increases. When the Lévy index is small, the beam keeps a straight-line transmission without distortion at a longer distance under the joint effect of the power function modulation and a positive QPM. The transmission of the beam also stabilizes and the beam width becomes larger with a negative QPM. Under a linear potential, the splitting of the HG beam disappears with the increase of the linear coefficient and shows a periodic evolution. The propagation trajectory of the beam shows a serrated pattern. By adding QPM, the beam is significantly amplified. Additionally, the evolution period of the beam is inversely proportional to the linear coefficient, and the transverse amplitude turns larger as the Lévy index increases. The interference among beams is strong, but it also exhibits an autofocus-defocusing effect under the joint action of a parabolic potential and QPM. In addition, the positive coefficient and the negative coefficient of QPM only affect the focusing time of the beam. The frequency of focusing increases as the Lévy index and parabolic coefficient rise. These features are important for applications in optical manipulations and optical focusing.
      通信作者: 邹敏, minzou@hnust.edu.cn ; 刘明伟, phymwliu@foxmail.com
    • 基金项目: 湖南省自然科学基金(批准号: 2022JJ30264)和湖南省教育厅科学研究项目(批准号: 21B0476, 21B0136, 22B0479)资助的课题.
      Corresponding author: Zou Min, minzou@hnust.edu.cn ; Liu Ming-Wei, phymwliu@foxmail.com
    • Funds: Project supported by the Hunan Provincial Natural Science Foundation of China (Grant No. 2022JJ30264) and the Scientific Research Fund of Education Department of Hunan Province, China (Grant Nos. 21B0476, 21B0136, 22B0479).
    [1]

    Wang S L, Xu J P, Yang Y P, Cheng M J 2024 Opt. Commun. 556 130258Google Scholar

    [2]

    Zhou J H, Hu Q S 2023 Opt. Express 31 38334Google Scholar

    [3]

    Qiu Y Z, Liu Z R 2024 Results Phys. 58 107457Google Scholar

    [4]

    Sun Z Y, Deng D, Pang Z G, Yang Z J 2024 Chaos, Solitons Fractals 178 114398Google Scholar

    [5]

    Sun Z Y, Li J, Bian R, Deng D, Yang Z J 2024 Opt. Express 32 9201Google Scholar

    [6]

    Arfan M, Khaleel N, Ghaffar A, Razzaz F, Saeed S M, Alanazi T M 2024 Opt. Quantum Electron. 56 135Google Scholar

    [7]

    Wang Q, Zhu J Y, Wang J, Yu H Y, Hu B B 2024 Chaos, Solitons Fractals 180 114580Google Scholar

    [8]

    周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军 2023 物理学报 72 014204Google Scholar

    Zhou W Z, Li X P, Yang J, Yang T L, Wang X J, Liu B J, Wang H Z, Yang J B, Peng Q J 2023 Acta Phys. Sin. 72 014204Google Scholar

    [9]

    Wang S, Wang L, Zhang F R, Kong L J 2022 Chin. Phys. Lett. 39 104101Google Scholar

    [10]

    Wu S M, Wang Q, Gao X H, Wang Y 2018 Results Phys. 10 607Google Scholar

    [11]

    Song L M, Yang Z J, Li X L, Zhang S M 2020 Appl. Math. Lett. 102 106114Google Scholar

    [12]

    Fan X L, Ji X L, Wang H, Deng Y, Zhang H 2021 J. Opt. Soc. Am. A 38 168Google Scholar

    [13]

    Sharma V, Thakur V, Singh A, Kant N 2021 Chin. J. Phys. 71 312Google Scholar

    [14]

    Ebel S, Talebi N 2023 Commun. Phys. 6 179Google Scholar

    [15]

    Che J R, Zheng Y X, Liang G, Guo Q 2023 Chin. Phys. B 32 104207Google Scholar

    [16]

    Saad F, Benzehoua H, Belafhal A 2024 Opt. Quantum Electron. 56 130Google Scholar

    [17]

    Laskin N 2000 Phys. Lett. A 268 298Google Scholar

    [18]

    Longhi S 2015 Opt. Lett. 40 1117Google Scholar

    [19]

    Zhang L F, Li C X, Zhong H Z, Xu C G, Lei D J, Li Y, Fan D Y 2016 Opt. Express 24 14406Google Scholar

    [20]

    Huang X W, Deng Z X, Shi X H, Fu X Q 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 2190Google Scholar

    [21]

    Zhang L F, Zhang X, Wu H Z, Li C X, Pierangeli D, Gao Y X, Fan D Y 2019 Opt. Express 27 27936Google Scholar

    [22]

    Zang F, Wang Y, Li L 2018 Opt. Express 26 23740Google Scholar

    [23]

    Xin W, Song L J, Li L 2021 Opt. Commun. 480 126483Google Scholar

    [24]

    Huang X W, Deng Z X, Fu X Q 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 976Google Scholar

    [25]

    Chen W J, Wang T, Wang J, Mu Y N 2021 Opt. Commun. 496 127136Google Scholar

    [26]

    Tan C, Lei T, Zou M, Liang Y, Tang P H, Liu M W 2024 Opt. Commun. 557 130358Google Scholar

    [27]

    Wen J J, Wang H W, Gao R, Ren S M, Guo T, Xiao Y 2023 Optik 276 170586Google Scholar

    [28]

    Tan C, Liang Y, Zou M, Lei T, Tang P H, Liu M W 2024 J. Opt. Soc. Am. B: Opt. Phys. 41 921Google Scholar

    [29]

    Zhang L F, Liu K, Zhong H Z, Zhang J G, Deng J Q, Li Y, Fan D Y 2015 Sci. Rep. 5 11843Google Scholar

    [30]

    Zhang J G, He J 2017 IEEE Photonics J. 9 1Google Scholar

    [31]

    Zhan K Y, Jiao R Y, Wang J, Zhang W Q, Yang Z D, Liu B 2020 Ann. Phys. 532 1900546Google Scholar

    [32]

    Zhan K Y, Zhang W Q, Jiao R Y, Dou L C, Liu B 2020 Opt. Commun. 474 126156Google Scholar

    [33]

    Jiao C Y, Huang X W, Bai Y F, Fu X Q 2023 J. Opt. Soc. Am. A 40 2019Google Scholar

  • 图 1  不同莱维指数$ \alpha $和QPM系数p下HG光束演化图, 其中$D\left( z \right) = 1$, $ V(x) = 0 $

    Fig. 1.  Evolution of HG beams for different Lévy index $ \alpha $ and QPM coefficient p, here $D\left( z \right) = 1$, $ V(x) = 0 $.

    图 2  (a0)—(c1)不同莱维指数$ \alpha $和QPM系数p下HG光束的包络图; 不同莱维指数$ \alpha $下(d)聚焦振幅和(e)聚焦位置与QPM系数p的关系

    Fig. 2.  (a0)–(c1) Envelopes of HG beams for different Lévy index $ \alpha $ and QPM coefficient p; (d) focusing amplitude and (e) focusing position versus QPM coefficient p under different Lévy index $ \alpha $, respectively.

    图 3  (a0)—(c2) 余弦调制$D\left( z \right) = \cos \left( {\varOmega z} \right)$下不同莱维指数$ \alpha $和QPM系数p的HG光束演化图, $\varOmega = 0.1$; (a3)—(c3)束宽随传输距离z变化图

    Fig. 3.  (a0)–(c2) Evolution of HG beams with different Lévy index $ \alpha $ and QPM coefficient p under cosine modulation $D\left( z \right) = \cos \left( {\varOmega z} \right)$, here $\varOmega = 0.1$; (a3)–(c3) beam width varies with transmission distance z.

    图 4  $\varOmega = 0.1$时, 余弦调制$D\left( z \right) = \cos \left( {\varOmega z} \right)$下不同莱维指数$ \alpha $和QPM系数p的HG光束包络图

    Fig. 4.  Envelopes of HG beams for different Lévy index $ \alpha $ and QPM coefficient p under cosine modulation $D\left( z \right) = \cos \left( {\varOmega z} \right)$, here $\varOmega = 0.1$.

    图 5  (a0)—(c2)不同调制频率$\varOmega $和QPM系数p下HG光束演化图, $\alpha = 1$; (a3)—(c3)束宽随传输距离z变化图

    Fig. 5.  (a0)–(c2) Evolution of HG beams for different modulation frequence and QPM coefficient p, here $\alpha = 1$; (a3)–(c3) the beam width varies with transmission distance z.

    图 6  (a0)—(c2)线性调制$D\left( z \right) = z$下不同莱维指数$\alpha $和QPM系数p的HG光束演化图; (a3)—(c3) 图(a0)—(c2)对应的包络图

    Fig. 6.  (a0)–(c2) Evolution of HG beams with different Lévy index $\alpha $ and QPM coefficient p under linear modulation $D\left( z \right) = z$; (a3)–(c3) the corresponding envelopes to panels (a0)–(c2).

    图 7  (a0)—(c2)幂函数调制$D(z) = 1/z$下不同莱维指数$\alpha $和QPM系数p的HG光束演化图; (a3)—(c3) 图(a0)—(c2)对应的包络图

    Fig. 7.  (a0)–(c2) Evolution of HG beams with different Lévy index $\alpha $ and QPM coefficient p under power function modulation $D\left( z \right) = {1 \mathord{\left/ {\vphantom {1 z}} \right. } z}$; (a3)–(c3) the corresponding envelopes to panels (a0)–(c2).

    图 8  (a0)—(c2)不同线性系数$\beta $和QPM系数p下HG光束演化图, $\alpha = 1$; (a3)—(c3) 图(a0)—(c2)对应的包络图

    Fig. 8.  (a0)–(c2) Evolution of the HG beam for different linear coefficient $\beta $ and QPM coefficient p, here $\alpha = 1$; (a3)–(c3) the corresponding envelopes to panels (a0)–(c2).

    图 9  (a0)—(c2) 不同莱维指数$\alpha $和QPM系数p下HG光束演化图, $\beta = 5$; (a3)束宽随传输距离z变化图; (b3), (c3) 图(a1)—(c2)对应的包络图

    Fig. 9.  (a0)–(c2) Evolution of HG beams for different Lévy index $\alpha $ and QPM coefficient p, here $\beta = 5$; (a3) the beam width varies with transmission distance z; (b3), (c3) the corresponding envelopes to panels (a1)–(c2).

    图 10  (a0)—(c2) 不同莱维指数$\alpha $和QPM系数p下HG光束演化图, $\mu = 1$; (a3)—(c3) 图(a0)—(c2)对应的包络图

    Fig. 10.  (a0)–(c2) Evolution of HG beams for different Lévy index $\alpha $ and QPM coefficient p, here $\mu = 1$; (a3)–(c3) the corresponding envelopes to panels (a0)–(c2).

    图 11  (a0)—(c2) 不同抛物系数$\mu $和QPM系数p下HG光束演化图, $\alpha = 1.5$; (a3)—(c3) 图(a0)—(c2)对应的包络图

    Fig. 11.  (a0)–(c2) Evolution of HG beams for different parabolic coefficient $\mu $ and QPM coefficient p, here $\alpha = 1.5$; (a3)–(c3) the corresponding envelopes to panels (a0)–(c2).

  • [1]

    Wang S L, Xu J P, Yang Y P, Cheng M J 2024 Opt. Commun. 556 130258Google Scholar

    [2]

    Zhou J H, Hu Q S 2023 Opt. Express 31 38334Google Scholar

    [3]

    Qiu Y Z, Liu Z R 2024 Results Phys. 58 107457Google Scholar

    [4]

    Sun Z Y, Deng D, Pang Z G, Yang Z J 2024 Chaos, Solitons Fractals 178 114398Google Scholar

    [5]

    Sun Z Y, Li J, Bian R, Deng D, Yang Z J 2024 Opt. Express 32 9201Google Scholar

    [6]

    Arfan M, Khaleel N, Ghaffar A, Razzaz F, Saeed S M, Alanazi T M 2024 Opt. Quantum Electron. 56 135Google Scholar

    [7]

    Wang Q, Zhu J Y, Wang J, Yu H Y, Hu B B 2024 Chaos, Solitons Fractals 180 114580Google Scholar

    [8]

    周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军 2023 物理学报 72 014204Google Scholar

    Zhou W Z, Li X P, Yang J, Yang T L, Wang X J, Liu B J, Wang H Z, Yang J B, Peng Q J 2023 Acta Phys. Sin. 72 014204Google Scholar

    [9]

    Wang S, Wang L, Zhang F R, Kong L J 2022 Chin. Phys. Lett. 39 104101Google Scholar

    [10]

    Wu S M, Wang Q, Gao X H, Wang Y 2018 Results Phys. 10 607Google Scholar

    [11]

    Song L M, Yang Z J, Li X L, Zhang S M 2020 Appl. Math. Lett. 102 106114Google Scholar

    [12]

    Fan X L, Ji X L, Wang H, Deng Y, Zhang H 2021 J. Opt. Soc. Am. A 38 168Google Scholar

    [13]

    Sharma V, Thakur V, Singh A, Kant N 2021 Chin. J. Phys. 71 312Google Scholar

    [14]

    Ebel S, Talebi N 2023 Commun. Phys. 6 179Google Scholar

    [15]

    Che J R, Zheng Y X, Liang G, Guo Q 2023 Chin. Phys. B 32 104207Google Scholar

    [16]

    Saad F, Benzehoua H, Belafhal A 2024 Opt. Quantum Electron. 56 130Google Scholar

    [17]

    Laskin N 2000 Phys. Lett. A 268 298Google Scholar

    [18]

    Longhi S 2015 Opt. Lett. 40 1117Google Scholar

    [19]

    Zhang L F, Li C X, Zhong H Z, Xu C G, Lei D J, Li Y, Fan D Y 2016 Opt. Express 24 14406Google Scholar

    [20]

    Huang X W, Deng Z X, Shi X H, Fu X Q 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 2190Google Scholar

    [21]

    Zhang L F, Zhang X, Wu H Z, Li C X, Pierangeli D, Gao Y X, Fan D Y 2019 Opt. Express 27 27936Google Scholar

    [22]

    Zang F, Wang Y, Li L 2018 Opt. Express 26 23740Google Scholar

    [23]

    Xin W, Song L J, Li L 2021 Opt. Commun. 480 126483Google Scholar

    [24]

    Huang X W, Deng Z X, Fu X Q 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 976Google Scholar

    [25]

    Chen W J, Wang T, Wang J, Mu Y N 2021 Opt. Commun. 496 127136Google Scholar

    [26]

    Tan C, Lei T, Zou M, Liang Y, Tang P H, Liu M W 2024 Opt. Commun. 557 130358Google Scholar

    [27]

    Wen J J, Wang H W, Gao R, Ren S M, Guo T, Xiao Y 2023 Optik 276 170586Google Scholar

    [28]

    Tan C, Liang Y, Zou M, Lei T, Tang P H, Liu M W 2024 J. Opt. Soc. Am. B: Opt. Phys. 41 921Google Scholar

    [29]

    Zhang L F, Liu K, Zhong H Z, Zhang J G, Deng J Q, Li Y, Fan D Y 2015 Sci. Rep. 5 11843Google Scholar

    [30]

    Zhang J G, He J 2017 IEEE Photonics J. 9 1Google Scholar

    [31]

    Zhan K Y, Jiao R Y, Wang J, Zhang W Q, Yang Z D, Liu B 2020 Ann. Phys. 532 1900546Google Scholar

    [32]

    Zhan K Y, Zhang W Q, Jiao R Y, Dou L C, Liu B 2020 Opt. Commun. 474 126156Google Scholar

    [33]

    Jiao C Y, Huang X W, Bai Y F, Fu X Q 2023 J. Opt. Soc. Am. A 40 2019Google Scholar

  • [1] 郭刚峰, 包茜茜, 谭磊, 刘伍明. 非厄米准周期系统中的二次局域体态和局域-扩展的边缘态. 物理学报, 2025, 74(1): 1-9. doi: 10.7498/aps.74.20240933
    [2] 公睿智, 王灯山. 散焦型非线性薛定谔方程的Whitham调制理论及其间断初值问题解的分类和演化. 物理学报, 2023, 72(10): 100503. doi: 10.7498/aps.72.20230172
    [3] 周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军. 大模场一维高阶厄米-高斯激光束产生. 物理学报, 2023, 72(1): 014204. doi: 10.7498/aps.72.20221422
    [4] 周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军. 大模场一维高阶厄米-高斯激光束产生. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221422
    [5] 李敏, 王博婷, 许韬, 水涓涓. 四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制. 物理学报, 2020, 69(1): 010502. doi: 10.7498/aps.69.20191384
    [6] 赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升. 自加速类贝塞尔-厄米-高斯光束的理论和实验研究. 物理学报, 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [7] 刘冬兵, 程晋明, 祁双喜, 王婉丽, 钱伟新. 部分空间相干和部分光谱相干厄米-高斯脉冲光束的焦场的相干特性. 物理学报, 2012, 61(24): 244202. doi: 10.7498/aps.61.244202
    [8] 李少华, 杨振军, 陆大全, 胡巍. 厄米-高斯光束在热非局域介质中传输的数值模拟研究. 物理学报, 2011, 60(2): 024214. doi: 10.7498/aps.60.024214
    [9] 胡先权, 崔立鹏, 罗光, 马燕. 幂函数叠加势的径向薛定谔方程的解析解. 物理学报, 2009, 58(4): 2168-2173. doi: 10.7498/aps.58.2168
    [10] 黎昌金, 吕百达. 非傍轴部分相干厄米-高斯光束的相干和非相干合成. 物理学报, 2009, 58(9): 6192-6201. doi: 10.7498/aps.58.6192
    [11] 李玮, 陈建国, 冯国英, 黄宇, 李刚, 谢旭东, 杨火木, 周寿桓. 厄米-高斯光束的M2因子矩阵. 物理学报, 2009, 58(4): 2461-2466. doi: 10.7498/aps.58.2461
    [12] 白东峰, 郭 旗, 胡 巍. 非局域克尔介质中厄米高斯光束传输的变分研究. 物理学报, 2008, 57(9): 5684-5689. doi: 10.7498/aps.57.5684
    [13] 胡先权, 许 杰, 马 勇, 殷 霖. 高次正幂与逆幂势函数的叠加的径向薛定谔方程的解析解. 物理学报, 2007, 56(9): 5060-5065. doi: 10.7498/aps.56.5060
    [14] 季小玲, 汤明玥, 张 涛. 超短脉冲厄米-高斯光束在湍流大气中的光谱移动和光谱跃变. 物理学报, 2007, 56(7): 4281-4288. doi: 10.7498/aps.56.4281
    [15] 李建龙, 吕百达. 厄米-高斯光束通过正弦和矩形浮雕光栅传输特性的比较研究. 物理学报, 2007, 56(10): 5772-5777. doi: 10.7498/aps.56.5772
    [16] 但有全, 张 彬. 复宗量厄米-高斯光束的相干模表示. 物理学报, 2006, 55(2): 712-716. doi: 10.7498/aps.55.712
    [17] 张解放, 徐昌智, 何宝钢. 变量分离法与变系数非线性薛定谔方程的求解探索. 物理学报, 2004, 53(11): 3652-3656. doi: 10.7498/aps.53.3652
    [18] 彭润伍, 吕百达. 厄米-高斯光束的焦开关. 物理学报, 2003, 52(11): 2795-2802. doi: 10.7498/aps.52.2795
    [19] 阮航宇, 陈一新. (2+1)维非线性薛定谔方程的环孤子,dromion,呼吸子和瞬子. 物理学报, 2001, 50(4): 586-592. doi: 10.7498/aps.50.586
    [20] 李学信, 徐至展, 汤燕. 一维含时薛定谔方程的数值求解及其在强场高次谐波中的应用. 物理学报, 1997, 46(2): 267-271. doi: 10.7498/aps.46.267
计量
  • 文章访问数:  1829
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-24
  • 修回日期:  2024-05-11
  • 上网日期:  2024-05-16
  • 刊出日期:  2024-07-05

/

返回文章
返回