-
Photogenerated carrier relaxation process and terahertz conductivity of Cd0.96Zn0.04Te are investigated by optical pump-terahertz probe spectroscopy at room temperature. With photoexcitation at 800 nm, the photogenerated carrier recovery process can be fitted with a single exponential curve, and its recovery time lasts several nanoseconds, which decreases with the increase of photogenerated carrier densities in a certain range of photogenerated carrier densities, relating to the radiative recombination of electron-hole pairs. The transient transmittance change of terahertz pulse remains the same with the photogenerated carrier densities increasing from 4.51×1016 cm–3 to 1.81×1017 cm–3, which is because the number of loss carriers by defect trapping is approximate to the augment of carriers by photoexcitation. As the photogenerated carrier density increases from 1.81×1017 cm–3 to 1.44×1018 cm–3, the magnitude of photoinduced absorption increases linearly with the increase of photogenerated carrier density due to the fact that most of the defects are occupied. When the photogenerated carrier densities are higher than 1.44×1018 cm–3, the magnitude of photoinduced absorption remains almost the same, because the absorption of 800 nm pump pulse reaches a saturation level. The evolution of complex conductivity with photogenerated carrier density in a delay time of about 50 ps can be well fitted with Drude-Smith model. Our analysis provides an important data support and theoretical basis for designing and fabricating of Cd1–xZnxTe detection.
-
Keywords:
- optical-pump terahertz-probe spectroscopy /
- photocarrier dynamics /
- terahertz conductivity /
- Cd1–xZnxTe
[1] Koch-Mehrin K A L, Bugby S L, Lees J E, Veale M C, Wilson M D 2021 Sensors-Basel 21 3260Google Scholar
[2] Szeles C 2004 Phys. Status Solidi B 241 783Google Scholar
[3] Bolotnikov A E, Babalola S, Camarda G S, Cui Y, Gul R, Egarievwe S U, Fochuk P M, Fochuk P M, Fuerstnau M, Horace J, Hossain A, Jones F, Kim K H, Kopach O V, McCall B, Marchini L, Raghothamachar B, Taggart R, Yang G, Xu L, James R B 2011 IEEE Trans. Nucl. Sci. 58 1972Google Scholar
[4] Guo R R, Jie W Q, Xu Y D, Yu H, Zha G Q, Wang T, Ren J 2015 Nucl. Instrum. Meth. A 794 62Google Scholar
[5] Liang S J, Sun S W, Zhou C H, Xu C, Min J H, Liang X Y, Zhang J J, Jin C W, Shi H Z, Wang L J, Shen Y 2020 Mat. Sci. Semicond Process 108 104871Google Scholar
[6] 赵文, 孔金丞, 姜军, 赵增林, 陈少璠, 宋林伟, 俞见云, 陈珊, 庹梦寒, 李俊, 贺政, 姬荣斌 2022 红外技术 44 560
Zhao W, Kong J C, Jiang J, Zhao Z L, Chen S P, Song L W, Yu J Y, Chen S, Tuo M H, Li J, He Z, Ji R B 2022 Infrar. Technol. 44 560
[7] Wu R, Kang Y, Wei D K, Fan D H, Li Y R, Wu S, Dong J P, Chen D L, Tan T T, Zha G Q 2022 IEEE Trans. Nucl. Sci. 69 1773Google Scholar
[8] Wang Q, Xie L J, Ying Y B 2021 Appl. Spectrosc. Rev. 57 249
[9] Koll L M, Maikowski L, Drescher L, Witting T, Vrakking M J J 2022 Phys. Rev. Lett. 128 043201Google Scholar
[10] Xia C Q, Monti M, Boland J L, Herz L M, Lloyd-Hughes J, Filip M R, Johnston M B 2021 Phys. Rev. B 103 245205Google Scholar
[11] Jin Z M, Peng Y, Fang Y Q, Ye Z J, Fan Z Y, Liu Z L Bao X C, Gao H, Ren W, Wu J, Ma G H, Chen Q L, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2022 Light Sci. Appl. 11 209Google Scholar
[12] Li G F, Nie X B, Zhou W, Zhang W J, Cui H Y, Xia N H, Huang Z M, Chu J H, Ma G H 2021 Appl. Opt. 59 11046Google Scholar
[13] Ruan S Y, Lin X, Chen H Y, Song B J, Dai Y, Yan X N, Jin Z M, Ma G H, Yao J Q 2021 Appl. Phys. Lett. 118 011102Google Scholar
[14] Magnanelli T J, Heilweil E J 2020 Chem. Phys. 540 111005
[15] Yuan L, Pokharel R, Devkota S, Kuchoor H, Dawkins K, Lee M C, Huang Y, Yarotski D, Iyer S, Prasankumar R P 2022 Nanotechnology 33 425702Google Scholar
[16] Mithun K P, Kar S, Kumar A, Muthu D V S, Ravishankar N, Sood A K 2021 Nanoscale 13 8283Google Scholar
[17] Zhang Z Y, Hu M C, Jia T Y, Du J, Chen C, Wang C W, Liu Z Z, Shi T C, Tang J, Leng Y X 2021 ACS Energy Lett. 6 1740Google Scholar
[18] Xing X, Zhao L T, Zhang W J, Wang Z, Chen H Y, Su H M, Ma G H, Dai J F, Zhang W J 2020 Nanoscale 12 2498Google Scholar
[19] Ma Q, Zhang W, Wang C, Pu R, Ju C W, Lin X, Zhang Z, Liu W, Li R 2021 J. Phys. Chem. C 125 9296
[20] Zou Y Q, Ma Q S, Zhang Z Y, Pu R H, Zhang W J, Suo P, Sun K W, Chen J M, Li D, Ma H, Lin X, Leng Y X, Liu W M, Du J, Ma G H 2022 J. Phys. Chem. Lett. 13 5123
[21] Zhang X C, Jin Y, Ma X F 1992 Appl. Phys. Lett. 61 2764Google Scholar
[22] Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523Google Scholar
[23] 黄根生, 张小平, 常勇, 于福聚, 杨建荣, 何力 1999 红外与毫米波学报 6 460
Huang G S, Zhang X P, Chang Y, Yu F J, Yang J R, He L 1999 J. Infrared Millim. W. 6 460
[24] Lmai F, Moubah R, Amiri A E, Boudali A, Hlil E K, Lassri H 2018 J. Phys. Chem. Solids 100 45
[25] Sabbah A J, Riffe D M 2002 Phys. Rev. B 66 165217Google Scholar
[26] Li Y J, Gu Z, Li G Q, Jie W Q 2004 J. Electron. Mater. 33 861Google Scholar
[27] Maeshima H, Matsumoto K, Hirahara Y, Nakagawa T, Koga R, Hanamura Y, Wada T, Nagase K, Oyabu S, Suzuki T, Kokusho T, Kaneda H, Ishikawa D 2022 J. Electron. Mater. 51 564Google Scholar
[28] Palik E D 1985 Handbook of Optical Constants of Solids (Vol. 1) (San Dicgo: Academic Press) pp416–417
[29] Cohen R, Lyahovitskaya V, Poles E, Liu A, Rosenwaks Y 1998 Appl. Phys. Lett. 73 1400Google Scholar
[30] Carvalho A, Tagantsev A, Oberg S, Briddon P R, Setter N 2009 Physica B 404 5019Google Scholar
[31] Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mersropian S 2001 Appl. Phys. Lett. 79 2728Google Scholar
[32] Li G Q, Zhang X L, Jie W Q, Hua H 2006 J. Crys. Growth 31 295
[33] Cheng Z, Delahoy A, Su Z, Chin K K 2014 Thin Solid Films 558 391Google Scholar
[34] Suzuki K, Sawada T, Imai K 2011 IEEE Trans. Nucl. Sci. 58 1958Google Scholar
[35] Lang D V, Henry C H 1975 Phys. Rev. Lett. 35 1525Google Scholar
[36] Cola A, Reggiani L, Vasanelli L 1997 J. Appl. Phys. 81 997Google Scholar
[37] Soundararajan R, Lynn K, Awadallah S, Szeles C, Wei S H 2006 J. Electron. Mater. 35 1333Google Scholar
[38] Shi Y, Zhou Q, Zhang C, Jin B 2008 Appl. Phys. Lett. 93 121115Google Scholar
[39] Walther M, Cooke D G, Sherstan C, Hajar M, Freeman M R, Hegmann F A 2007 Phys. Rev. B 76 125408Google Scholar
[40] Schall M, Helm H, Keiding S R 1999 Int. J. Infraren Milli 20 595Google Scholar
[41] Dzhagan V, Lokteva I, Himcinschi C, Jin X, Joanna K, Zahn D 2011 Nanoscale Res. Lett. 6 1
[42] Hawkins S A, Villa-Aleman E, Duff M C, Hunter D B, Burger A, Groza M, Buliga V, Black D R 2008 J. Electron. Mater. 37 1438Google Scholar
[43] 曾东梅, 王涛, 周海, 杨英歌 2010 人工晶体学报 39 221Google Scholar
Zeng D M, Wang T, Zhou H, Yang Y G 2010 J. Synth. Cryst. 39 221Google Scholar
[44] Xie X, Xu J Z, Zhang X C 2005 Opt. Lett. 31 978
[45] Smith N 2001 Phys. Rev. B 64 155106Google Scholar
[46] Jensen S A, Versluis J, Cánovas E, Pijpers H, Sellers I R, Bonn M, 2012 Appl. Phys. Lett. 101 222113Google Scholar
-
图 3 不同光激发载流子浓度下Cd0.96Zn0.04Te (a) 和CdTe (b)的THz瞬态透射变化率与延迟时间的关系图, 实线是单指数函数拟合结果; (c) Cd0.96Zn0.04Te和CdTe的THz瞬态透射变化率最大值(–ΔT/T0 max)与光激发载流子浓度的关系图; (d) Cd0.96Zn0.04Te和CdTe的载流子复合时间与光激发载流子浓度的关系图; (e) Cd0.96Zn0.04Te的能带结构示意图
Figure 3. Transient transmittance change (–∆T/T0) of THz probe pulse as a function of probe delay with carrier density from 4.51×1016 cm–3 increases to 2.17×1018 cm–3 for Cd0.96Zn0.04Te (a) and with carrier density from 1.12×1017 increases to 7.82×1017 for CdTe (b), solid curves are monoexponential fits; (c) maximum value of the transient transmittance change (–ΔT/T0 max) of THz probe pulse as a function of carrier densities for Cd0.96Zn0.04Te and CdTe; (d) the relationship between relaxation time and carrier density, in which the points with error bars show experimental data and the lines are guide to the eye; (e) the band structure of Cd0.96Zn0.04Te.
图 4 不同光激发载流子浓度下Cd0.96Zn0.04Te (a) 和CdTe (b) 的THz时域谱; 傅里叶变换后不同光激发载流子浓度下的Cd0.96Zn0.04Te (c) 和CdTe (d) 的频谱图; (e) 无抽运光激发时Cd0.96Zn0.04Te和CdTe的折射率图
Figure 4. THz time domain spectroscopy of Cd0.96Zn0.04Te (a) and CdTe (b) with different carrier densities; THz spectrum of Cd0.96Zn0.04Te (c) and CdTe (d) with different carrier densities; (e) refractive index of nonphotoexcited Cd0.96Zn0.04Te and CdTe in THz frequency with no pump.
图 5 不同光激发载流子浓度下Cd0.96Zn0.04Te (a) 和CdTe (b) 的瞬态电导率, 实线为Drude-Smith模型的拟合结果; 延迟时间为50 ps时Cd0.96Zn0.04Te (c) 和CdTe (d) 的载流子浓度随光激发载流子浓度的变化关系; (e) Cd0.96Zn0.04Te (红) 和CdTe (蓝)的Smith参数c1随光激发载流子浓度的变化关系图; (f) Cd0.96Zn0.04Te (红) 和CdTe (蓝)的载流子散射时间τS随光激发载流子浓度的变化关系图
Figure 5. The THz photoconductivities of Cd0.96Zn0.04Te (a) and CdTe (b) at different photogenerated carrier density, solid lines show the fitting results of the Drude-Smith model; the relationship between carrier concentration and photoexcited carrier concentration at 50 ps delay time of Cd0.96Zn0.04Te (c) and CdTe (d); (e) the relationship of Smith parameter c1 with photogenerated carrier concentration of Cd0.96Zn0.04Te (red) and CdTe (bule); (f) the carrier scattering time τS varies with the photogenerated carrier concentration of Cd0.96Zn0.04Te (red) and CdTe (bule).
-
[1] Koch-Mehrin K A L, Bugby S L, Lees J E, Veale M C, Wilson M D 2021 Sensors-Basel 21 3260Google Scholar
[2] Szeles C 2004 Phys. Status Solidi B 241 783Google Scholar
[3] Bolotnikov A E, Babalola S, Camarda G S, Cui Y, Gul R, Egarievwe S U, Fochuk P M, Fochuk P M, Fuerstnau M, Horace J, Hossain A, Jones F, Kim K H, Kopach O V, McCall B, Marchini L, Raghothamachar B, Taggart R, Yang G, Xu L, James R B 2011 IEEE Trans. Nucl. Sci. 58 1972Google Scholar
[4] Guo R R, Jie W Q, Xu Y D, Yu H, Zha G Q, Wang T, Ren J 2015 Nucl. Instrum. Meth. A 794 62Google Scholar
[5] Liang S J, Sun S W, Zhou C H, Xu C, Min J H, Liang X Y, Zhang J J, Jin C W, Shi H Z, Wang L J, Shen Y 2020 Mat. Sci. Semicond Process 108 104871Google Scholar
[6] 赵文, 孔金丞, 姜军, 赵增林, 陈少璠, 宋林伟, 俞见云, 陈珊, 庹梦寒, 李俊, 贺政, 姬荣斌 2022 红外技术 44 560
Zhao W, Kong J C, Jiang J, Zhao Z L, Chen S P, Song L W, Yu J Y, Chen S, Tuo M H, Li J, He Z, Ji R B 2022 Infrar. Technol. 44 560
[7] Wu R, Kang Y, Wei D K, Fan D H, Li Y R, Wu S, Dong J P, Chen D L, Tan T T, Zha G Q 2022 IEEE Trans. Nucl. Sci. 69 1773Google Scholar
[8] Wang Q, Xie L J, Ying Y B 2021 Appl. Spectrosc. Rev. 57 249
[9] Koll L M, Maikowski L, Drescher L, Witting T, Vrakking M J J 2022 Phys. Rev. Lett. 128 043201Google Scholar
[10] Xia C Q, Monti M, Boland J L, Herz L M, Lloyd-Hughes J, Filip M R, Johnston M B 2021 Phys. Rev. B 103 245205Google Scholar
[11] Jin Z M, Peng Y, Fang Y Q, Ye Z J, Fan Z Y, Liu Z L Bao X C, Gao H, Ren W, Wu J, Ma G H, Chen Q L, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2022 Light Sci. Appl. 11 209Google Scholar
[12] Li G F, Nie X B, Zhou W, Zhang W J, Cui H Y, Xia N H, Huang Z M, Chu J H, Ma G H 2021 Appl. Opt. 59 11046Google Scholar
[13] Ruan S Y, Lin X, Chen H Y, Song B J, Dai Y, Yan X N, Jin Z M, Ma G H, Yao J Q 2021 Appl. Phys. Lett. 118 011102Google Scholar
[14] Magnanelli T J, Heilweil E J 2020 Chem. Phys. 540 111005
[15] Yuan L, Pokharel R, Devkota S, Kuchoor H, Dawkins K, Lee M C, Huang Y, Yarotski D, Iyer S, Prasankumar R P 2022 Nanotechnology 33 425702Google Scholar
[16] Mithun K P, Kar S, Kumar A, Muthu D V S, Ravishankar N, Sood A K 2021 Nanoscale 13 8283Google Scholar
[17] Zhang Z Y, Hu M C, Jia T Y, Du J, Chen C, Wang C W, Liu Z Z, Shi T C, Tang J, Leng Y X 2021 ACS Energy Lett. 6 1740Google Scholar
[18] Xing X, Zhao L T, Zhang W J, Wang Z, Chen H Y, Su H M, Ma G H, Dai J F, Zhang W J 2020 Nanoscale 12 2498Google Scholar
[19] Ma Q, Zhang W, Wang C, Pu R, Ju C W, Lin X, Zhang Z, Liu W, Li R 2021 J. Phys. Chem. C 125 9296
[20] Zou Y Q, Ma Q S, Zhang Z Y, Pu R H, Zhang W J, Suo P, Sun K W, Chen J M, Li D, Ma H, Lin X, Leng Y X, Liu W M, Du J, Ma G H 2022 J. Phys. Chem. Lett. 13 5123
[21] Zhang X C, Jin Y, Ma X F 1992 Appl. Phys. Lett. 61 2764Google Scholar
[22] Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523Google Scholar
[23] 黄根生, 张小平, 常勇, 于福聚, 杨建荣, 何力 1999 红外与毫米波学报 6 460
Huang G S, Zhang X P, Chang Y, Yu F J, Yang J R, He L 1999 J. Infrared Millim. W. 6 460
[24] Lmai F, Moubah R, Amiri A E, Boudali A, Hlil E K, Lassri H 2018 J. Phys. Chem. Solids 100 45
[25] Sabbah A J, Riffe D M 2002 Phys. Rev. B 66 165217Google Scholar
[26] Li Y J, Gu Z, Li G Q, Jie W Q 2004 J. Electron. Mater. 33 861Google Scholar
[27] Maeshima H, Matsumoto K, Hirahara Y, Nakagawa T, Koga R, Hanamura Y, Wada T, Nagase K, Oyabu S, Suzuki T, Kokusho T, Kaneda H, Ishikawa D 2022 J. Electron. Mater. 51 564Google Scholar
[28] Palik E D 1985 Handbook of Optical Constants of Solids (Vol. 1) (San Dicgo: Academic Press) pp416–417
[29] Cohen R, Lyahovitskaya V, Poles E, Liu A, Rosenwaks Y 1998 Appl. Phys. Lett. 73 1400Google Scholar
[30] Carvalho A, Tagantsev A, Oberg S, Briddon P R, Setter N 2009 Physica B 404 5019Google Scholar
[31] Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mersropian S 2001 Appl. Phys. Lett. 79 2728Google Scholar
[32] Li G Q, Zhang X L, Jie W Q, Hua H 2006 J. Crys. Growth 31 295
[33] Cheng Z, Delahoy A, Su Z, Chin K K 2014 Thin Solid Films 558 391Google Scholar
[34] Suzuki K, Sawada T, Imai K 2011 IEEE Trans. Nucl. Sci. 58 1958Google Scholar
[35] Lang D V, Henry C H 1975 Phys. Rev. Lett. 35 1525Google Scholar
[36] Cola A, Reggiani L, Vasanelli L 1997 J. Appl. Phys. 81 997Google Scholar
[37] Soundararajan R, Lynn K, Awadallah S, Szeles C, Wei S H 2006 J. Electron. Mater. 35 1333Google Scholar
[38] Shi Y, Zhou Q, Zhang C, Jin B 2008 Appl. Phys. Lett. 93 121115Google Scholar
[39] Walther M, Cooke D G, Sherstan C, Hajar M, Freeman M R, Hegmann F A 2007 Phys. Rev. B 76 125408Google Scholar
[40] Schall M, Helm H, Keiding S R 1999 Int. J. Infraren Milli 20 595Google Scholar
[41] Dzhagan V, Lokteva I, Himcinschi C, Jin X, Joanna K, Zahn D 2011 Nanoscale Res. Lett. 6 1
[42] Hawkins S A, Villa-Aleman E, Duff M C, Hunter D B, Burger A, Groza M, Buliga V, Black D R 2008 J. Electron. Mater. 37 1438Google Scholar
[43] 曾东梅, 王涛, 周海, 杨英歌 2010 人工晶体学报 39 221Google Scholar
Zeng D M, Wang T, Zhou H, Yang Y G 2010 J. Synth. Cryst. 39 221Google Scholar
[44] Xie X, Xu J Z, Zhang X C 2005 Opt. Lett. 31 978
[45] Smith N 2001 Phys. Rev. B 64 155106Google Scholar
[46] Jensen S A, Versluis J, Cánovas E, Pijpers H, Sellers I R, Bonn M, 2012 Appl. Phys. Lett. 101 222113Google Scholar
Catalog
Metrics
- Abstract views: 4110
- PDF Downloads: 81
- Cited By: 0