Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study of ultrafast carrier dynamics in polycrystalline ZnTe nanofilm

Jia Lin Tang Da-Wei Zhang Xing

Citation:

Experimental study of ultrafast carrier dynamics in polycrystalline ZnTe nanofilm

Jia Lin, Tang Da-Wei, Zhang Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Zinc telluride, due to its direct band gap and broadband light absorption, has the good application prospects in terahertz devices, solar cells, waveguide devices, and green light emitting diodes. In the photovoltaic field, it is possible to further improve the photoelectron conversion efficiency of multi-junction tandem solar cells by combining zinc telluride with III-V semiconductors. Ultrafast photo-excited carrier dynamics is fundamental to understand photoelectron conversion process of nanofilm solar cells. In this study, the ultrafast energy carrier dynamics of N-doped polycrystalline zinc telluride is investigated by using the femtosecond laser two-color pump-probe method at room temperature. The polycrystalline zinc telluride nanofilm is grown on a 500 μm GaAs (001) substrate via molecular beam epitaxy and doped by using a nitrogen ratio frequency plasma cell. The laser pulses with a central wavelength of 800 nm are divided into pump beam and probe beam by a beam splitter, after which the pump beam passes through a bismuth triborate crystal and its frequency is doubled to 400 nm. The 400 nm pump beam and 800 nm probe beam are focused on the sample collinearly through the same objective lens. Photo-excited carriers will be generated since the excitation photon energy of 400 nm pump beam (3.1 eV) is higher than the band gap of zinc telluride (~ 2.39 eV). The experimental data are analyzed by using the theoretical fitting model which includes energy relaxation processes of electrons and lattice, and the theoretical curves are consistent well with the experimental data. The fitted results show that the three dominated relaxation processes which affect the initial reflectivity recovery are in sub-picosecond time regime. The positive amplitude electron relaxation process is attributed to inter-band carrier cooling and carrier diffusion through electron-photon interactions, and the deduced decay time of this positive amplitude electron relaxation process is about 0.75 ps. The negative amplitude electron relaxation process is characterized as a photo-generated carrier trapping process induced by defects, and the decay time of this process is about 0.61 ps. The lattice heating process is realized through electron-phonon coupling process, and the calculated time constant of the lattice heating is about 0.86 ps.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51206094, 51327001, 51336009).
    [1]

    Guo Q X, Kume Y, Fukuhara Y, Tanaka T, Nishio M, Ogawa H, Hiratsuka M, Tani M, Hangyo M 2007 Solid State Commun. 141 188

    [2]

    Chang J H, Takai T, Godo K, Song J S, Koo B H, Hanada T, Yao T 2002 Phys. Status Solidi (b) 229 995

    [3]

    Wu S N, Ding D, Johnson S R, Yu S Q, Zhang Y H 2010 Prog. Photovolt. 18 328

    [4]

    Xia Z L, Fan Z X, Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林, 范正修, 邵建达 2006 物理学报 55 3007]

    [5]

    Wang H D, Ma W G, Guo Z Y, Zhang X, Wang W 2011 Chin. Phys. B 20 040701

    [6]

    Collier C M, Holzman J F 2014 Appl. Phys. Lett. 104 042101

    [7]

    Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102

    [8]

    Jia L, Ma W G, Zhang X 2014 Appl. Phys. Lett. 104 241911

    [9]

    Wu A Q, Xu X F 2007 Appl. Phys. Lett. 90 251111

    [10]

    Zhu J, Tang D W, Wang W, Liu J, Holub K W, Yang R G 2010 J. Appl. Phys. 108 094315

    [11]

    Ma W G, Wang H D, Zhang X, Wang W 2011 Acta Phys. Sin. 60 064401 (in Chinese) [马维刚, 王海东, 张兴, 王玮 2011 物理学报 60 064401]

    [12]

    Zhu L D, Sun F Y, Zhu J, Tang D W 2012 Acta Phys. Sin. 61 130512 (in Chinese) [朱丽丹, 孙方远, 祝捷, 唐大伟 2012 物理学报 61 130512]

    [13]

    Norris P M, Caffrey A P, Stevens R J, Michael Klopf J, Mcleskey Jr J T, Smith A N 2003 Rev. Sci. Instrum. 74 400

    [14]

    Hopkins P E, Stewart D A 2009 J. Appl. Phys. 106 053512

    [15]

    Rast S, Schneider M L, Onellion M, Zeng X H, Si W D, Xi X X, Abrecht M, Ariosa D, Pavuna D, Ren Y H, Lpke G, Perakis I 2001 Phys. Rev. B 64 214505

    [16]

    Wright O B, Gusev V E 1995 Appl. Phys. Lett. 66 1190

  • [1]

    Guo Q X, Kume Y, Fukuhara Y, Tanaka T, Nishio M, Ogawa H, Hiratsuka M, Tani M, Hangyo M 2007 Solid State Commun. 141 188

    [2]

    Chang J H, Takai T, Godo K, Song J S, Koo B H, Hanada T, Yao T 2002 Phys. Status Solidi (b) 229 995

    [3]

    Wu S N, Ding D, Johnson S R, Yu S Q, Zhang Y H 2010 Prog. Photovolt. 18 328

    [4]

    Xia Z L, Fan Z X, Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林, 范正修, 邵建达 2006 物理学报 55 3007]

    [5]

    Wang H D, Ma W G, Guo Z Y, Zhang X, Wang W 2011 Chin. Phys. B 20 040701

    [6]

    Collier C M, Holzman J F 2014 Appl. Phys. Lett. 104 042101

    [7]

    Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102

    [8]

    Jia L, Ma W G, Zhang X 2014 Appl. Phys. Lett. 104 241911

    [9]

    Wu A Q, Xu X F 2007 Appl. Phys. Lett. 90 251111

    [10]

    Zhu J, Tang D W, Wang W, Liu J, Holub K W, Yang R G 2010 J. Appl. Phys. 108 094315

    [11]

    Ma W G, Wang H D, Zhang X, Wang W 2011 Acta Phys. Sin. 60 064401 (in Chinese) [马维刚, 王海东, 张兴, 王玮 2011 物理学报 60 064401]

    [12]

    Zhu L D, Sun F Y, Zhu J, Tang D W 2012 Acta Phys. Sin. 61 130512 (in Chinese) [朱丽丹, 孙方远, 祝捷, 唐大伟 2012 物理学报 61 130512]

    [13]

    Norris P M, Caffrey A P, Stevens R J, Michael Klopf J, Mcleskey Jr J T, Smith A N 2003 Rev. Sci. Instrum. 74 400

    [14]

    Hopkins P E, Stewart D A 2009 J. Appl. Phys. 106 053512

    [15]

    Rast S, Schneider M L, Onellion M, Zeng X H, Si W D, Xi X X, Abrecht M, Ariosa D, Pavuna D, Ren Y H, Lpke G, Perakis I 2001 Phys. Rev. B 64 214505

    [16]

    Wright O B, Gusev V E 1995 Appl. Phys. Lett. 66 1190

  • [1] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [2] Zheng Yue, Zhang Yu-Xuan, Sun Shao-Hua, Ding Peng-Ji, Hu Bi-Tao, Liu Zuo-Ye. Modulation of non-adiabatic alignment of N2 molecule by femtosecond laser pulses. Acta Physica Sinica, 2023, 72(6): 064203. doi: 10.7498/aps.72.20222112
    [3] Pan Peng-Hui, Ji Peng-Fei, Lin Gen, Dong Xi-Ming, Zhao Jin-Hui. Theoretical and experimental research of femtosecond laser processing fused silica. Acta Physica Sinica, 2022, 71(24): 247901. doi: 10.7498/aps.71.20221496
    [4] Jiao Yue, Tao Hai-Yan, Ji Bo-Yu, Song Xiao-Wei, Lin Jing-Quan. Near field enhancement of TiO2 nanoparticle array on different substrates for femtosecond laser processing. Acta Physica Sinica, 2017, 66(14): 144203. doi: 10.7498/aps.66.144203
    [5] Yao Yun-Hua, Lu Chen-Hui, Xu Shu-Wu, Ding Jing-Xin, Jia Tian-Qing, Zhang Shi-An, Sun Zhen-Rong. Femtosecond pulse shaping technology and its applications. Acta Physica Sinica, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [6] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock temperature of femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [7] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock pressure in femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [8] Liu Bo-Wen, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Sub-100 fs high power Yb-doped single polarization large-mode-area photonic crystal fiber laser amplifier. Acta Physica Sinica, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [9] Wang Xiao-Lei, Zhang Nan, Zhao You-Bo, Li Zhi-Lei, Zhai Hong-Chen, Zhu Xiao-Nong. Determination of air ionization threshold with femtosecond laser pulses. Acta Physica Sinica, 2008, 57(1): 354-357. doi: 10.7498/aps.57.354
    [10] Yu Ben-Hai, Dai Neng-Li, Wang Ying, Li Yu-Hua, Ji Ling-Ling, Zheng Qi-Guang, Lu Pei-Xiang. Morphology and mechanism of femtosecond laser-induced structural changes in lithium niobate crystal. Acta Physica Sinica, 2007, 56(10): 5821-5826. doi: 10.7498/aps.56.5821
    [11] Cai Da-Feng, Gu Yu-Qiu, Zheng Zhi-Jian, Zhou Wei-Min, Jiao Chun-Ye, Wen Tian-Shu, Chunyu Shu-Tai. A comparison of energy distribution of hot electrons from the front and the rear sides of targets during the interaction of femtosecond laser with foil targets. Acta Physica Sinica, 2007, 56(1): 346-352. doi: 10.7498/aps.56.346
    [12] Li De-Rong, Lü Xiao-Hua, Wu Ping, Luo Qing-Ming, Chen R. Wei, Zeng Shao-Qun. Compensation of temporal dispersion for acousto-optical deflector scanning femtosecond laser. Acta Physica Sinica, 2006, 55(9): 4729-4733. doi: 10.7498/aps.55.4729
    [13] Li Cheng-Bin, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Xu Shi-Zhen, Feng Dong-Hai, Wang Xiao-Feng, Ge Xiao-Chun, Xu Zhi-Zhan. Mechanism of femtosecond laser-induced damage in magnesium fluoride. Acta Physica Sinica, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [14] Liu Yun-Quan, Zhang Jie, Liang Wen-Xi, Wang Zhao-Hua. Theoretical and experimental studies on third harmonic generation of femtosecond Ti:sapphire laser. Acta Physica Sinica, 2005, 54(4): 1593-1598. doi: 10.7498/aps.54.1593
    [15] Xu Shi-Zhen, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Cheng Zhao-Gu, Feng Dong-Hai, Li Cheng-Bin, Xu Zhi-Zhan. Theoretical analysis of fs-laser induced micro-explosion in fused silica. Acta Physica Sinica, 2005, 54(9): 4146-4150. doi: 10.7498/aps.54.4146
    [16] Sun Hai-Yi, Jia Tian-Qing, Li Xiao-Xi, Xu Shi-Zhen, Feng Dong-Hai, Li Cheng-Bin, Wang Xiao-Feng, Xu Zhi-Zhan. Ultrafast electronic dymamics during femtosecond laser-induced damage in omnidirectional reflector. Acta Physica Sinica, 2005, 54(10): 4736-4740. doi: 10.7498/aps.54.4736
    [17] Wang Peng, Wang Zhao-Hua, Wei Zhi-Yi, Zheng Jia-An, Sun Jing-Hua, Zhang Jie. Measurement of spectral phase of femotosecond laser pulse using SPIDER technique. Acta Physica Sinica, 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
    [18] Zeng Hui-Dan, Qu Shi-Liang, Jiang Xiong-Wei, Qiu Jian-Rong, Zhu Cong-Shan, Gan F u-Xi. A study on the photo-induced crystallization properties in Au+-doped silicate glasses. Acta Physica Sinica, 2003, 52(10): 2525-2529. doi: 10.7498/aps.52.2525
    [19] LIN JING-QUAN, ZHANG JIE, LI YING-JUN, CHEN LI-MING, Lü TIE-ZHENG, TENG HAO. ABSORPTION OF FEMTOSECOND LASER PULSES BY ATOMIC CLUSTERS. Acta Physica Sinica, 2001, 50(3): 457-461. doi: 10.7498/aps.50.457
    [20] QIU JIAN-RONG, JIANG XIONG-WEI, ZHU CONG-SHAN, GAN FU-XI. ESR STUDIES AND THRESHOLDS OF FEMTOSECOND LASER INDUCED DARKENING IN GLASSES. Acta Physica Sinica, 2001, 50(5): 871-874. doi: 10.7498/aps.50.871
Metrics
  • Abstract views:  6213
  • PDF Downloads:  222
  • Cited By: 0
Publishing process
  • Received Date:  18 October 2014
  • Accepted Date:  18 November 2014
  • Published Online:  05 April 2015

/

返回文章
返回