Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study of neutron radiation damage to cadmium zinc telluride

Wei Wen-Jing Gao Xu-Dong Lü Liang-Liang Xu Nan-Nan Li Gong-Ping

Citation:

Simulation study of neutron radiation damage to cadmium zinc telluride

Wei Wen-Jing, Gao Xu-Dong, Lü Liang-Liang, Xu Nan-Nan, Li Gong-Ping
PDF
HTML
Get Citation
  • In recent years, the development of new semiconductor materials has made an opportunity and challenge for technological innovation and the development of emerging industries. Among them, cadmium zinc telluride materials have highlighted important application prospects due to their excellent properties. The CdZnTe, as the third-generation cutting-edge strategic semiconductor material, has the advantages of high detection efficiency, low dark current, strong portability, and applicability at room temperature without additional cooling system. However, when the cadmium zinc telluride detector is exposed to radiation environment for a long time, it will cause different degrees of radiation damage, which will affect the performance of the device or even fail to work, and greatly shorten the service time of the detector in the radiation field. The transport process of 1.00–14.00 MeV neutrons in CdZnTe material is simulated to obtain the information about the primary knock-on atoms, and then by combining with the cascade collision model, the irradiation of neutrons with different energy in CdZnTe material is analyzed. The damage is simulated and calculated. The calculation results are shown below. The energy of most of the primary knock-on atoms is located at the low-energy end, and with the increase of the incident neutron energy, the types of primary knock-on atoms are more abundant, and the energy also increases gradually. With neutron irradiation of CdZnTe, the non-ionizing energy loss is uniformly distributed along the depth direction in the material, and the non-ionizing energy loss first increases and then decreases with the increase of the incident neutron energy. The calculation results of displacements per atom(dpa) show that the dpa also increases first with the increase of the incident neutron energy. And further analysis shows that the number of Te displacement atom atoms and the number of the Zn displacement atoms both increase first and decrease then with the increase of incident neutron energy, while the number of Cd displacement atoms increases with the increase of incident neutron energy, which is co-modulated by its inelastic scattering cross-section and other nuclear-like reaction cross-sections. The comprehensive analysis shows that with the increase of the incident neutron energy, inelastic scattering becomes the main factor causing the internal displacement damage of the material.
      Corresponding author: Li Gong-Ping, ligp@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975006, 11575074), and the Open Project of Key Laboratory of Special Functional Materials and Structural Design of the Ministry of Education (Class B) of Lanzhou University in 2021 (Grant No. lzujbky-2021-kb06).
    [1]

    Alam M D, Nasim S S, Hasan S 2021 Prog. Nucl. Energy 140 103918Google Scholar

    [2]

    Takahashi T, Watanabe S 2001 IEEE Trans. Nucl. Sci. 48 950Google Scholar

    [3]

    Rao C V S, Shankara Joisa Y, Hansalia C J, Hui A K, Paul R, Ranjan P 1997 Rev. Sci. Instrum. 68 1142Google Scholar

    [4]

    Alper B, Dillon S, Edwards A W, Gill R D, Robins R, Wilson D J 1997 Rev. Sci. Instrum. 68 778

    [5]

    Ingesson L C, Alper B, Peterson B J, Vallet J C 2008 Fusion Sci. Technol. 53 528Google Scholar

    [6]

    Yin Y, Li Y, Wang T, Huang C, Ye Z, Li G 2020 Sensors 20 E1294Google Scholar

    [7]

    Johns P M, Nino J C 2019 J. Appl. Phys. 126 040902Google Scholar

    [8]

    Gu Y, Jie W, Rong C, Wang Y, Xu L, Xu Y, Lv H, Shen H, Du G, Fu X, Guo N, Zha G, Wang T 2016 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 386 16Google Scholar

    [9]

    Xu L, Jie W, Zha G, Xu Y, Zhao X, Feng T, Luo L, Zhang W, Nan R, Wang T 2013 Cryst. Eng. Comm. 15 10304Google Scholar

    [10]

    Bao L, Zha G, Gu Y, Jie W 2021 Mater. Sci. Semicond. Process. 121 105369Google Scholar

    [11]

    Eisen Y, Shor A 2009 IEEE Trans. Nucl. Sci. 56 1700Google Scholar

    [12]

    Bao L, Zha G, Xu L, Zhang B, Dong J, Li Y, Jie W 2019 Mater. Sci. Semicond. Process. 100 179Google Scholar

    [13]

    Bartlett L M, Stahle C M, Shu P K, Barbier L M, Barthelmy S D, Gehrels N A, Krizmanic J F, Kurczynski P, Palmer D M, Parsons A M, Teegarden B J, Tueller J 1996 Hard X-RayGamma-Ray Neutron Opt. Sens. Appl. 1996-07-19 pp10–16

    [14]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [15]

    陈金勇 2014 硕士学位论文 (西安: 西安电子科技大学)

    Chen J Y 2014 M. S. Thesis ( Xi'an: Xidian University) (in Chinese)

    [16]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [17]

    崔振国, 勾成俊, 侯氢, 毛莉, 周晓松 2013 物理学报 62 156105Google Scholar

    Cui Z G, Gou C J, Hou Q, Mao L, Zhou X S 2013 Acta Phys. Sin. 62 156105Google Scholar

    [18]

    Agostinelli S, Allison J, Amako K, et 2003 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 506 250Google Scholar

    [19]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [20]

    Allison J, Amako K, Apostolakis J, et al. 2016 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 835 186Google Scholar

    [21]

    Srour J R, Marshall C J, Marshall P W 2003 IEEE Trans. Nucl. Sci. 50 653Google Scholar

    [22]

    郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑 2020 物理学报 69 207301Google Scholar

    Hao R J, Guo H X, Pan X Y, Lv L, Lei Z F, Li B, Zhong X L, Ouyang X P, Dong S J 2020 Acta Phys. Sin. 69 207301Google Scholar

    [23]

    申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [24]

    Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301Google Scholar

    [25]

    Liu Y, Zhu T, Yao J, Ouyang X 2019 Sensors 19 1767Google Scholar

    [26]

    朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102Google Scholar

    Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102Google Scholar

    [27]

    Robinson M, Torrens I 1974 Phys. Rev. B 9 5008Google Scholar

    [28]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 J. Nucl. Mater. 512 450Google Scholar

    [29]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 Nat. Commun. 9 1084Google Scholar

    [30]

    Bryant F J, Webster E 1967 Phys. Status Solidi B 21 315Google Scholar

    [31]

    Guo R, Xu Y, Wang T, Zha G, Jie W 2020 J. Appl. Phys. 127 024501Google Scholar

  • 图 1  中子在CdZnTe中的平均自由程

    Figure 1.  The mean free path of neutron in CdZnTe.

    图 2  Geant4几何模型结构示意图

    Figure 2.  Schematic diagram of Geant4 geometric model structure.

    图 3  中子反应截面 (a) Cd; (b) Te; (c) Zn

    Figure 3.  Neutron reaction cross section: (a) Cd; (b) Te; (c) Zn.

    图 4  中子辐照不同种类PKA能谱图 (a) 2.45 MeV; (b) 14.00 MeV

    Figure 4.  PKA spectra of different types of neutron irradiation: (a) 2.45 MeV; (b) 14.00 MeV.

    图 5  不同能量中子辐照CZT材料NIEL随深度变化

    Figure 5.  NIEL of CZT material irradiated by neutrons of different energies varies with depth.

    图 6  不同反应类型NIEL随入射中子能量变化

    Figure 6.  NIEL varies with incident neutron energy in different reaction types.

    图 7  不同反应类型造成离位原子数随能量变化 (a) Cd; (b) Te; (c) Zn; (d) Tot

    Figure 7.  The number of dislocated atoms varies with energy due to different reaction types: (a) Cd; (b) Te; (c) Zn; (d) Tot.

    图 8  各类原子dpa随中子能量变化

    Figure 8.  Dpa of various atoms varies with neutron energy.

    表 1  不同能量中子辐照CZT产生PKA信息汇总表

    Table 1.  Summary of PKA generated by neutron incident Cd, Te, Zn.

    Energy/
    MeV
    ElementRecoil atomsEkEdam(T)Percentage/%
    2.45Cd114Cd(12.57%) 112Cd(10.47%) 111Cd(5.57%) 113Cd(5.44%)
    110Cd(5.33%) 116Cd(3.31%) 106—109, 115, 117Cd(0.98%)
    0.002 eV—
    91.79 keV
    0.002 eV—
    76.80 keV
    43.67
    Te130Te(18.43%) 128Te(16.58%) 126Te(9.94%) 125Te(3.71%) 124Te(2.51%)
    122Te(1.32%) 120, 121, 123, 127, 129, 131Te(0.58%)
    0.03 eV—
    81.05 keV
    0.03 eV—
    69.68 keV
    53.05
    Zn64Zn(1.59%) 66Zn(0.93%) 68Zn(0.55%) 65, 67, 69—70Zn(0.15%)1.33 eV—
    150.18 keV
    1.29 eV—
    102.91 keV
    3.23
    Other1H 4He 61, 64Ni 64Cu etc.527.59 eV—
    5.62 MeV
    492.12 eV—
    239.7 keV
    0.05
    14.00Cd112Cd(11.47%) 114Cd(10.38%) 113Cd(9.46%) 111Cd(8.68%) 110Cd(7.08%)
    116Cd(2.66%) 109Cd(2.02%) 115Cd(1.47%) 105—108, 117Cd(1.12%)
    0.07 eV—
    548.26 keV
    0.07 eV—
    314.20 keV
    54.34
    Te130Te(13.88%) 128Te(13.17%) 126Te(7.87%) 125Te(2.85%) 124Te(2.02%)
    122Te(1.10%) 120—121, 123, 127, 129, 131Te(0.41%)
    0.05 eV—
    458.06 keV
    0.05 eV—
    279.67 keV
    41.29
    Zn64Zn(1.30%) 66Zn(0.87%) 68Zn(0.54%) 65, 67, 69—70Zn(0.13%)0.87 eV—
    861.92 keV
    0.85 eV—
    325.25 keV
    2.83
    H1H(0.71%) 2H(0.02%)2.17 keV—
    14.60 MeV
    313.33 eV—
    1.69 keV
    0.73
    Other4He (0.26%) 61, 63—65, 67Ni 63—68, 70Cu 120—128, 130Sb 102—111, 113Pd
    105—114, 116Ag 117, 119—123, 125, 127Sn etc.
    328.98 eV—
    19.94 MeV
    315.24 eV—
    0.66 MeV
    0.81
    DownLoad: CSV

    表 A1  中子入射CdZnTe产生的PKA详细信息汇总表

    Table A1.  Summary of PKA details generated by neutron incident CdZnTe.

    Energy/
    MeV
    ElementRecoil atomsEkEdam(T)Percen-
    tage
    1.00Cd114Cd (13.61%), 112Cd (11.30%), 111Cd (6.00%)
    113Cd(5.83%), 110Cd (5.80%), 116Cd (3.56%)
    106—109, 115, 117Cd (1.06%)
    0.03 eV—37.49 keV0.03 eV—32.95 keV47.16%
    Te130Te (16.79%), 128Te(15.86%), 126Te (9.30%) 125Te (3.51%),
    124Te (2.40%), 122Te (1.27%) 120, 121, 123, 127, 129, 131Te (0.57%)
    0.02 eV—33.17 keV0.02 eV—29.67 keV49.69%
    Zn64Zn (1.55%), 66Zn (0.87%), 68Zn (0.57%)
    65, 67, 69—71Zn (0.15%)
    0.10 eV—61.31 keV0.10 eV—47.55 keV3.14%
    Other4He, 61Ni, etc.0.12—3.84 MeV5.88—171.64 keV0.01%
    2.45Cd114Cd(12.57%), 112Cd(10.47%), 111Cd(5.57%) 113Cd(5.44%),
    110Cd(5.33%), 116Cd(3.31%) 106—109, 115, 117Cd(0.98%)
    0.002 eV—91.79 keV0.002 eV—76.80 keV43.67%
    Te130Te(18.43%), 128Te(16.58%), 126Te(9.94%) 125Te(3.71%),
    124Te(2.51%), 122Te(1.32%) 120, 121, 123, 127, 129, 131Te(0.58%)
    0.03 eV—81.05 keV0.03 eV—69.68 keV53.05%
    Zn64Zn(1.59%), 66Zn(0.93%), 68Zn(0.55%) 65, 67, 69—70Zn(0.15%)1.33 eV—150.18 keV1.29 eV—102.91 keV3.23%
    Other1H, 4He, 61, 64Ni, 64Cu, etc.527.59 eV—5.62 MeV492.12 eV—239.77 keV0.05%
    5.00Cd114Cd(12.56%), 112Cd(10.53%), 111Cd(5.60%) 110Cd(5.39%),
    113Cd(5.32%), 116Cd(3.33%) 106—109, 115, 117Cd(0.93%)
    0.04 eV—187.28 keV0.04 eV—147.18 keV43.66%
    Te130Te(17.82%), 128Te(16.26%), 126Te(9.67%) 125Te(3.61%),
    124Te(2.45%), 122Te(1.30%) 120, 121, 123, 127, 129, 131Te(0.54%)
    0.02 eV—163.22 keV0.02 eV—133.96 keV51.65%
    Zn64Zn(2.07%), 66Zn(1.26%), 68Zn(0.86%) 65, 67, 69—71Zn(0.21%)0.20 eV—306.43 keV0.20 eV—150.03 keV4.39%
    Other64, 66—67Cu, 103, 108Pd, 1H, 4He 61, 63—65 Ni, 106, 108Ag, etc.163.93 eV—10.68 MeV154.95 eV—368.6 keV0.30%
    10.00Cd114Cd(13.72%), 112Cd(13.72%), 110Cd(7.19%) 111Cd(5.30%),
    113Cd(4.80%), 116Cd(3.44%) 106—109, 115, 117Cd(1.32%)
    0.04 eV—387.48 keV0.04 eV—234.63 keV49.08%
    Te130Te(15.10%), 128Te(15.02%), 126Te(9.37%) 125Te(2.65%),
    124Te(2.50%), 122Te(1.37%) 120, 123, 127, 129, 131Te(0.42%)
    0.02 eV—327.02 keV0.02 eV—207.62 keV46.42%
    Zn64Zn(1.77%), 66Zn(1.15%), 68Zn(0.81%) 67, 69—70Zn(0.17%)0.21 eV—614.56 keV0.21 eV—256.14 keV3.90%
    Other1—2H(0.21%), 63—64, 66—68Cu(0.17%), 4He (0.10%) 61, 63—65 Ni,
    102—103, 105, 107—108, 110Pd 117, 119—123, 127Sn, 106, 108, 110—114Ag
    120, 122—126, 128, 130Sb, etc.
    1940.87 eV—15.72 MeV554.83 eV—547.11 keV0.60%
    14.00Cd112Cd(11.47%), 114Cd(10.38%), 113Cd(9.46%) 111Cd(8.68%),
    110Cd(7.08%), 116Cd(2.66%) 109Cd(2.02%), 115Cd(1.47%) ,
    105—108, 117Cd(1.12%)
    0.07 eV—548.26 keV0.07 eV—314.20 keV54.34%
    Te130Te(13.88%), 128Te(13.17%), 126Te(7.87%) 125Te(2.85%),
    124Te(2.02%), 122Te(1.10%) 120—121, 123, 127, 129, 131Te(0.41%)
    0.05 eV—458.06 keV0.05 eV—279.67 keV41.29%
    Zn64Zn(1.30%), 66Zn(0.87%), 68Zn(0.54%) 65, 67, 69—70Zn(0.13%)0.87 eV—861.92 keV0.85 eV—325.25 keV2.83%
    H1H(0.71%), 2H(0.02%)2.17 keV—14.60 MeV313.33 eV—1.69 keV0.73%
    Other4He (0.26%), 61, 63—65, 67 Ni, 63—68, 70Cu 120—128, 130Sb,
    102—111, 113Pd, 105—114, 116Ag 117, 119—123, 125, 127Sn, etc.
    328.98 eV—19.94 MeV315.24 eV—0.66 MeV0.81%
    DownLoad: CSV
  • [1]

    Alam M D, Nasim S S, Hasan S 2021 Prog. Nucl. Energy 140 103918Google Scholar

    [2]

    Takahashi T, Watanabe S 2001 IEEE Trans. Nucl. Sci. 48 950Google Scholar

    [3]

    Rao C V S, Shankara Joisa Y, Hansalia C J, Hui A K, Paul R, Ranjan P 1997 Rev. Sci. Instrum. 68 1142Google Scholar

    [4]

    Alper B, Dillon S, Edwards A W, Gill R D, Robins R, Wilson D J 1997 Rev. Sci. Instrum. 68 778

    [5]

    Ingesson L C, Alper B, Peterson B J, Vallet J C 2008 Fusion Sci. Technol. 53 528Google Scholar

    [6]

    Yin Y, Li Y, Wang T, Huang C, Ye Z, Li G 2020 Sensors 20 E1294Google Scholar

    [7]

    Johns P M, Nino J C 2019 J. Appl. Phys. 126 040902Google Scholar

    [8]

    Gu Y, Jie W, Rong C, Wang Y, Xu L, Xu Y, Lv H, Shen H, Du G, Fu X, Guo N, Zha G, Wang T 2016 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 386 16Google Scholar

    [9]

    Xu L, Jie W, Zha G, Xu Y, Zhao X, Feng T, Luo L, Zhang W, Nan R, Wang T 2013 Cryst. Eng. Comm. 15 10304Google Scholar

    [10]

    Bao L, Zha G, Gu Y, Jie W 2021 Mater. Sci. Semicond. Process. 121 105369Google Scholar

    [11]

    Eisen Y, Shor A 2009 IEEE Trans. Nucl. Sci. 56 1700Google Scholar

    [12]

    Bao L, Zha G, Xu L, Zhang B, Dong J, Li Y, Jie W 2019 Mater. Sci. Semicond. Process. 100 179Google Scholar

    [13]

    Bartlett L M, Stahle C M, Shu P K, Barbier L M, Barthelmy S D, Gehrels N A, Krizmanic J F, Kurczynski P, Palmer D M, Parsons A M, Teegarden B J, Tueller J 1996 Hard X-RayGamma-Ray Neutron Opt. Sens. Appl. 1996-07-19 pp10–16

    [14]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [15]

    陈金勇 2014 硕士学位论文 (西安: 西安电子科技大学)

    Chen J Y 2014 M. S. Thesis ( Xi'an: Xidian University) (in Chinese)

    [16]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [17]

    崔振国, 勾成俊, 侯氢, 毛莉, 周晓松 2013 物理学报 62 156105Google Scholar

    Cui Z G, Gou C J, Hou Q, Mao L, Zhou X S 2013 Acta Phys. Sin. 62 156105Google Scholar

    [18]

    Agostinelli S, Allison J, Amako K, et 2003 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 506 250Google Scholar

    [19]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [20]

    Allison J, Amako K, Apostolakis J, et al. 2016 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 835 186Google Scholar

    [21]

    Srour J R, Marshall C J, Marshall P W 2003 IEEE Trans. Nucl. Sci. 50 653Google Scholar

    [22]

    郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑 2020 物理学报 69 207301Google Scholar

    Hao R J, Guo H X, Pan X Y, Lv L, Lei Z F, Li B, Zhong X L, Ouyang X P, Dong S J 2020 Acta Phys. Sin. 69 207301Google Scholar

    [23]

    申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [24]

    Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301Google Scholar

    [25]

    Liu Y, Zhu T, Yao J, Ouyang X 2019 Sensors 19 1767Google Scholar

    [26]

    朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102Google Scholar

    Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102Google Scholar

    [27]

    Robinson M, Torrens I 1974 Phys. Rev. B 9 5008Google Scholar

    [28]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 J. Nucl. Mater. 512 450Google Scholar

    [29]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 Nat. Commun. 9 1084Google Scholar

    [30]

    Bryant F J, Webster E 1967 Phys. Status Solidi B 21 315Google Scholar

    [31]

    Guo R, Xu Y, Wang T, Zha G, Jie W 2020 J. Appl. Phys. 127 024501Google Scholar

  • [1] Zhao Po, Wang Jian-Qiang, Chen Mei-Qing, Yang Jin-Xue, Su Zheng-Xiong, Lu Chen-Yang, Liu Hua-Jun, Hong Zhi-Yong, Gao Rui. Effect of doping on evolution of He+ ion irradiation defects and superconductivity in EuBa2Cu3O7–δ superconducting strips. Acta Physica Sinica, 2024, 73(8): 087401. doi: 10.7498/aps.73.20240124
    [2] Cao Song, Yin Wen, Zhou Bin, Hu Zhi-Liang, Shen Fei, Yi Tian-Cheng, Wang Song-Lin, Liang Tian-Jiao. Calculation of radiation damage of key components of China Spallation Neutron Source II target station. Acta Physica Sinica, 2024, 73(9): 092501. doi: 10.7498/aps.73.20240088
    [3] Peng Chao, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Ma Teng, Cai Zong-Qi, Chen Yi-Qiang. Study on characteristics of neutron-induced leakage current increase for SiC power devices. Acta Physica Sinica, 2023, 72(18): 186102. doi: 10.7498/aps.72.20230976
    [4] Zhang Guo-Shuai, Yin Chao, Wang Zhao-Fan, Chen Ze, Mao Shi-Feng, Ye Min-You. Simulation of neutron irradiation-induced recrystallization of tungsten. Acta Physica Sinica, 2023, 72(16): 162801. doi: 10.7498/aps.72.20230531
    [5] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [6] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [7] Wang Tie-Shan, Zhang Duo-Fei, Chen Liang, Lü Peng, Du Xin, Yuan Wei, Yang Di. Irradiation-induced modifications in the mechanical properties of borosilicate glass. Acta Physica Sinica, 2017, 66(2): 026101. doi: 10.7498/aps.66.026101
    [8] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping. First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [9] Chang Xiao-Yang, Yao Shun, Zhang Qi-Ling, Zhang Yang, Wu Bo, Zhan Rong, Yang Cui-Bai, Wang Zhi-Yong. Anti-radiation of space triple-junction solar cell based on distributed Bragg reflector structure. Acta Physica Sinica, 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [10] Qi Jia-Hong, Hu Jian-Min, Sheng Yan-Hui, Wu Yi-Yong, Xu Jian-Wen, Wang Yue-Yuan, YANG Xiao-Ming, Zhang Zi-Rui, Zhou Yang. Carrier transport mechanism of GaAs/Ge solar cells under electrons irradiation. Acta Physica Sinica, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [11] Zeng Jun-Zhe, Li Yu-Dong, Wen Lin, He Cheng-Fa, Guo Qi, Wang Bo, Maria, Wei Yin, Wang Hai-Jiao, Wu Da-You, Wang Fan, Zhou Hang. Effects of proton and neutron irradiation on dark signal of CCD. Acta Physica Sinica, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [12] Gu Wen-Ping, Zhang Lin, Li Qing-Hua, Qiu Yan-Zhang, Hao Yue, Quan Si, Liu Pan-Zhi. Effect of neutron irradiation on the electrical properties of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [13] Jiang Shao-Ning, Wan Fa-Rong, Long Yi, Liu Chuan-Xin, Zhan Qian, Ohnuki Somei. Effects of helium and deuterium on irradiation damage in pure iron. Acta Physica Sinica, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [14] Cui Zhen-Guo, Gou Cheng-Jun, Hou Qing, Mao Li, Zhou Xiao-Song. Computer simulation of radiation damage caused by low energy neutron in zirconium. Acta Physica Sinica, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [15] Zhu Yong, Li Bao-Hua, Xie Guo-Feng. Investigation of proton irradiation damage in BaTiO3 thin film by computer simulation. Acta Physica Sinica, 2012, 61(4): 046103. doi: 10.7498/aps.61.046103
    [16] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing. Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [17] Lan Mu-Jie, Wu Yi-Yong, Hu Jian-Min, He Shi-Yu, Yue Long, Xiao Jing-Dong, Yang De-Zhuang, Zhang Zhong-Wei, Wang Xun-Chun, Qian Yong, Chen Ming-Bo. Radiation damage of space GaAs/Ge solar cells evaluated by displacement damage dose. Acta Physica Sinica, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [18] He Xin-Fu, Yang Wen, Fan Sheng. Multi-scale modeling of radiation damage in FeCr alloy. Acta Physica Sinica, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [19] Fan Xian-Hong, Li Min, Ni Qi-Liang, Liu Shi-Jie, Wang Xiao-Guang, Chen Bo. Change of reflectivity of Mo/Si multilayer irradiated by proton. Acta Physica Sinica, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
    [20] Li Yang-Xian, Liu He-Yan, Niu Peng-Juan, Liu Cai-Chi, Xu Yue-Sheng, Yang De-Ren, Que Duan-Lin. . Acta Physica Sinica, 2002, 51(10): 2407-2410. doi: 10.7498/aps.51.2407
Metrics
  • Abstract views:  3822
  • PDF Downloads:  130
  • Cited By: 0
Publishing process
  • Received Date:  17 June 2022
  • Accepted Date:  22 July 2022
  • Available Online:  24 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回