Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of sub-bandgap illumination on electric field distribution at grain boundary in CdZnTe crystals

Chen Wei-Long Guo Rong-Rong Tong Yu-Shen Liu Li-Li Zhou Sheng-Lan Lin Jin-Hai

Citation:

Influence of sub-bandgap illumination on electric field distribution at grain boundary in CdZnTe crystals

Chen Wei-Long, Guo Rong-Rong, Tong Yu-Shen, Liu Li-Li, Zhou Sheng-Lan, Lin Jin-Hai
PDF
HTML
Get Citation
  • Grain boundary is one of the main defects, limiting the large-area application of CdZnTe nuclear radiation imaging detectors. In order to explore the ways to improve the electric field distribution properties near grain boundary, the effect of sub-bandgap illumination on the electric field distribution in CdZnTe detector with grain boundary is studied by Silvaco TCAD simulation technique. The grain boundary potential barrier and electric field dead zone are found in simulation results that significantly affect the carrier transport process in CdZnTe detector. The electric field dead zone caused by the grain boundary disappears under the bias of sub-bandgap illumination. Thus the electric field distribution tends to be linear. Meanwhile, the effects of different wavelengths and intensities of sub-bandgap illumination on the electric field distribution at the grain boundary are also investigated. The results show that the electric field of CdZnTe is distorted by sub-bandgap illumination at an intensity lower than 1×10–9 W/cm2. In contrast, a flatter electric field distribution is achieved at a wavelength of 850 nm and an intensity of 1×10–7 W/cm2. The carriers can be transported by drifting, reducing the probability of being captured or recombined by defects during transport, thus improving the charge collection efficiency of the detector.In addition, the microscopic mechanism of the modulation of the electric field distribution by sub-bandgap illumination and the energy band model of CdZnTe crystal containing grain boundary are proposed. Owing to the existence of the grain boundary, two space charge regions are formed near the grain boundary. The energy band at the grain boundary is bent upward. Meanwhile, the metal-semiconductor contact forms a Schottky barrier, and the energy band near the electrode is bent upward. When the bias voltage is applied, the energy band structure of the CdZnTe tends to tilt from the cathode to the anode. The sub-bandgap illumination can lower the energy band barrier at the grain boundary and regulate the energy band on both sides of the grain boundary. It is believed that this discussion will also make some contributions to understanding of the effects of illumination and grain boundary in other types of optoelectronic devices, especially the applications of thin films in solar cells and detectors.
      Corresponding author: Guo Rong-Rong, guorr2020@163.com
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2020J05239) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51702271).
    [1]

    Johns P M, Nino J C 2019 J. Appl. Phys. 126 40902Google Scholar

    [2]

    Kathalingam A, Valanarasu S, Ramesh S, Kim H S, Kim H S 2021 Sol. Energy. 224 923Google Scholar

    [3]

    李颖锐, 吴森, 郭玉, 席守智, 符旭, 查钢强, 介万奇 2019 红外与激光工程 48 1016001Google Scholar

    Li Y R, Wu S, Guo Y, Xi S Z, Fu X, Zha G Q, Jie W Q 2019 Infrared Laser Eng. 48 1016001Google Scholar

    [4]

    Abbene L, Principato F, Gerardi G, Buttacavoli A, Cascio D, Bettelli M, Amade N S, Seller P, Veale M, Fox O, Sawhney K, Zanettini S, Tomarchio E, Zappettini A 2020 J. Synchrotron Radiat. 27 319Google Scholar

    [5]

    Gao X, Sun H, Yang D, Wangyang P, Zhang C, Zhu X 2020 Vacuum 183 109855Google Scholar

    [6]

    Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mesropian S 2001 Appl. Phys. Lett. 79 2728Google Scholar

    [7]

    Carvalho A, Tagantsev A K, Oberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215Google Scholar

    [8]

    孙士文, 隋淞印, 何力, 周昌鹤, 虞慧娴, 徐超 2014 红外技术 36 588Google Scholar

    Sun S W, Sui S Y, Li H E, Zhou C H, Yu H X, Xu C 2014 IR. Tech. 36 588Google Scholar

    [9]

    Parker B H, Stahle C M, Roth D, Babu S, Tueller J 2001 Proc. SPIE. 4507 68Google Scholar

    [10]

    Zeng D M, Jie W Q, Wang T, Zhou H 2009 J. Cryst. Growth 311 4414Google Scholar

    [11]

    Markunas J K, Almeida L A, Jacobs R N, Pellegrino J, Qadri S B, Mahadik N, Sanghera J 2010 J. Electron. Mater 39 738Google Scholar

    [12]

    Bolotnikov A E, Babalola S O, Camarda G S, et al. 2009 IEEE Trans. Nucl. Sci. 56 1775Google Scholar

    [13]

    Li W, Tkaczyk J E, Andreini K W, Cui J, Zhang T, Williams Y, Harding K G, Chen H, Bindley G, Matyi R J 2009 IEEE Nuclear Science Symposium Conference Record Orlando, USA, October 24–November 1, 2009 p1658

    [14]

    Dong J P, Jie W Q, Yu J Y, Guo R R, Teichert C, Gradwohl K P, Zhang B B, Luo X X, Xi S Z, Xu Y D 2018 Chin. Phys. B. 27 117202Google Scholar

    [15]

    Prokesch M, Szeles C 2010 US Patent 20100078558 A1

    [16]

    Ivanov V, Dorogov P, Loutchanski A 2011 International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications Ghent, Belgium, June 6–9, 2011 p1

    [17]

    Washington A L, Teague L C, Duff M C, Burger A, Groza M, Buliga V 2011 J. Appl. Phys 110 073708Google Scholar

    [18]

    Sik O, Grmela L, Elhadidy H, et al. 2013 J. Instrum. 8 C06005Google Scholar

    [19]

    Zhang Y Q, Fu L 2018 Mater. Sci. Forum 922 40Google Scholar

    [20]

    Prokesch M, Szeles C 2007 Phys. Rev. B 75 245204Google Scholar

    [21]

    Gul R, Roy U N, James R B 2017 J. Appl. Phys. 121 115701Google Scholar

    [22]

    Zhou Y M, He Y G, Lu A X, Wan Q 2009 Chin. Phys. B 18 3966Google Scholar

    [23]

    Kong H S, Lee C 1995 J. Appl. Phys. 78 6122Google Scholar

    [24]

    Kumari K, Avasthi S 2017 IEEE 44th Photovoltaic Specialists Conference Washington, USA, June 25–30, 2017 p251

    [25]

    Hossain F M, Nishii J, Takagi S, Sugiharad T, Ohtomo A, Fukumura T, Koinuma H, Ohno H, Kawasaki M 2004 Phys. E 21 911Google Scholar

    [26]

    Zhang A, Zhao X R, Duan L B, Liu J M, Zhao J L 2011 Chin. Phys. B 20 057201Google Scholar

    [27]

    Kim K H, Na Y H, Park Y J, Jung T R, Kim S U, Hong J K 2004 IEEE Trans. Nucl. Sci. 51 3094Google Scholar

    [28]

    Kim K H, Ahn S Y, An S Y, Hong J K, Yi Y, Kim S U 2007 Curr Appl. Phys. 7 296Google Scholar

    [29]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211Google Scholar

    [30]

    Hjelt K, Juvonen M, Tuomi T, Nenonen S, Eissler E E, Bavdaz M 1997 Phys. Status Solidi. 162 747Google Scholar

    [31]

    Cola A, Farella I 2013 Sensors 13 9414Google Scholar

    [32]

    Cola A, Farella I, Anni M, Martucci M C 2012 IEEE Trans. Nucl. Sci 59 1569Google Scholar

    [33]

    Montmorillon L A D, Delaye P, Launay J C, Roosen G 1995 Opt. Mater. 4 233Google Scholar

    [34]

    Marple D T F 1964 J. Appl. Phys. 35 539Google Scholar

    [35]

    Schlesinger T E, Toney J E, Yoon H, Lee E Y, Brunett B A, Franks L, James R B 2001 Mater. Sci. Eng. R 32 103Google Scholar

    [36]

    Hsieh Y K, Card H C 1989 J. Appl. Phys. 65 2409Google Scholar

    [37]

    Keevers M J, Green M A 1994 J. Appl. Phys. 75 4022Google Scholar

    [38]

    徐凌燕 2014 博士学位论文 (西安: 西北工业大学)

    Xu L Y 2014 Ph. D. Dissertation (Xian: Northwestern Polytechnical University)

  • 图 1  Au/CdZnTe/Au器件结构图

    Figure 1.  Au/CdZnTe/Au device structure schematic.

    图 2  无偏压下有无光照的Au/CdZnTe/Au器件仿真结果 (a)电子浓度分布; (b)空间电荷分布; (c)电场分布; (d)Au/CdZnTe/Au能带结构图

    Figure 2.  Simulation results of Au/CdZnTe/Au device with and without illumination under unbiased voltage: (a) Electron concentration distribution; (b) space charge distribution; (c) electric field distribution; (d) energy band structure diagram of Au/CdZnTe/Au.

    图 3  100 V偏压下有无光照的Au/CdZnTe/Au器件仿真结果 (a)电场分布; (b)空间电荷分布; (c)正空间电荷分布; (d) 深施主电离密度; (e) SRH模型[36-37]

    Figure 3.  Simulation results of Au/CdZnTe/Au device with and without illumination under 100 V bias voltage: (a) Electric field distribution; (b) space charge distribution; (c) positive space charge distribution; (d) deep donor ionization density; (e) SRH model[36-37]

    图 4  100 V偏压下的Au/CdZnTe/Au器件仿真结果 (a)不同波长的亚禁带光照下电场分布; (b) 不同光强的亚禁带光照下电场分布

    Figure 4.  Simulation results of Au/CdZnTe/Au device under 100 V bias voltage: (a) Electric field distribution under sub-bandgap illumination with different wavelengths; (b) electric field distribution under sub-bandgap illumination with different intensities.

    图 5  Au/CdZnTe/Au器件有无光照的能带模型 (a)无偏压下无光照能带模型; (b)无偏压下有光照能带模型 (c) 外加偏压下无光照能带模型(d)外加偏压下有光照能带模型

    Figure 5.  Energy band model of Au/CdZnTe/Au device with and without illumination: (a) Energy band model without illumination under unbiased voltage; (b) energy band model with illumination under unbiased voltage ;(c) energy band model without illumination under applied bias voltage; (d) energy band model with illumination under applied bias voltage.

    表 1  CdZnTe晶体的基本参数[35]

    Table 1.  Basic parameters of CdZnTe crystal[35].

    ParametersValueParametersValue
    Band gap/eV1.6Dielectric constant10.9
    Conduction band density/cm–39.14×1017Optical recombination rate/(cm3·s–1)1.5×10–10
    Valence band density/cm–35.19×1018Electronic auger coefficient/(cm6·s–1)5×10–30
    Electron mobility/cm2/(V·s)1000Hole Auger coefficient/(cm6·s–1)1×10–31
    Hole mobility/cm2/(V·s)100Acceptor band tail state/(cm–3·eV–1)7.5×1014
    Donor band tail state/(cm–3·eV–1)7.5×1014
    DownLoad: CSV

    表 2  CdZnTe晶体基体能级的基本信息[21]

    Table 2.  Basic information of the energy levels in the CdZnTe crystal matrix[21].

    Level position
    /eV
    TypeDensity
    /cm–3
    Electron capture cross section/cm2Hole capture cross section/cm2
    EV+0.86Donor5×10113×10–143×10–15
    DownLoad: CSV

    表 3  CdZnTe晶体晶界能级的基本信息[27-30]

    Table 3.  Basic information of energy levels in the grain boundary of CdZnTe crystal[27-30]

    Level
    position
    /eV
    TypeDensity
    /cm–3
    Electron
    capture cross
    section/cm2
    Hole capture
    cross section/cm2
    EC – 0.10Donor1×10121.2×10–151.2×10–16
    EV + 0.14Acceptor1×10122.5×10–152.5×10–16
    EV + 0.75Acceptor5×10123×10–143×10–15
    DownLoad: CSV

    表 4  890 nm亚禁带光照参数[31-34]

    Table 4.  Basic parameters of 890 nm sub-bandgap illumination[31-34].

    Wavelength/nmExtinction coefficient kRefractive index nAbsorption coefficient/cm–1
    8901.417×10–42.919610
    DownLoad: CSV

    表 5  不同波长的亚禁带光照参数[31-34]

    Table 5.  Basic parameters of different wavelengths sub-bandgap illumination[31-34].

    Wavelength/nmExtinction coefficient kRefractive index/nAbsorption coefficient/cm–1
    8502.707×10–42.951140
    8901.417×10–42.919610
    9403.540×10–52.87965
    DownLoad: CSV
  • [1]

    Johns P M, Nino J C 2019 J. Appl. Phys. 126 40902Google Scholar

    [2]

    Kathalingam A, Valanarasu S, Ramesh S, Kim H S, Kim H S 2021 Sol. Energy. 224 923Google Scholar

    [3]

    李颖锐, 吴森, 郭玉, 席守智, 符旭, 查钢强, 介万奇 2019 红外与激光工程 48 1016001Google Scholar

    Li Y R, Wu S, Guo Y, Xi S Z, Fu X, Zha G Q, Jie W Q 2019 Infrared Laser Eng. 48 1016001Google Scholar

    [4]

    Abbene L, Principato F, Gerardi G, Buttacavoli A, Cascio D, Bettelli M, Amade N S, Seller P, Veale M, Fox O, Sawhney K, Zanettini S, Tomarchio E, Zappettini A 2020 J. Synchrotron Radiat. 27 319Google Scholar

    [5]

    Gao X, Sun H, Yang D, Wangyang P, Zhang C, Zhu X 2020 Vacuum 183 109855Google Scholar

    [6]

    Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mesropian S 2001 Appl. Phys. Lett. 79 2728Google Scholar

    [7]

    Carvalho A, Tagantsev A K, Oberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215Google Scholar

    [8]

    孙士文, 隋淞印, 何力, 周昌鹤, 虞慧娴, 徐超 2014 红外技术 36 588Google Scholar

    Sun S W, Sui S Y, Li H E, Zhou C H, Yu H X, Xu C 2014 IR. Tech. 36 588Google Scholar

    [9]

    Parker B H, Stahle C M, Roth D, Babu S, Tueller J 2001 Proc. SPIE. 4507 68Google Scholar

    [10]

    Zeng D M, Jie W Q, Wang T, Zhou H 2009 J. Cryst. Growth 311 4414Google Scholar

    [11]

    Markunas J K, Almeida L A, Jacobs R N, Pellegrino J, Qadri S B, Mahadik N, Sanghera J 2010 J. Electron. Mater 39 738Google Scholar

    [12]

    Bolotnikov A E, Babalola S O, Camarda G S, et al. 2009 IEEE Trans. Nucl. Sci. 56 1775Google Scholar

    [13]

    Li W, Tkaczyk J E, Andreini K W, Cui J, Zhang T, Williams Y, Harding K G, Chen H, Bindley G, Matyi R J 2009 IEEE Nuclear Science Symposium Conference Record Orlando, USA, October 24–November 1, 2009 p1658

    [14]

    Dong J P, Jie W Q, Yu J Y, Guo R R, Teichert C, Gradwohl K P, Zhang B B, Luo X X, Xi S Z, Xu Y D 2018 Chin. Phys. B. 27 117202Google Scholar

    [15]

    Prokesch M, Szeles C 2010 US Patent 20100078558 A1

    [16]

    Ivanov V, Dorogov P, Loutchanski A 2011 International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications Ghent, Belgium, June 6–9, 2011 p1

    [17]

    Washington A L, Teague L C, Duff M C, Burger A, Groza M, Buliga V 2011 J. Appl. Phys 110 073708Google Scholar

    [18]

    Sik O, Grmela L, Elhadidy H, et al. 2013 J. Instrum. 8 C06005Google Scholar

    [19]

    Zhang Y Q, Fu L 2018 Mater. Sci. Forum 922 40Google Scholar

    [20]

    Prokesch M, Szeles C 2007 Phys. Rev. B 75 245204Google Scholar

    [21]

    Gul R, Roy U N, James R B 2017 J. Appl. Phys. 121 115701Google Scholar

    [22]

    Zhou Y M, He Y G, Lu A X, Wan Q 2009 Chin. Phys. B 18 3966Google Scholar

    [23]

    Kong H S, Lee C 1995 J. Appl. Phys. 78 6122Google Scholar

    [24]

    Kumari K, Avasthi S 2017 IEEE 44th Photovoltaic Specialists Conference Washington, USA, June 25–30, 2017 p251

    [25]

    Hossain F M, Nishii J, Takagi S, Sugiharad T, Ohtomo A, Fukumura T, Koinuma H, Ohno H, Kawasaki M 2004 Phys. E 21 911Google Scholar

    [26]

    Zhang A, Zhao X R, Duan L B, Liu J M, Zhao J L 2011 Chin. Phys. B 20 057201Google Scholar

    [27]

    Kim K H, Na Y H, Park Y J, Jung T R, Kim S U, Hong J K 2004 IEEE Trans. Nucl. Sci. 51 3094Google Scholar

    [28]

    Kim K H, Ahn S Y, An S Y, Hong J K, Yi Y, Kim S U 2007 Curr Appl. Phys. 7 296Google Scholar

    [29]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211Google Scholar

    [30]

    Hjelt K, Juvonen M, Tuomi T, Nenonen S, Eissler E E, Bavdaz M 1997 Phys. Status Solidi. 162 747Google Scholar

    [31]

    Cola A, Farella I 2013 Sensors 13 9414Google Scholar

    [32]

    Cola A, Farella I, Anni M, Martucci M C 2012 IEEE Trans. Nucl. Sci 59 1569Google Scholar

    [33]

    Montmorillon L A D, Delaye P, Launay J C, Roosen G 1995 Opt. Mater. 4 233Google Scholar

    [34]

    Marple D T F 1964 J. Appl. Phys. 35 539Google Scholar

    [35]

    Schlesinger T E, Toney J E, Yoon H, Lee E Y, Brunett B A, Franks L, James R B 2001 Mater. Sci. Eng. R 32 103Google Scholar

    [36]

    Hsieh Y K, Card H C 1989 J. Appl. Phys. 65 2409Google Scholar

    [37]

    Keevers M J, Green M A 1994 J. Appl. Phys. 75 4022Google Scholar

    [38]

    徐凌燕 2014 博士学位论文 (西安: 西北工业大学)

    Xu L Y 2014 Ph. D. Dissertation (Xian: Northwestern Polytechnical University)

  • [1] Zhang Xue-Yang, Hu Wang-Yu, Dai Xiong-Ying. Influence of iron anisotropy on phase transition near grain boundary under shock. Acta Physica Sinica, 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] Xia Wen-Qiang, Zhao Yan, Liu Zhen-Zhi, Lu Xiao-Gang. Phase field crystal simulation of strain-induced square phase low-angle symmetric tilt grain boundary dislocation reaction. Acta Physica Sinica, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [3] Guo Can, Zhao Yu-Ping, Deng Ying-Yuan, Zhang Zhong-Ming, Xu Chun-Jie. A phase-field study on interaction process of moving grain boundary and spinodal decomposition. Acta Physica Sinica, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [4] Qi Ke-Wu, Zhao Yu-Hong, Tian Xiao-Lin, Peng Dun-Wei, Sun Yuan-Yang, Hou Hua. Phase field crystal simulation of effect of misorientation angle on low-angle asymmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [5] Zhou Liang-Fu, Zhang Jing, He Wen-Hao, Wang Dong, Su Xue, Yang Dong-Yang, Li Yu-Hong. The nucleation and growth of Helium hubbles at grain boundaries of bcc tungsten: a molecular dynamics simulation. Acta Physica Sinica, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [6] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [7] Wang Hai-Yan, Gao Xue-Yun, Ren Hui-Ping, Zhang Hong-Wei, Tan Hui-Jie. First-principles characterization of lanthanum occupying tendency in -Fe and effect on grain boundaries. Acta Physica Sinica, 2014, 63(14): 148101. doi: 10.7498/aps.63.148101
    [8] Long Jian, Wang Zhao-Yu, Zhao Yu-Long, Long Qing-Hua, Yang Tao, Chen Zheng. Phase field crystal study on grain boundary evolution and its micro-mechanism under various symmetry. Acta Physica Sinica, 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [9] Zheng Zong-Wen, Xu Ting-Dong, Wang Kai, Shao Chong. Progress in the theory of grain boundary anelastic relaxation. Acta Physica Sinica, 2012, 61(24): 246202. doi: 10.7498/aps.61.246202
    [10] Zhao Xin, Zhang Wan-Rong, Jin Dong-Yue, Fu Qiang, Chen Liang, Xie Hong-Yun, Zhang Yu-Jie. Effects of Ge profile in base region on thermal characteristics of SiGe HBTs. Acta Physica Sinica, 2012, 61(13): 134401. doi: 10.7498/aps.61.134401
    [11] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [12] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [13] Chen Xian-Miao, Song Shen-Hua. Non-equilibrium grain boundary segregation of phosphorous during high temperature plastic deformation. Acta Physica Sinica, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [14] Liu Gui-Li, Li Rong-De. Ordering and interaction of Fe and RE atoms on grain boundaries in ZA27 alloys. Acta Physica Sinica, 2006, 55(2): 776-779. doi: 10.7498/aps.55.776
    [15] Li Pei-Gang, Lei Ming, Tang Wei-Hua, Song Peng-Yun, Chen Chin-Ping, Li Ling-Hong. The effect of grain boundaries on magnetic and transport properties in colossal magnetoresistance particle film. Acta Physica Sinica, 2006, 55(5): 2328-2332. doi: 10.7498/aps.55.2328
    [16] Li Wan-Wan, Sun Kang. Study on the annealing of Cd1-xZnxTe in In vapor. Acta Physica Sinica, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [17] Zhu Zu-Song, Lin Xuan-Ying, Yu Yun-Peng, Lin Kui-Xun, Qiu Gui-Ming, Huang Rui, Yu Chu-Ying. The light-stability of polycrystalline silicon films deposited at low temperatures from SiCl4/H2 mixture. Acta Physica Sinica, 2005, 54(8): 3805-3809. doi: 10.7498/aps.54.3805
    [18] Liu Gui-Li, Li Rong-De. Segregation and interaction of rare earth and iron elements on grain boundaries in ZA27 alloys. Acta Physica Sinica, 2004, 53(10): 3482-3486. doi: 10.7498/aps.53.3482
    [19] Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching. Acta Physica Sinica, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] Wen Yu-Hua, Zhu Tao, Cao Li-Xia, Wang Chong-Yu. Ni/Ni3Al grain boundary of Ni-based single superalloys: molecular dyn amics simulation. Acta Physica Sinica, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
Metrics
  • Abstract views:  2753
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2022
  • Accepted Date:  07 July 2022
  • Available Online:  04 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回