Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Strain induced dislocation evolution at graphene grain boundary by three-mode phase-field crystal method

Gao Feng Li Huan-Qing Song Zhuo Zhao Yu-Hong

Citation:

Strain induced dislocation evolution at graphene grain boundary by three-mode phase-field crystal method

Gao Feng, Li Huan-Qing, Song Zhuo, Zhao Yu-Hong
cstr: 32037.14.aps.73.20241368
PDF
HTML
Get Citation
  • The evolution law and mechanism of grain boundary structure in the deformation process of graphene are of great significance for understanding the deformation behavior of graphene and optimizing its mechanical properties. In this work, single-layer graphene is taken as the research object and a double crystalline graphene model is established by using the three-mode phase-field crystal method, thereby in depth ascertaining the evolution mechanism of dislocations at small-angle symmetrical tilt grain boundaries in graphene under strain. In view of the relaxation and deformation process, the relationship between the number of multiple dislocations and the grain boundary angle of graphene is studied on an atomic scale, and the deformation and failure mechanism of double crystalline graphene under tensile load are revealed, and also discussed from the perspective of the free energy.It is found that, after relaxation, with the increase of grain boundary angle, the density of dislocations at the grain boundary decreases, and the number of specific types of dislocations (5|8|7 and 5|7 dislocations) increases. Under stress loading parallel to the grain boundary, the changes of free energy of the systems containing grain boundaries with different angles show the same trend: at first, they fall to the inflection point and then rise abnormally, and the dislocation behavior cannot effectively alleviate the stress concentration caused by continuous loading in the system, leading to failure finally.Under tensile load, the free energy changes of the systems are divided into four stages, they being stage (I), in which the dislocations at grain boundaries are slightly deformed but do not change their structure, stage (II), in which dislocations at the grain boundaries are transformed into 5|7 or 5|9 dislocation due to C—C bond fracture or rotation, and the dislocations that are “incompatible” have higher energy, making them more conducive to improving the tensile properties of graphene, stage (III), in which the 5|7 and 5|9 dislocations begin to fail, and the free energy shows a tendency to decrease significantly, and stage (IV), in which the double crystalline graphene systems are completely in failure. The system with a grain boundary angle of 10° exhibits the most substantial deduction in free energy in stages (I), (II), and (III), and possesses the highest overall tensile strength.This work contributes to understanding the micromechanical behavior of graphene on an atomic scale.
      Corresponding author: Zhao Yu-Hong, zhaoyuhong@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52074246, 52275390, 52205429, 52201146), the National Defense Basic Scientific Research Program of China (Grant No. JCKY2020408B002), the Key Research and Development Program of Shanxi Province, China (Grant No. 202102050201011), and the Guiding Local Science and Technology Development Projects by the Central Government (Grant Nos. YDZJSX2022A025, YDZJSX2021A027).
    [1]

    林彰乾, 郑伟, 李浩, 王东君 2021 金属学报 57 111Google Scholar

    Lin Z Q, Zhen W, Li H, Wang D J 2021 Acta. Metall. Sin. 57 111Google Scholar

    [2]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [3]

    Cao K, Feng S Z, Han Y, Gao L B, Hue Ly T, Xu Z P, Lu Y 2020 Nat. Commun. 11 284Google Scholar

    [4]

    Liu J, Hei L F, Song J H, Li C M, Tang W Z, Chen G C, Lu F X 2014 Diam. Relat. Mater. 46 42Google Scholar

    [5]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, et al. 2011 Nature 469 389Google Scholar

    [6]

    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar

    [7]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582Google Scholar

    [8]

    He L C, Guo S S, Lei J C, Sha Z D, Liu Z H 2014 Carbon 75 124Google Scholar

    [9]

    周文权 2019 博士学位论文(西安: 西北工业大学)

    Zhou W Q 2019 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [10]

    Shekhawat A, Ritchie R O 2016 Nat. Commun. 7 10546Google Scholar

    [11]

    Zhang J F, Zhao J J, Lu J P 2012 ACS Nano 6 2704Google Scholar

    [12]

    Heo J, Han J 2023 Nanotechnology 34 415704Google Scholar

    [13]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946Google Scholar

    [14]

    Wei Y J, Wu J T, Yin H Q, Shi X H, Yang R G, Dresselhaus M 2012 Nat. Mater. 11 759Google Scholar

    [15]

    Lehtinen O, Kurasch S, Krasheninnikov A V, Kaiser U 2013 Nat. Commun. 4 2098Google Scholar

    [16]

    Liu Z, Suenaga K, Harris P J F, Iijima S 2009 Phys. Rev. Lett. 102 015501Google Scholar

    [17]

    Zhao Y H, Tian X L, Zhao B J, et al. 2018 Sci. Adv. Mater. 10 1793Google Scholar

    [18]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta Mater. 148 86Google Scholar

    [19]

    Guo Q W, Hou H, Wang K L, Li M X, Liaw P K, Zhao Y H 2023 npj Comput. Mater. 9 185Google Scholar

    [20]

    Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Ferry M 2021 Sci. Adv. 7 eabf3039Google Scholar

    [21]

    Xin T Z, Tang S, Ji F, Cui L Q, He B B, Lin X, Tian X L, Hou H, Zhao Y H, Ferry M 2022 Acta Mater. 239 118248Google Scholar

    [22]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. Mater. Sci. Technol. 35 1044Google Scholar

    [23]

    Chen L Q, Zhao Y H 2022 Prog. Mater. Sci. 124 100868Google Scholar

    [24]

    Zhao Y H, Xin T Z, Tang S, Wang H F, Fang X D, Hou H 2024 MRS Bull. 49 613Google Scholar

    [25]

    Zhao Y H, Xing H, Zhang L J, et al. 2023 Acta Metall. Sin. (Engl. Lett. ) 36 1749Google Scholar

    [26]

    Zhao Y H 2024 npj Comput. Mater. 2 e44Google Scholar

    [27]

    Zhao Y H 2023 npj Comput. Mater. 9 94Google Scholar

    [28]

    Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta Mater. 159 16Google Scholar

    [29]

    Song Z, Li H Q, Wang X N, Tian X L, Hou H, Zhao Y H 2023 J. Mater. Res. Technol. 27 6501Google Scholar

    [30]

    Zhong L, Gao H J, Li X Y 2020 Extreme Mech. Lett. 37 100699Google Scholar

    [31]

    Meca E, Lowengrub J, Kim H, Mattevi C, Shenoy V B 2013 Nano Lett. 13 5692Google Scholar

    [32]

    Li H Q, Wang X N, Zhang H B, Tian X L, Hou H, Zhao Y H 2022 Front. Mater. 9 875519Google Scholar

    [33]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar

    [34]

    Tian X L, Zhao Y H, Gu T, Guo Y L, Xu F Q, Hou H 2022 Mater. Sci. Eng. 849 143485Google Scholar

    [35]

    Zhao Y H, Liu K X, Zhang H B, Tian X L, Jiang Q L, Murugadoss V, Hou H 2022 Adv. Compos. Hybrid Mater. 5 2546Google Scholar

    [36]

    Kim K, Lee Z, Regan W, Kisielowski C, Crommie M F, Zettl A 2011 ACS Nano 5 2142Google Scholar

    [37]

    Akhukov M A, Fasolino A, Gornostyrev Y N, Katsnelson M I 2012 Phys. Rev. B 85 115407Google Scholar

    [38]

    Hirvonen P, Ervasti M M, Fan Z, et al. 2016 Phys. Rev. B 94 035414Google Scholar

    [39]

    Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Micro Nanostruct. 129 163Google Scholar

    [40]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605Google Scholar

  • 图 1  模拟结构示意图(${\theta _1}$为晶粒1取向角, ${\theta _2}$为晶粒2取向角)

    Figure 1.  Schematic diagram of simulation structure, ${\theta _1}$ is grain 1 orientation angle, ${\theta _2}$ is grain 2 orientation angle.

    图 2  石墨烯气相结晶图(蓝、绿、黄色标记石墨烯的五角元胞、七角元胞、八角元胞) (a)—(d)晶界角分别为4°, 6°, 8°, 10°, 其中黑框中为晶界处位错; (a1)—(a3), (b1)—(b3), (c1)—(c3), (d1)—(d3)是对应的放大图

    Figure 2.  Vapor crystallization diagram of graphene: (a)–(d) Grain boundary angles are 4°, 6°, 8° and 10°, respectively, dislocations at grain boundaries are shown in the black box; (a1)–(a3), (b1)–(b3), (c1)–(c3), (d1)–(d3) are the corresponding enlarged images. Blue, green, yellow labeled graphene pentagonal cells, heptagonal cells, octagonal cells

    图 3  双晶石墨烯体系中晶界处位错数目统计结果 (a) 晶界角为4°—10°的总位错数目; (b) 晶界角为4°—10°的各种位错数目

    Figure 3.  Statistical results of the number of dislocations at the grain boundaries in the double crystalline graphene system: (a) Total number of dislocations at grain boundary angles of 4°–10°; (b) number of various dislocations at grain boundary angles of 4°–10°.

    图 4  石墨烯晶界5|7位错在应变下的演化图 (A)—(C), (D)—(G), (H)—(I), (J)—(L)分别对应晶界角为4°, 6°, 8°, 10°的石墨烯晶界5|7位错在应变下的演化图; (a)—(c), (d)—(g), (h)—(i), (j)—(l)为对应的演化过程示意图; (A)—(C)的应变$\varepsilon $分别为0, 0.0297, 0.0352; (D)—(G) 的应变$\varepsilon $分别为0, 0.0286, 0.0308, 0.0352; (H), (I) 的应变$\varepsilon $分别为0, 0.0363; (J)—(L) 的应变$\varepsilon $分别为0, 0.0297, 0.0363 (演化过程示意图中标记的5, 7, 8, 9分别代表石墨烯五、七、八、九角元胞, 分别对应相应演化图中石墨烯蓝、绿、黄、红色标记的五、七、八、九角元胞, 图58中标记解释与此相同)

    Figure 4.  Evolution diagram of 5|7 dislocations at graphene grain boundaries under strain: (A)–(C), (D)–(G), (H)–(I), (J)–(L) are the evolution diagrams of 5|7 dislocations at graphene grain boundaries under strain for corresponding grain boundary angles of 4°, 6°, 8° and 10°; (a)–(c), (d)–(g), (h)–(i), (j)–(l) are the evolution process diagrams. The strains $\varepsilon $ of (A)–(C) are 0, 0.0297, 0.0352, (D)–(G) are 0, 0.0286, 0.0308, 0.0352, (H), (I) are 0, 0.0363, and (J)–(L) are 0, 0.0297, 0.0363. The 5, 7, 8, 9 marked in the evolution diagram represent the graphene pentagonal, heptagonal, octagonal, and nougonal cells respectively, corresponding to the pentagonal, heptagonal, octagonal, and nougonal cells marked in the corresponding evolution process diagram in blue, green, yellow, and red respectively. The explanations of labels in Figure 5-8 are the same as those in Figure 4.

    图 5  石墨烯晶界5|8|7位错在应变下的演化图 (A)—(D), (E)—(H), (I)—(K)分别对应晶界角为6°, 8°, 10°的石墨烯晶界5|8|7位错在应变下的演化图; (a)—(d), (e)—(h), (i)—(k)是对应的演化过程示意图; (A)—(D)的应变$\varepsilon $分别为0, 0.0209, 0.0352, 0.0407, (E)—(H) 的应变$\varepsilon $分别为0, 0.0209, 0.0429, 0.0473, (I)—(K) 的应变$\varepsilon $分别为0, 0.0165, 0.0319

    Figure 5.  Evolution diagram of 5|8|7 dislocations at graphene grain boundaries under strain: (A)–(D), (E)–(H), (I)–(K) are the evolution diagrams of 5|8|7 dislocations at graphene grain boundaries under strain for corresponding grain boundary angles of 6°, 8° and 10°; (a)–(d), (e)–(h), (i)–(k) are the corresponding evolution process diagrams; the strains $\varepsilon $ of (A)–(D) are 0, 0.0209, 0.0352, 0.0407, (E)–(H) are 0, 0.0209, 0.0429, 0.0473, (I)–(K) are 0, 0.0165, 0.0319.

    图 6  石墨烯晶界5|8|8|7位错在应变下的演化图 (A)—(C), (D)—(G), (H)—(J)分别对应晶界角为4°, 8°, 10°的石墨烯晶界5|8|8|7位错在应变下的演化图; (a)—(c), (d)—(g), (h)—(j)是对应的演化过程示意图; (A)—(C)的应变$\varepsilon $分别为0, 0.0165, 0.022, (D)—(G)的应变$\varepsilon $分别为0, 0.0253, 0.0363, 0.0473, (H)—(J)的应变$\varepsilon $分别为0, 0.0154, 0.0242

    Figure 6.  Evolution diagram of 5|8|8|7 dislocations at graphene grain boundaries under strain: (A)–(C), (D)–(G), (H)–(J) are the evolution diagrams of 5|8|8|7 dislocations at graphene grain boundaries under strain for corresponding grain boundary angles of 4°, 8° and 10°; (a)–(c), (d)–(g), (h)–(j) are the corresponding evolution process diagrams; the strains $\varepsilon $ of (A)–(C) are 0, 0.0165, 0.022, (D)–(G) are 0, 0.0253, 0.0363, 0.0473, (H)–(J) are 0, 0.0154, 0.0242.

    图 7  石墨烯晶界5|8|8|8|7位错在应变下的3种演化图 (A)—(C), (D)—(G), (H)—(M) 是晶界角为6°的石墨烯晶界5|8|8|8|7位错在应变下的3种演化图; (a)—(c), (d)—(g), (h)—(m)是对应的演化过程示意图; (A)—(C) 的应变$\varepsilon $分别为0, 0.0132, 0.0209, (D)—(G)的应变$\varepsilon $分别为0, 0.0132, 0.0242, 0.0297, (H)—(M)的应变$\varepsilon $分别为0, 0.099, 0.0187, 0.0264, 0.0407, 0.0462

    Figure 7.  Three evolution diagrams of 5|8|8|8|7 dislocations at graphene grain boundaries under strain: (A)–(C), (D)–(G), (H)–(M) are three evolution diagrams of 5|8|8|8|7 dislocations at graphene grain boundaries under strain for the grain boundary angle of 6°; (a)–(c), (d)–(g), (h)–(m) are the corresponding evolution process diagrams; the strains $\varepsilon $ of (A)–(C) are 0, 0.0132, 0.0209, (D)–(G) are 0, 0.0132, 0.0242, 0.0297, (H)–(M) are 0, 0.099, 0.0187, 0.0264, 0.0407, 0.0462.

    图 8  石墨烯晶界5|8|8|8|8|8|7位错在应变下的演化图 (A)—(G)晶界角为4°的石墨烯晶界5|8|8|8|8|8|7位错在应变下的演化图; (a)—(g)是演化过程示意图; (A)—(G)的应变$\varepsilon $分别为0, 0.0231, 0.0281, 0.0319, 0.0341, 0.0374, 0.0473

    Figure 8.  Evolution diagram of 5|8|8|8|8|8|7 dislocations at graphene grain boundaries under strain: (A)–(G) are the evolution diagrams of 5|8|8|8|8|8|7 dislocations at graphene grain boundaries under strain for grain boundary angles of 4°; (a)–(g) are the evolution process diagrams; the strains $\varepsilon $ of (A)–(G) are 0, 0.0231, 0.0281, 0.0319, 0.0341, 0.0374, 0.0473.

    图 9  晶界角为4°, 6°, 8°, 10°的石墨烯晶界各种位错的延伸率

    Figure 9.  Elongation of various dislocations of graphene grain boundaries with grain boundary angles of 4°, 6°, 8° and 10°

    图 10  变形过程中双晶石墨烯自由能-应变曲线 (a)—(d)晶界角分别为4°, 6°, 8°, 10°

    Figure 10.  Free energy curves of double crystalline graphene during deformation: (a)–(d) The grain boundary angles are 4°, 6°, 8°, 10°.

    表 1  施加应力应变的参数

    Table 1.  Parameters for applying stress and strain.

    试样 拉伸应
    变方向
    晶粒取向角 晶界角
    $\theta $/(°)
    ${\theta _1}$/(°) ${\theta _2}$/(°)
    A $y$ 2 –2 4
    B $y$ 3 –3 6
    C $y$ 4 –4 8
    D $y$ 5 –5 10
    DownLoad: CSV
  • [1]

    林彰乾, 郑伟, 李浩, 王东君 2021 金属学报 57 111Google Scholar

    Lin Z Q, Zhen W, Li H, Wang D J 2021 Acta. Metall. Sin. 57 111Google Scholar

    [2]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [3]

    Cao K, Feng S Z, Han Y, Gao L B, Hue Ly T, Xu Z P, Lu Y 2020 Nat. Commun. 11 284Google Scholar

    [4]

    Liu J, Hei L F, Song J H, Li C M, Tang W Z, Chen G C, Lu F X 2014 Diam. Relat. Mater. 46 42Google Scholar

    [5]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, et al. 2011 Nature 469 389Google Scholar

    [6]

    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar

    [7]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582Google Scholar

    [8]

    He L C, Guo S S, Lei J C, Sha Z D, Liu Z H 2014 Carbon 75 124Google Scholar

    [9]

    周文权 2019 博士学位论文(西安: 西北工业大学)

    Zhou W Q 2019 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [10]

    Shekhawat A, Ritchie R O 2016 Nat. Commun. 7 10546Google Scholar

    [11]

    Zhang J F, Zhao J J, Lu J P 2012 ACS Nano 6 2704Google Scholar

    [12]

    Heo J, Han J 2023 Nanotechnology 34 415704Google Scholar

    [13]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946Google Scholar

    [14]

    Wei Y J, Wu J T, Yin H Q, Shi X H, Yang R G, Dresselhaus M 2012 Nat. Mater. 11 759Google Scholar

    [15]

    Lehtinen O, Kurasch S, Krasheninnikov A V, Kaiser U 2013 Nat. Commun. 4 2098Google Scholar

    [16]

    Liu Z, Suenaga K, Harris P J F, Iijima S 2009 Phys. Rev. Lett. 102 015501Google Scholar

    [17]

    Zhao Y H, Tian X L, Zhao B J, et al. 2018 Sci. Adv. Mater. 10 1793Google Scholar

    [18]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta Mater. 148 86Google Scholar

    [19]

    Guo Q W, Hou H, Wang K L, Li M X, Liaw P K, Zhao Y H 2023 npj Comput. Mater. 9 185Google Scholar

    [20]

    Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Ferry M 2021 Sci. Adv. 7 eabf3039Google Scholar

    [21]

    Xin T Z, Tang S, Ji F, Cui L Q, He B B, Lin X, Tian X L, Hou H, Zhao Y H, Ferry M 2022 Acta Mater. 239 118248Google Scholar

    [22]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. Mater. Sci. Technol. 35 1044Google Scholar

    [23]

    Chen L Q, Zhao Y H 2022 Prog. Mater. Sci. 124 100868Google Scholar

    [24]

    Zhao Y H, Xin T Z, Tang S, Wang H F, Fang X D, Hou H 2024 MRS Bull. 49 613Google Scholar

    [25]

    Zhao Y H, Xing H, Zhang L J, et al. 2023 Acta Metall. Sin. (Engl. Lett. ) 36 1749Google Scholar

    [26]

    Zhao Y H 2024 npj Comput. Mater. 2 e44Google Scholar

    [27]

    Zhao Y H 2023 npj Comput. Mater. 9 94Google Scholar

    [28]

    Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta Mater. 159 16Google Scholar

    [29]

    Song Z, Li H Q, Wang X N, Tian X L, Hou H, Zhao Y H 2023 J. Mater. Res. Technol. 27 6501Google Scholar

    [30]

    Zhong L, Gao H J, Li X Y 2020 Extreme Mech. Lett. 37 100699Google Scholar

    [31]

    Meca E, Lowengrub J, Kim H, Mattevi C, Shenoy V B 2013 Nano Lett. 13 5692Google Scholar

    [32]

    Li H Q, Wang X N, Zhang H B, Tian X L, Hou H, Zhao Y H 2022 Front. Mater. 9 875519Google Scholar

    [33]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar

    [34]

    Tian X L, Zhao Y H, Gu T, Guo Y L, Xu F Q, Hou H 2022 Mater. Sci. Eng. 849 143485Google Scholar

    [35]

    Zhao Y H, Liu K X, Zhang H B, Tian X L, Jiang Q L, Murugadoss V, Hou H 2022 Adv. Compos. Hybrid Mater. 5 2546Google Scholar

    [36]

    Kim K, Lee Z, Regan W, Kisielowski C, Crommie M F, Zettl A 2011 ACS Nano 5 2142Google Scholar

    [37]

    Akhukov M A, Fasolino A, Gornostyrev Y N, Katsnelson M I 2012 Phys. Rev. B 85 115407Google Scholar

    [38]

    Hirvonen P, Ervasti M M, Fan Z, et al. 2016 Phys. Rev. B 94 035414Google Scholar

    [39]

    Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Micro Nanostruct. 129 163Google Scholar

    [40]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605Google Scholar

  • [1] Zheng Qin-Ren, Zhan Fu-Zhi, She Jun-Yi, Wang Jian-Yu, Shi Ruo-Li, Meng Guo-Dong. Influence of morphological characteristics of graphene on its field emission properties. Acta Physica Sinica, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [2] Chen Shan-Deng, Bai Qing-Shun, Dou Yu-Hao, Guo Wan-Min, Wang Hong-Fei, Du Yun-Long. Simulation research on nucleation mechanism of graphene deposition assisted by diamond grain boundary. Acta Physica Sinica, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [3] Chen Wei-Long, Guo Rong-Rong, Tong Yu-Shen, Liu Li-Li, Zhou Sheng-Lan, Lin Jin-Hai. Influence of sub-bandgap illumination on electric field distribution at grain boundary in CdZnTe crystals. Acta Physica Sinica, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [4] Guo Can, Zhao Yu-Ping, Deng Ying-Yuan, Zhang Zhong-Ming, Xu Chun-Jie. A phase-field study on interaction process of moving grain boundary and spinodal decomposition. Acta Physica Sinica, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [5] Zhang Bo-Jia, An Min-Rong, Hu Teng, Han La. Molecular dynamics simulation of mechanism of interaction between dislocation and amorphism in magnesium. Acta Physica Sinica, 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [6] Xia Wen-Qiang, Zhao Yan, Liu Zhen-Zhi, Lu Xiao-Gang. Phase field crystal simulation of strain-induced square phase low-angle symmetric tilt grain boundary dislocation reaction. Acta Physica Sinica, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [7] Qi Ke-Wu, Zhao Yu-Hong, Tian Xiao-Lin, Peng Dun-Wei, Sun Yuan-Yang, Hou Hua. Phase field crystal simulation of effect of misorientation angle on low-angle asymmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [8] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [9] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [10] Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai. Phase-field crystal modelling the nucleation processes of graphene structures on different substrates. Acta Physica Sinica, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [11] He Ju-Sheng, Zhang Meng, Zou Ji-Jun, Pan Hua-Qing, Qi Wei-Jing, Li Ping. Analyses of determination conditions of n-GaN dislocation density by triple-axis X-ray diffraction. Acta Physica Sinica, 2017, 66(21): 216102. doi: 10.7498/aps.66.216102
    [12] Wang Bin, Feng Ya-Hui, Wang Qiu-Shi, Zhang Wei, Zhang Li-Na, Ma Jin-Wen, Zhang Hao-Ran, Yu Guang-Hui, Wang Gui-Qiang. Hydrogen etching of chemical vapor deposition-grown graphene domains. Acta Physica Sinica, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [13] Gao Ying-Jun, Qin He-Lin, Zhou Wen-Quan, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao. Phase field crystal simulation of grain boundary annihilation under strain strain at high temperature. Acta Physica Sinica, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [14] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [15] Shao Yu-Fei, Yang Xin, Li Jiu-Hui, Zhao Xing. Atomistic simulation study on the local strain fields around an extended edge dislocation in copper. Acta Physica Sinica, 2014, 63(7): 076103. doi: 10.7498/aps.63.076103
    [16] Long Jian, Wang Zhao-Yu, Zhao Yu-Long, Long Qing-Hua, Yang Tao, Chen Zheng. Phase field crystal study on grain boundary evolution and its micro-mechanism under various symmetry. Acta Physica Sinica, 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [17] Li Lian-He, Liu Guan-Ting. A screw dislocation interacting with a wedge-shaped crack in one-dimensional hexagonal quasicrystals. Acta Physica Sinica, 2012, 61(8): 086103. doi: 10.7498/aps.61.086103
    [18] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [19] Fang Bu-Qing, Lu Guo, Zhang Guang-Cai, Xu Ai-Guo, Li Ying-Jun. Evolution of stacking-fault-tetrahedron-like structures in copper crystal. Acta Physica Sinica, 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
    [20] Sun Wei, Wang Qing-Zhou, Han Fu-Sheng. The internal friction related to dislocation peak in a graphite particulate CuAlMn shape memory alloy composite. Acta Physica Sinica, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
Metrics
  • Abstract views:  502
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  28 September 2024
  • Accepted Date:  26 October 2024
  • Available Online:  13 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回