-
Graphene is believed to have promising applications in many fields because of its unique properties. At present, graphene films are mainly prepared on Cu substrates by chemical vapor deposition. The graphene films prepared in this way need to be transferred to the target substrates for further applications, while the transfer process inevitably induces contamination on graphene, which affects the properties of graphene and the performance of devices. Therefore, how to reduce or avoid contamination and realize the clean transfer of graphene is an important topic for the development of graphene transfer technology, which is the major topic of this review. Here, firstly, the transfer techniques of graphene are briefly reviewed, which can be classified according to different rules. For example, it can be classified as direct transfer, with which graphene is directly stuck to the target substrate, and indirect transfer, with which graphene is indirectly transferred to the target substrate with a carrier film. According to the way of separating graphene and the growth substrate, it can also be classified as dissolving transfer, with which the substrate is dissolved by chemical etchant, and delaminating transfer, with which graphene is delaminated from the substrate. Then the origins of contamination are discussed followed with how contamination affects graphene properties. The main contaminations induced by transfer are ions from the etchant and electrolyte, undissolved metal or metal oxide particles, and organic residues from carrier films. Contaminations have a great influence on the electrical, thermal and optical properties of graphene. Then the up-to-date progress of techniques for clean transfer is reviewed, including modifying the cleaning process or using alternative etchant/electrolyte to remove or suppress metal contamination and annealing graphene or using alternative carrier films (e.g., more dissoluble materials) to remove or suppress organic residues. Finally, the challenges of clean transfer of graphene are summarized, and future research directions and opportunities are prospected. This review not only contributes to the research of graphene film transfer technology, but also has great reference value for the clean fabrication of the whole two-dimensional materials and devices.
-
Keywords:
- graphene /
- chemical vapor deposition /
- transfer /
- contamination
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar
[3] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563Google Scholar
[4] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558Google Scholar
[5] Eda G, Fanchini G, Chhowalla M 2008 Nat. Nanotechnol. 3 270Google Scholar
[6] Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N, de Heer W A 2004 J. Phys. Chem. B 108 19912Google Scholar
[7] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191Google Scholar
[8] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar
[9] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar
[10] Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720Google Scholar
[11] Hao Y, Wang L, Liu Y, Chen H, Wang X, Tan C, Nie S, Suk J W, Jiang T, Liang T, Xiao J, Ye W, Dean C R, Yakobson B I, McCarty K F, Kim P, Hone J, Colombo L, Ruoff R S 2016 Nat. Nanotechnol. 11 426Google Scholar
[12] Li X, Colombo L, Ruoff R S 2016 Adv. Mater. 28 6247Google Scholar
[13] Qing F, Shen C, Jia R, Zhan L, Li X 2017 MRS Bull. 42 819Google Scholar
[14] Zhu Y, Ji H, Cheng H M, Ruoff R S 2018 Natl. Sci. Rev. 5 90Google Scholar
[15] Kang J, Shin D, Bae S, Hong B H 2012 Nanoscale 4 5527Google Scholar
[16] Chen Y, Gong X L, Gai J G 2016 Adv. Sci. 3 1500343Google Scholar
[17] Lee H C, Liu W W, Chai S P, Mohamed A R, Aziz A, Khe C S, Hidayah N M S, Hashim U 2017 RSC Adv. 7 15644Google Scholar
[18] Chen M, Haddon R C, Yan R, Bekyarova E 2017 Mater. Horiz. 4 1054Google Scholar
[19] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar
[20] Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 ACS Nano 5 9927Google Scholar
[21] Juang Z Y, Wu C Y, Lu A Y, Su C Y, Leou K C, Chen F R, Tsai C H 2010 Carbon 48 3169Google Scholar
[22] Yoon T, Shin W C, Kim T Y, Mun J H, Kim T S, Cho B J 2012 Nano Lett. 12 1448Google Scholar
[23] Lock E H, Baraket M, Laskoski M, Mulvaney S P, Lee W K, Sheehan P E, Hines D R, Robinson J T, Tosado J, Fuhrer M S, Hernandez S C, Walton S G 2012 Nano Lett. 12 102Google Scholar
[24] Bajpai R, Roy S, Jain L, Kulshrestha N, Hazra K S, Misra D S 2011 Nanotechnology 22 225606Google Scholar
[25] Kobayashi T, Bando M, Kimura N, Shimizu K, Kadono K, Umezu N, Miyahara K, Hayazaki S, Nagai S, Mizuguchi Y, Murakami Y, Hobara D 2013 Appl. Phys. Lett. 102 023112Google Scholar
[26] Liu W, Jackson B L, Zhu J, Miao C Q, Chung C H, Park Y J, Sun K, Woo J, Xie Y H 2010 ACS Nano 4 3927Google Scholar
[27] Lee Y H, Lee J H 2010 Appl. Phys. Lett. 96 083101Google Scholar
[28] Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Goldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar
[29] Liang X, Sperling B A, Calizo I, Cheng G, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X, Yuan H, Walker A R, Liu Z, Peng L M, Richter C A 2011 ACS Nano 5 9144Google Scholar
[30] Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L P, Zhang Z, Fu Q, Peng L M, Bao X, Cheng H M 2012 Nat. Commun. 3 699Google Scholar
[31] Cherian C T, Giustiniano F, Martin-Fernandez I, Andersen H, Balakrishnan J, Ozyilmaz B 2015 Small 11 189Google Scholar
[32] Pizzocchero F, Jessen B S, Whelan P R, Kostesha N, Lee S, Buron J D, Petrushina I, Larsen M B, Greenwood P, Cha W J, Teo K, Jepsen P U, Hone J, Bøggild P, Booth T J 2015 Carbon 85 397Google Scholar
[33] Krasheninnikov A V, Nieminen R M 2011 Theor. Chem. Acc. 129 625Google Scholar
[34] Miller-Chou B A, Koenig J L 2003 Prog. Polym. Sci. 28 1223Google Scholar
[35] Kim S, Shin S, Kim T, Du H, Song M, Lee C, Kim K, Cho S, Seo D H, Seo S 2016 Carbon 98 352
[36] Suk J W, Lee W H, Lee J, Chou H, Piner R D, Hao Y, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462Google Scholar
[37] Song J, Kam F Y, Png R Q, Seah W L, Zhuo J M, Lim G K, Ho P K, Chua L L 2013 Nat. Nanotechnol. 8 356Google Scholar
[38] Hong S K, Song S M, Sul O, Cho B J 2012 J. Electrochem. Soc. 159 K107Google Scholar
[39] Kim B J, Shrivastava N K, Nasir T, Choi K S, Lee J, Kim H C, Kim K W, Devika M, Lee S H, Jeong B J, Yu H K, Choi J Y 2017 Phys. Status Solidi RRL 11 1700240Google Scholar
[40] Zhao G, Li X, Huang M, Zhen Z, Zhong Y, Chen Q, Zhao X, He Y, Hu R, Yang T, Zhang R, Li C, Kong J, Xu J B, Ruoff R S, Zhu H 2017 Chem. Soc. Rev. 46 4417Google Scholar
[41] Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206Google Scholar
[42] Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonnell S, Colombo L, Vogel E M, Ruoff R S, Wallace R M 2011 Appl. Phys. Lett. 99 122108Google Scholar
[43] Ahn Y, Kim H, Kim Y H, Yi Y, Kim S I 2013 Appl. Phys. Lett. 102 091602Google Scholar
[44] Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195Google Scholar
[45] Lagatsky A A, Sun Z, Kulmala T S, Sundaram R S, Milana S, Torrisi F, Antipov O L, Lee Y, Ahn J H, Brown C T A, Sibbett W, Ferrari A C 2013 Appl. Phys. Lett. 102 013113Google Scholar
[46] Wang D Y, Huang I S, Ho P H, Li S S, Yeh Y C, Wang D W, Chen W L, Lee Y Y, Chang Y M, Chen C C, Liang C T, Chen C W 2013 Adv. Mater. 25 4521Google Scholar
[47] Kim Y, Kim H, Kim T Y, Rhyu S H, Choi D S, Park W K, Yang C M, Yoon D H, Yang W S 2015 Carbon 81 458Google Scholar
[48] Lavin-Lopez M P, Valverde J L, Garrido A, Sanchez-Silva L, Martinez P, Romero-Izquierdo A 2014 Chem. Phys. Lett. 614 89Google Scholar
[49] Gorantla S, Bachmatiuk A, Hwang J, Alsalman H A, Kwak J Y, Seyller T, Eckert J, Spencer M G, Rummeli M H 2014 Nanoscale 6 889Google Scholar
[50] Gupta P, Dongare P D, Grover S, Dubey S, Mamgain H, Bhattacharya A, Deshmukh M M 2014 Sci. Rep. 4 3882
[51] Lin Y C, Jin C, Lee J C, Jen S F, Suenaga K, Chiu P W 2011 ACS Nano 5 2362Google Scholar
[52] Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y 2011 Nano Lett. 11 767Google Scholar
[53] Dan Y, Lu Y, Kybert N J, Luo Z, Johnson A T 2009 Nano Lett. 9 1472Google Scholar
[54] Booth T J, Blake P, Nair R R, Jiang D, Hill E W, Bangert U, Bleloch A, Gass M, Novoselov K S, Katsnelson M I, Geim A K 2008 Nano Lett. 8 2442Google Scholar
[55] Elias D C, Nair R R, Mohiuddin T M, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610Google Scholar
[56] Wang X, Dolocan A, Chou H, Tao L, Dick A, Akinwande D, Willson C G 2017 Chem. Mater. 29 2033Google Scholar
[57] Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K, Chiu P W 2012 Nano Lett. 12 414Google Scholar
[58] Suhail A, Islam K, Li B, Jenkins D, Pan G 2017 Appl. Phys. Lett. 110 183103Google Scholar
[59] Kim S J, Choi T, Lee B, Lee S, Choi K, Park J B, Yoo J M, Choi Y S, Ryu J, Kim P, Hone J, Hong B H 2015 Nano Lett. 15 3236Google Scholar
[60] Su Y, Han H L, Cai Q, Wu Q, Xie M, Chen D, Geng B, Zhang Y, Wang F, Shen Y R, Tian C 2015 Nano Lett. 15 6501Google Scholar
[61] Kim H H, Kang B, Suk J W, Li N, Kim K S, Ruoff R S, Lee W H, Cho K 2015 ACS Nano 9 4726Google Scholar
[62] Brajpuriya R, Dikonimos T, Buonocore F, Lisi N 2015 International Conference on the Recent Trends in Materials and Devices India December 15−17, 2015 p325
[63] Chen M, Li G, Li W, Stekovic D, Arkook B, Itkis M E, Pekker A, Bekyarova E, Haddon R C 2016 Carbon 110 286Google Scholar
[64] Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Cheng H M, Ren W 2017 Nat. Commun. 8 14560Google Scholar
[65] Chen M, Stekovic D, Li W, Arkook B, Haddon R C, Bekyarova E 2017 Nanotechnology 28 255701Google Scholar
[66] Choi J, Kim H, Park J, Iqbal M W, Iqbal M Z, Eom J, Jung J 2014 Current Appl. Phys. 14 1045
[67] Han Y, Zhang L, Zhang X, Ruan K, Cui L, Wang Y, Liao L, Wang Z, Jie J 2014 J. Mater. Chem. C 2 201Google Scholar
[68] Chen X D, Liu Z B, Zheng C Y, Xing F, Yan X Q, Chen Y, Tian J G 2013 Carbon 56 271Google Scholar
[69] Lin W H, Chen T H, Chang J K, Taur J I, Lo Y Y, Lee W L, Chang C S, Su W B, Wu C I 2014 ACS Nano 8 1784Google Scholar
[70] Pasternak I, Krajewska A, Grodecki K, Jozwik-Biala I, Sobczak K, Strupinski W 2014 AIP Adv. 4 097133Google Scholar
[71] Wang B, Huang M, Tao L, Lee S H, Jang A R, Li B W, Shin H S, Akinwande D, Ruoff R S 2016 ACS Nano 10 1404Google Scholar
[72] Zhang G, Guell A G, Kirkman P M, Lazenby R A, Miller T S, Unwin P R 2016 ACS Appl. Mat. Interfaces 8 8008Google Scholar
[73] Qing F, Hou Y, Stehle R, Li X 2019 APL Mater. 7 020903Google Scholar
-
图 3 不同平均分子量PMMA转移的石墨烯的AFM图和归一化高度分布图[35], 其中对应PMMA的平均分子量为: (a), (e) 996000; (b), (f) 350000; (c), (g) 35000; (d), (h) 15000; AFM图像上方的曲线是AFM图像中白色斜线的线扫描, AFM图像尺寸为5 μm × 5 μm
Figure 3. AFM images and normalized height distribution profiles of transferred graphene using PMMA with different average molecular weight: (a), (e) 996000; (b), (f) 350000; (c), (g) 35000; (d), (h) 15000[35]. The curves above each AFM image represent the line profile of the white slanting line in the images. The size of AFM surface image is 5 μm × 5 μm.
图 5 结合硅晶圆清洗技术的间接转移[29] (a)采用改进的石墨烯清洗方法的转移流程; (b), (c)传统转移和(d), (e)改进的石墨烯清洗转移的光学图像和扫描电子显微镜图像; (b)和(c)中金属微粒残留用蓝色圆圈标记, 小破洞用黄色圆圈标记, 多层石墨烯区域(对比度较暗)用箭头标记; (e)中箭头标记的窄的黑色线条为褶皱
Figure 5. Indirect graphene transfer with “modified RCA clean”[29]: (a) Transfer process flow; optical microscopy images and scanning electron microscopy images of (b), (c) traditional transferred graphene film and (d), (e) modified RCA cleaning transferred graphene film. In (b) and (c) the metal residues and the small holes are marked with blue circles and yellow circles, respectively, and the graphene adlayers (with darker contrast) are marked with arrows. The arrow in (e) points to the wrinkles (the dark lines).
图 8 石墨烯在空气和H2/Ar 200 ℃退火2 h后的TEM图像[57] (a), (b)显示表面清洁度的细节, 下面对应面板中复制的着色的图像用以区分分解温度不同的PMMA残留物, 没有PMMA的区域在彩色图像中显示为灰色; 左下角的图解释了相应的颜色, 其中蓝色、红色和黄色分别代表PMMA-G, PMMA-A和Cu纳米颗粒; (c)图(b)中所示区域的TEM高分辨图, 显示仍有PMMA残留物
Figure 8. TEM images of graphene after air and H2/Ar two-step annealing at 250 ℃ for 2 h[57]. Panels (a) and (b) show the details of surface cleanliness. The same images are duplicated and colored in the lower panels to distinguish the PMMA residues that decomposed differently. The areas free of PMMA are shown in gray in the colored images. The bottom-left image interprets the meaning of different colors, in which blue, red, and yellow stand for PMMA-G, PMMA-A, and Cu nanoparticles, respectively. (c) Atomic resolution of graphene clean surface with PMMA residue shown piecewise at the bottom corner after annealing.
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar
[3] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563Google Scholar
[4] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558Google Scholar
[5] Eda G, Fanchini G, Chhowalla M 2008 Nat. Nanotechnol. 3 270Google Scholar
[6] Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N, de Heer W A 2004 J. Phys. Chem. B 108 19912Google Scholar
[7] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191Google Scholar
[8] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar
[9] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar
[10] Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720Google Scholar
[11] Hao Y, Wang L, Liu Y, Chen H, Wang X, Tan C, Nie S, Suk J W, Jiang T, Liang T, Xiao J, Ye W, Dean C R, Yakobson B I, McCarty K F, Kim P, Hone J, Colombo L, Ruoff R S 2016 Nat. Nanotechnol. 11 426Google Scholar
[12] Li X, Colombo L, Ruoff R S 2016 Adv. Mater. 28 6247Google Scholar
[13] Qing F, Shen C, Jia R, Zhan L, Li X 2017 MRS Bull. 42 819Google Scholar
[14] Zhu Y, Ji H, Cheng H M, Ruoff R S 2018 Natl. Sci. Rev. 5 90Google Scholar
[15] Kang J, Shin D, Bae S, Hong B H 2012 Nanoscale 4 5527Google Scholar
[16] Chen Y, Gong X L, Gai J G 2016 Adv. Sci. 3 1500343Google Scholar
[17] Lee H C, Liu W W, Chai S P, Mohamed A R, Aziz A, Khe C S, Hidayah N M S, Hashim U 2017 RSC Adv. 7 15644Google Scholar
[18] Chen M, Haddon R C, Yan R, Bekyarova E 2017 Mater. Horiz. 4 1054Google Scholar
[19] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar
[20] Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 ACS Nano 5 9927Google Scholar
[21] Juang Z Y, Wu C Y, Lu A Y, Su C Y, Leou K C, Chen F R, Tsai C H 2010 Carbon 48 3169Google Scholar
[22] Yoon T, Shin W C, Kim T Y, Mun J H, Kim T S, Cho B J 2012 Nano Lett. 12 1448Google Scholar
[23] Lock E H, Baraket M, Laskoski M, Mulvaney S P, Lee W K, Sheehan P E, Hines D R, Robinson J T, Tosado J, Fuhrer M S, Hernandez S C, Walton S G 2012 Nano Lett. 12 102Google Scholar
[24] Bajpai R, Roy S, Jain L, Kulshrestha N, Hazra K S, Misra D S 2011 Nanotechnology 22 225606Google Scholar
[25] Kobayashi T, Bando M, Kimura N, Shimizu K, Kadono K, Umezu N, Miyahara K, Hayazaki S, Nagai S, Mizuguchi Y, Murakami Y, Hobara D 2013 Appl. Phys. Lett. 102 023112Google Scholar
[26] Liu W, Jackson B L, Zhu J, Miao C Q, Chung C H, Park Y J, Sun K, Woo J, Xie Y H 2010 ACS Nano 4 3927Google Scholar
[27] Lee Y H, Lee J H 2010 Appl. Phys. Lett. 96 083101Google Scholar
[28] Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Goldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar
[29] Liang X, Sperling B A, Calizo I, Cheng G, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X, Yuan H, Walker A R, Liu Z, Peng L M, Richter C A 2011 ACS Nano 5 9144Google Scholar
[30] Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L P, Zhang Z, Fu Q, Peng L M, Bao X, Cheng H M 2012 Nat. Commun. 3 699Google Scholar
[31] Cherian C T, Giustiniano F, Martin-Fernandez I, Andersen H, Balakrishnan J, Ozyilmaz B 2015 Small 11 189Google Scholar
[32] Pizzocchero F, Jessen B S, Whelan P R, Kostesha N, Lee S, Buron J D, Petrushina I, Larsen M B, Greenwood P, Cha W J, Teo K, Jepsen P U, Hone J, Bøggild P, Booth T J 2015 Carbon 85 397Google Scholar
[33] Krasheninnikov A V, Nieminen R M 2011 Theor. Chem. Acc. 129 625Google Scholar
[34] Miller-Chou B A, Koenig J L 2003 Prog. Polym. Sci. 28 1223Google Scholar
[35] Kim S, Shin S, Kim T, Du H, Song M, Lee C, Kim K, Cho S, Seo D H, Seo S 2016 Carbon 98 352
[36] Suk J W, Lee W H, Lee J, Chou H, Piner R D, Hao Y, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462Google Scholar
[37] Song J, Kam F Y, Png R Q, Seah W L, Zhuo J M, Lim G K, Ho P K, Chua L L 2013 Nat. Nanotechnol. 8 356Google Scholar
[38] Hong S K, Song S M, Sul O, Cho B J 2012 J. Electrochem. Soc. 159 K107Google Scholar
[39] Kim B J, Shrivastava N K, Nasir T, Choi K S, Lee J, Kim H C, Kim K W, Devika M, Lee S H, Jeong B J, Yu H K, Choi J Y 2017 Phys. Status Solidi RRL 11 1700240Google Scholar
[40] Zhao G, Li X, Huang M, Zhen Z, Zhong Y, Chen Q, Zhao X, He Y, Hu R, Yang T, Zhang R, Li C, Kong J, Xu J B, Ruoff R S, Zhu H 2017 Chem. Soc. Rev. 46 4417Google Scholar
[41] Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206Google Scholar
[42] Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonnell S, Colombo L, Vogel E M, Ruoff R S, Wallace R M 2011 Appl. Phys. Lett. 99 122108Google Scholar
[43] Ahn Y, Kim H, Kim Y H, Yi Y, Kim S I 2013 Appl. Phys. Lett. 102 091602Google Scholar
[44] Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195Google Scholar
[45] Lagatsky A A, Sun Z, Kulmala T S, Sundaram R S, Milana S, Torrisi F, Antipov O L, Lee Y, Ahn J H, Brown C T A, Sibbett W, Ferrari A C 2013 Appl. Phys. Lett. 102 013113Google Scholar
[46] Wang D Y, Huang I S, Ho P H, Li S S, Yeh Y C, Wang D W, Chen W L, Lee Y Y, Chang Y M, Chen C C, Liang C T, Chen C W 2013 Adv. Mater. 25 4521Google Scholar
[47] Kim Y, Kim H, Kim T Y, Rhyu S H, Choi D S, Park W K, Yang C M, Yoon D H, Yang W S 2015 Carbon 81 458Google Scholar
[48] Lavin-Lopez M P, Valverde J L, Garrido A, Sanchez-Silva L, Martinez P, Romero-Izquierdo A 2014 Chem. Phys. Lett. 614 89Google Scholar
[49] Gorantla S, Bachmatiuk A, Hwang J, Alsalman H A, Kwak J Y, Seyller T, Eckert J, Spencer M G, Rummeli M H 2014 Nanoscale 6 889Google Scholar
[50] Gupta P, Dongare P D, Grover S, Dubey S, Mamgain H, Bhattacharya A, Deshmukh M M 2014 Sci. Rep. 4 3882
[51] Lin Y C, Jin C, Lee J C, Jen S F, Suenaga K, Chiu P W 2011 ACS Nano 5 2362Google Scholar
[52] Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y 2011 Nano Lett. 11 767Google Scholar
[53] Dan Y, Lu Y, Kybert N J, Luo Z, Johnson A T 2009 Nano Lett. 9 1472Google Scholar
[54] Booth T J, Blake P, Nair R R, Jiang D, Hill E W, Bangert U, Bleloch A, Gass M, Novoselov K S, Katsnelson M I, Geim A K 2008 Nano Lett. 8 2442Google Scholar
[55] Elias D C, Nair R R, Mohiuddin T M, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610Google Scholar
[56] Wang X, Dolocan A, Chou H, Tao L, Dick A, Akinwande D, Willson C G 2017 Chem. Mater. 29 2033Google Scholar
[57] Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K, Chiu P W 2012 Nano Lett. 12 414Google Scholar
[58] Suhail A, Islam K, Li B, Jenkins D, Pan G 2017 Appl. Phys. Lett. 110 183103Google Scholar
[59] Kim S J, Choi T, Lee B, Lee S, Choi K, Park J B, Yoo J M, Choi Y S, Ryu J, Kim P, Hone J, Hong B H 2015 Nano Lett. 15 3236Google Scholar
[60] Su Y, Han H L, Cai Q, Wu Q, Xie M, Chen D, Geng B, Zhang Y, Wang F, Shen Y R, Tian C 2015 Nano Lett. 15 6501Google Scholar
[61] Kim H H, Kang B, Suk J W, Li N, Kim K S, Ruoff R S, Lee W H, Cho K 2015 ACS Nano 9 4726Google Scholar
[62] Brajpuriya R, Dikonimos T, Buonocore F, Lisi N 2015 International Conference on the Recent Trends in Materials and Devices India December 15−17, 2015 p325
[63] Chen M, Li G, Li W, Stekovic D, Arkook B, Itkis M E, Pekker A, Bekyarova E, Haddon R C 2016 Carbon 110 286Google Scholar
[64] Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Cheng H M, Ren W 2017 Nat. Commun. 8 14560Google Scholar
[65] Chen M, Stekovic D, Li W, Arkook B, Haddon R C, Bekyarova E 2017 Nanotechnology 28 255701Google Scholar
[66] Choi J, Kim H, Park J, Iqbal M W, Iqbal M Z, Eom J, Jung J 2014 Current Appl. Phys. 14 1045
[67] Han Y, Zhang L, Zhang X, Ruan K, Cui L, Wang Y, Liao L, Wang Z, Jie J 2014 J. Mater. Chem. C 2 201Google Scholar
[68] Chen X D, Liu Z B, Zheng C Y, Xing F, Yan X Q, Chen Y, Tian J G 2013 Carbon 56 271Google Scholar
[69] Lin W H, Chen T H, Chang J K, Taur J I, Lo Y Y, Lee W L, Chang C S, Su W B, Wu C I 2014 ACS Nano 8 1784Google Scholar
[70] Pasternak I, Krajewska A, Grodecki K, Jozwik-Biala I, Sobczak K, Strupinski W 2014 AIP Adv. 4 097133Google Scholar
[71] Wang B, Huang M, Tao L, Lee S H, Jang A R, Li B W, Shin H S, Akinwande D, Ruoff R S 2016 ACS Nano 10 1404Google Scholar
[72] Zhang G, Guell A G, Kirkman P M, Lazenby R A, Miller T S, Unwin P R 2016 ACS Appl. Mat. Interfaces 8 8008Google Scholar
[73] Qing F, Hou Y, Stehle R, Li X 2019 APL Mater. 7 020903Google Scholar
Catalog
Metrics
- Abstract views: 21153
- PDF Downloads: 367
- Cited By: 0