-
The integration of fiber with graphene has greatly expanded the two-dimensional functional materials in the field of photonics research. However, the growth method by using chemical vapor deposition with metal catalytic substrateis limited to the fabrication of a graphene-fiber composite due to inevitably transferring graphene flakes onto the optical fiber surface. In order to fully achieve the interaction between light and graphene material, optical fibers have to be treated with special structure, which greatly damages the fiber structure, resulting in inefficient and harmful manufacturing strategy for the mass production. In this paper, a graphene-photonic crystal fiber (G-PCF) composite is prepared by atmospheric chemical vapor deposition (APCVD), which can directly grow monolayer and multi-layer graphene into the air-hole of photonic crystal fiber. Furthermore, we randomly break a G-PCF and then conduct an electron microscope (SEM) test at the fractured section. It is obvious that a tube-like graphene protruding out of one hole in the fractured area of the G-PCF is observed, thus further demonstrating that a monolayer graphene is grown on the inner hole walls of the PCF as shown in
Fig. 2 . By changing the process parameters such as growth temperature, duration and gas flow rate of carbon source, the law of the influence of different parameters on the graphene layers is explored. In addition, the uniformity of graphene and defects in the graphene-photonic crystal fiber(G-PCF) are experimentally analyzed. As illustrated inFig. 7 , a 4-cm-long uniform graphene-photonic crystal fiber sample is achieved by controlling the gas flow rate, growth time and the growth temperature. The APCVD method of directly growing graphene onto the inner hole walls of the PCF is simple and effective. The flexible structure and optical control enable the G-PCF to have great potential applications in all-optical devices and photonics. The development of high-quality graphene synthesis and opto-electronics technology ensures its compatibility with the integrated electronics platform and existing optical fiber systems. Moreover, our results will pave the way for 2D materials and optical fiber applications, providing a new idea for the application of graphene to the integration of all-optical fibers.[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen H X, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar
[3] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2012 ACS Nano 7 791
[4] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar
[5] Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273Google Scholar
[6] Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G, Tian J G 2014 Opt. Express 22 10239Google Scholar
[7] Li W, Chen B G, Meng C, Fang W, Xiao Y, Li X Y, Hu Z F, Xu Y X, Tong L M, Wang H Q, Liu W T, Bao J M, Shen R 2014 Nano Lett. 14 955Google Scholar
[8] Martinez A, Fuse K, Yamashita S J 2011 Appl. Phys. Lett. 99 121107Google Scholar
[9] Williams G M, Seger B, Kamat P 2008 ACS Nano 2 1487Google Scholar
[10] Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406Google Scholar
[11] Sun J Y, Zhang Y F, Liu Z F 2016 ChemNanoMat 2 212Google Scholar
[12] Guo W, Jing F, Xiao J, Zhou C, Lin Y W, Wang S 2016 Adv. Mater. 28 3152Google Scholar
[13] Xu X Z, Zhang Z H, Qiu L, Zhuang J N, Zhang L, Wang H, Liao C N, Song H D, Qiao R X, Gao P, Hu Z H, Liao L, Liao Z M, Yu D P, Wang E G, Ding F, Peng H L, Liu K H 2016 Nat. Nanotechnol. 11 930Google Scholar
[14] Zhou F, Jin X F, Hao R, Zhang X M, Chi H, Zheng S L 2016 J. Opt. 45 337Google Scholar
[15] Chen J H, Liang Z H, Yuan L R, Li C, Chen M R, Xia Y D, Zhang X J, Xu F, Lu Y Q 2017 Nanoscale 9 3424Google Scholar
[16] Yang X C, Lu Y, Liu B L, Yao J Q 2016 Plasmonics 12 489
[17] Chen K, Zhou X, Cheng X, Qiao R X, Cheng Y, Liu C, Xie Y D, Yu W T, Yao F R, Sun Z P, Wang F, Liu K H, Liu Z F 2019 Nat. Photonics 13 754Google Scholar
[18] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 物理学报 61 234302Google Scholar
Zhang Q H, Hang J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 234302Google Scholar
[19] 吴娟霞, 徐华, 张锦 2014 化学学报 72 301Google Scholar
Wu J X, Xu H, Zhang J 2014 Acta Chim. Sin. 72 301Google Scholar
[20] Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51Google Scholar
[21] Lazzeri M, Attaccalite C, Wirtz L, Mauri F 2008 Phys. Rev. B 78 081406Google Scholar
-
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen H X, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar
[3] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2012 ACS Nano 7 791
[4] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar
[5] Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273Google Scholar
[6] Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G, Tian J G 2014 Opt. Express 22 10239Google Scholar
[7] Li W, Chen B G, Meng C, Fang W, Xiao Y, Li X Y, Hu Z F, Xu Y X, Tong L M, Wang H Q, Liu W T, Bao J M, Shen R 2014 Nano Lett. 14 955Google Scholar
[8] Martinez A, Fuse K, Yamashita S J 2011 Appl. Phys. Lett. 99 121107Google Scholar
[9] Williams G M, Seger B, Kamat P 2008 ACS Nano 2 1487Google Scholar
[10] Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406Google Scholar
[11] Sun J Y, Zhang Y F, Liu Z F 2016 ChemNanoMat 2 212Google Scholar
[12] Guo W, Jing F, Xiao J, Zhou C, Lin Y W, Wang S 2016 Adv. Mater. 28 3152Google Scholar
[13] Xu X Z, Zhang Z H, Qiu L, Zhuang J N, Zhang L, Wang H, Liao C N, Song H D, Qiao R X, Gao P, Hu Z H, Liao L, Liao Z M, Yu D P, Wang E G, Ding F, Peng H L, Liu K H 2016 Nat. Nanotechnol. 11 930Google Scholar
[14] Zhou F, Jin X F, Hao R, Zhang X M, Chi H, Zheng S L 2016 J. Opt. 45 337Google Scholar
[15] Chen J H, Liang Z H, Yuan L R, Li C, Chen M R, Xia Y D, Zhang X J, Xu F, Lu Y Q 2017 Nanoscale 9 3424Google Scholar
[16] Yang X C, Lu Y, Liu B L, Yao J Q 2016 Plasmonics 12 489
[17] Chen K, Zhou X, Cheng X, Qiao R X, Cheng Y, Liu C, Xie Y D, Yu W T, Yao F R, Sun Z P, Wang F, Liu K H, Liu Z F 2019 Nat. Photonics 13 754Google Scholar
[18] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 物理学报 61 234302Google Scholar
Zhang Q H, Hang J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 234302Google Scholar
[19] 吴娟霞, 徐华, 张锦 2014 化学学报 72 301Google Scholar
Wu J X, Xu H, Zhang J 2014 Acta Chim. Sin. 72 301Google Scholar
[20] Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51Google Scholar
[21] Lazzeri M, Attaccalite C, Wirtz L, Mauri F 2008 Phys. Rev. B 78 081406Google Scholar
Catalog
Metrics
- Abstract views: 7403
- PDF Downloads: 118
- Cited By: 0