搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学气相沉积法精准制备二维异质结: 现状与展望

郝玉龙 彭奥林 张世伟 陆雪媚 周洁 郝国林

引用本文:
Citation:

化学气相沉积法精准制备二维异质结: 现状与展望

郝玉龙, 彭奥林, 张世伟, 陆雪媚, 周洁, 郝国林
cstr: 32037.14.aps.74.20251305

Precise preparation of two-dimensional heterostructures via chemical vapor deposition: Current status and future prospects

HAO Yulong, PENG Aolin, ZHANG Shiwei, LU Xuemei, ZHOU Jie, HAO Guolin
cstr: 32037.14.aps.74.20251305
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 二维(two-dimensional, 2D)异质结因其能整合不同组分的材料并产生新颖物理现象, 已成为构筑下一代光电子与微电子器件的理想平台. 化学气相沉积(chemical vapor deposition, CVD)技术是实现其大面积、高质量、可控制备的关键途径. 本综述系统梳理了CVD法制备2D异质结的最新进展, 重点阐述了通过前驱体设计、温度场调控、气体诱导及衬底工程四大核心策略, 在精准调控异质结结构(垂直/横向)、界面、组分及结晶质量方面的机理与成果. 目前该技术仍面临较大挑战, 未来通过融合原位表征、多尺度模拟与人工智能优化, 有望实现从“经验试错”到“精准设计”的跨越, 推动2D异质结在量子计算、柔性电子等前沿领域的实际应用.
    This review systematically summarizes recent advances in the chemical vapor deposition (CVD)-based synthesis of two-dimensional (2D) heterostructures, which have emerged as an ideal platform for next-generation optoelectronic and microelectronic devices due to their ability to integrate diverse material components and induce novel physical phenomena. The review begins by introducing the classification of 2D heterostructures, such as vertical (VHS), lateral (LHS), and hybrid heterostructures (HHS). We further highlight the unique advantages of CVD as a key route for achieving large-area, high-quality, and controllable preparation, thereby effectively avoiding interface contamination and issues such as interfacial states and Fermi-level pinning caused by lattice mismatch in traditional semiconductor heterostructures.We focus on four core strategies for precise growth control: precursor design, temperature field modulation, vapor composition control, and substrate engineering. In the precursor design, by constructing core-shell structures, introducing auxiliary agents, or modulating precursor proportions and physical forms, the sequential supply and reaction pathways of different components can be precisely regulated to guide oriented growth and suppress alloy formation. In temperature field modulation, utilizing differences in the growth windows between various materials and precisely controlling heating rates, temperature uniformity, and gradients can achieve selective growth modes (lateral or vertical), effective suppression of alloying, and protection of pre-deposited layers. In vapor composition control, by switching carrier gas atmospheres, the nucleation and growth of specific materials can be selectively initiated or halted, providing a one-pot strategy for fabricating multi-junction lateral heterostructures and superlattices with atomically sharp interfaces. In substrate engineering, the surface energy, lattice matching, catalytic activity, and pretreatment processes of different substrates are used to actively guide nucleation sites, growth modes, and crystalline quality.Although significant progress has been made in the CVD synthesis of various 2D heterostructures, such as MX2/MY2, graphene/h-BN, and mixed-dimensional heterojunctions, considerable challenges remain in achieving large-area uniformity, reproducible processes, precise control of complex heterostructures (e.g., multi-interface, moiré superlattices, and patterned growth), and compatibility with current semiconductor technology. Future development should focus on integrating in situ characterization, multi-scale simulations, and artificial intelligence-assisted optimization to facilitate a transition from empirical trial-and-error to precision design. The introduction of novel growth techniques, such as laser-induced or microwave-assisted CVD, roll-to-roll processes, and substrate interface engineering, is expected to accelerate the practical application of 2D heterostructures in cutting-edge fields such as quantum computing and flexible electronics.
      通信作者: 郝国林, guolinhao@xtu.edu.cn
    • 基金项目: 松山湖材料实验室开放课题(批准号: 2023SLABFK08)、国家自然科学基金面上项目(批准号: 11974301)、湖南省自然科学基金青年学生项目(批准号: 2025JJ60881)、湖南省研究生科研创新项目(批准号: CX20250951)和湘潭大学研究生科研创新项目(批准号: XDCX2024Y198)资助的课题.
      Corresponding author: HAO Guolin, guolinhao@xtu.edu.cn
    • Funds: Project supported by the Open Program of Songshan Lake Materials Laboratory (Grant No. 2023SLABFK08), the General Program of the National Natural Science Foundation of China (Grant No. 11974301), the Natural Science Foundation Program for Young Students of Hunan Province, China (Grant No. 2025JJ60881), the Postgraduate Research Innovation Program of Hunan Province, China (Grant No. CX20250951), and the Postgraduate Scientific Research Innovation Program of Xiangtan University, China (Grant No. XDCX2024Y198).
    [1]

    Sheng C M, Dong X Q, Zhu Y X, Wang X Y, Chen X Y, Xia Y, Xu Z H, Zhou P, Wan J, Bao W Z 2023 Adv. Funct. Mater. 33 2304778Google Scholar

    [2]

    Huang X H, Liu C S, Zhou P 2022 npj 2D Mater. Appl. 6 51Google Scholar

    [3]

    Yin L, Cheng R Q, Ding J H, Jiang J, Hou Y T, Feng X Q, Wen Y, He J 2024 ACS Nano 18 7739Google Scholar

    [4]

    Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W, Ahn J R 2018 Science 361 782Google Scholar

    [5]

    Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804Google Scholar

    [6]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [7]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [8]

    Papageorgiou D G, Kinloch I A, Young R J 2017 Prog. Mater. Sci. 90 75Google Scholar

    [9]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [10]

    Dutta T, Yadav N, Wu Y, Cheng G J, Liang X, Ramakrishna S, Sbai A, Gupta R, Mondal A, Hongyu Z, Yadav A 2024 Nano Mater. Sci. 6 1Google Scholar

    [11]

    Xie Z X, Zhao T X, Yu X C, Wang J J 2024 Small 20 2311621Google Scholar

    [12]

    Guo B, Xiao Q L, Wang S H, Zhang H 2019 Laser Photonics Rev. 13 1800327Google Scholar

    [13]

    Dai C Y, He P, Luo L X, Zhan P X, Guan B, Zheng J 2023 Sci. China Mater. 66 859Google Scholar

    [14]

    肖寒, 弭孟娟, 王以林 2021 物理学报 70 127503Google Scholar

    Xiao H, Mi M J, Wang Y L 2021 Acta Phys. Sin. 70 127503Google Scholar

    [15]

    Qiao S X, Han Y L, Jiao N, Zheng M M, Lu H Y, Zhang P 2025 Phys. Rev. B 111 L041404Google Scholar

    [16]

    Lee M H, Wu W 2022 Adv. Mater. Technol. 7 2101623Google Scholar

    [17]

    Kaul A B 2014 J. Mater. Res. 29 348Google Scholar

    [18]

    Ma H X, Xing Y H, Cui B Y, Han J, Wang B H, Zeng Z M 2022 Chin. Phys. B 31 108502Google Scholar

    [19]

    Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [20]

    Tan T, Jiang X T, Wang C, Yao B C, Zhang H 2020 Adv. Sci. 7 2000058Google Scholar

    [21]

    Das S, Kim M, Lee J W, Choi W 2014 Crit. Rev. Solid State Mater. Sci. 39 231Google Scholar

    [22]

    Liu A H, Zhang X W, Liu Z Y, Li Y N, Peng X Y, Li X, Qin Y, Hu C, Qiu Y Q, Jiang H, Wang Y, Li Y F, Tang J, Liu J, Guo H, Deng T, Peng S G, Tian H, Ren T L 2024 Nano-Micro Lett. 16 119Google Scholar

    [23]

    Aftab S, Hussain S, Al-Kahtani A A 2023 Adv. Mater. 35 2301280Google Scholar

    [24]

    Hoang A T, Hu L, Katiyar A K, Ahn J H 2022 Matter 5 4116Google Scholar

    [25]

    Wang S K, Hung N T, Sun M L 2025 Molecules 30 741Google Scholar

    [26]

    Arora H, Fekri Z, Vekariya Y N, Chava P, Watanabe K, Taniguchi T, Helm M, Erbe A 2023 Adv. Mater. Technol. 8 2200546Google Scholar

    [27]

    Xiao Z C, Guo R J, Zhang C M, Liu Y Y 2024 ACS Nano 18 8511Google Scholar

    [28]

    Chen Y, Lu D L, Kong L G, Tao Q Y, Ma L K, Liu L K, Lu Z Y, Li Z, W Wu R X, Duan X D, Liao L, Liu Y 2023 ACS Nano 17 14954Google Scholar

    [29]

    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lægsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekær L 2010 Nat. Mater. 9 315Google Scholar

    [30]

    Sahu S, Rout G C 2017 Int. Nano Lett. 7 81Google Scholar

    [31]

    Liu W J, Yu Y Y, Peng M, Zheng Z H, Jian P C, Wang Y, Zou Y C, Zhao Y M, Wang F, Wu F, Chen C Q, Dai J N, Wang P, Hu W D 2023 InfoMat 5 e12470Google Scholar

    [32]

    Wang J W, Li Z Q, Chen H Y, Deng G W, Niu X B 2019 Nano-Micro Lett. 11 48Google Scholar

    [33]

    Zhang S H, Liu H, Zhang F, Zheng X M, Zhang X Z, Zhang B H, Zhang T, Ao Z K, Zhang X Y, Lan X, Yang X D, Zhong M Z, Li J, Li B, Ma H F, Duan X D, He J, Zhang Z W 2024 ACS Nano 18 30321Google Scholar

    [34]

    Chen K, Wan X, Xu J B 2017 Adv. Funct. Mater. 27 1603884Google Scholar

    [35]

    Hu W, Yang J L 2017 J. Mater. Chem. C 5 12289Google Scholar

    [36]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [37]

    Zhou X, Hu X Z, Yu J, Liu S Y, Shu Z W, Zhang Q, Li H Q, Ma Y, Xu H, Zhai T Y 2023 Adv. Funct. Mater. 33 2302474Google Scholar

    [38]

    Yao J D, Yang G W 2022 J. Appl. Phys. 131 161101Google Scholar

    [39]

    Hao Y L, Zhang S W, Fan C, Liu J, Hao S J, Lu X M, Zhou J, Qiu M C, Li J, Hao G L 2025 Appl. Phys. Lett. 126 031904Google Scholar

    [40]

    Liang S J, Cheng B, Cui X, Miao F 2020 Adv. Mater. 32 1903800Google Scholar

    [41]

    Chakraborty S K, Kundu B, Nayak B, Dash S P, Sahoo P K 2022 iScience 25 103942Google Scholar

    [42]

    Zhu Y T, Wu X L 2023 Prog. Mater. Sci. 131 101019Google Scholar

    [43]

    Li Z Q, Wang Q B, Xu Q Q, Han Z H, Cheng T, Yin J Z 2024 CrystEngComm 26 3694Google Scholar

    [44]

    Chen D X, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z H, Zhang C W, Cui Y T, Shi S F 2022 Nat. Phys. 18 1171Google Scholar

    [45]

    Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A, Conti G, Conlon C, Palsson G K, Martin M C, Minor A M, Fadley C S, Yablonovitch E, Maboudian R, Javey A 2014 Proc. Natl. Acad. Sci. 111 6198Google Scholar

    [46]

    Liang Z F, Zhang J S, Hua C Q, Wang Y, Song F 2024 Phys. Rev. B 110 085110Google Scholar

    [47]

    Guo D L, Fu Q, Zhang G T, Cui Y Y, Liu K Y, Zhang X Y, Yu Y L, Zhao W W, Zheng T, Long H R, Zeng P Y, Han X, Zhou J, Xin K Y, Gu T C, Wang W H, Zhang Q, Hu Z L, Zhang J L, Chen Q, Wei Z M, Zhao B, Lu J P, Ni Z H 2024 Adv. Mater. 36 2400060Google Scholar

    [48]

    高琦璇, 钟浩源, 周树云 2022 物理 51 310Google Scholar

    Gao Q X, Zhong H Y, Zhou S Y 2022 Physics 51 310Google Scholar

    [49]

    Miao S G, Wang T M, Huang X, Chen D X, Lian Z, Wang C, Blei M, Taniguchi T, Watanabe K, Tongay S, Wang Z H, Xiao D, Cui Y T, Shi S F 2021 Nat. Commun. 12 3608Google Scholar

    [50]

    Ren W J, Lu S, Yu C Q, He J, Zhang Z W, Chen J, Zhang G 2023 Appl. Phys. Rev. 10 041404Google Scholar

    [51]

    Xiao Y, Liu J L, Fu L 2020 Matter 3 1142Google Scholar

    [52]

    Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2023 Nature 615 231Google Scholar

    [53]

    Liu S B, Tian C K, Fang Y Q, Rong H T, Cao L, Wei X J, Cui H, Chen M T, Chen D, Song Y J, Cui J, Li J K, Guan S Y, Jia S, Chen C Y, He W Y, Huang F Q, Jiang Y H, Mao J H, Xie X C, Law K T, Chen J H 2024 Nat. Commun. 15 7569Google Scholar

    [54]

    Nie J H, Xie T, Chen G, Zhang W H, Fu Y S 2023 Nano Lett. 23 8370Google Scholar

    [55]

    Kezilebieke S, Huda M N, Vaňo V, Aapro M, Ganguli S C, Silveira O J, Głodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424Google Scholar

    [56]

    Tilak N, Altvater M, Hung S H, Won C J, Li G, Kaleem T, Cheong S W, Chung C H, Jeng H T, Andrei E Y 2024 Nat. Commun. 15 8056Google Scholar

    [57]

    Feng R F, Zhang Y, Li J H, Li Q, Bao C H, Zhang H Y, Chen W Y, Tang X, Yaegashi K, Sugawara K, Sato T, Duan W H, Yu P, Zhou S Y 2025 Nat. Commun. 16 2667Google Scholar

    [58]

    Zhang W L, Wang J, Zhang T T, Shao B, Zuo X 2025 J. Materiomics 11 100986Google Scholar

    [59]

    Zhang Y L, Zhao W M, Zhang C C, Wang P, Wang T, Li S C, Xing Z W, Xing D Y 2022 Adv. Mater. 34 2107799Google Scholar

    [60]

    He J D, Ding Y F, Teng B L, Dong P, Li Y F, Zhang Y W, Wu Y S, Wang J H, Zhou X, Wang Z, Li J 2021 Prog. Phys. 41 113Google Scholar

    [61]

    Xu R H, Song L Y, Li X H, Du Z, Xiao C X, Sun H, Peng Y N, Huang L, Jiang Y L, Li Y N, Li Y H, He J, Shi J P 2025 ACS Nano 19 25870Google Scholar

    [62]

    Jadwiszczak J, Sherman J, Lynall D, Liu Y, Penkov B, Young E, Keneipp R, Drndić M, Hone J C, Shepard K L 2022 ACS Nano 16 1639Google Scholar

    [63]

    Liu B L, Ma Y Q, Zhang A Y, Chen L, Abbas A N, Liu Y H, Shen C F, Wan H C, Zhou C W 2016 ACS Nano 10 5153Google Scholar

    [64]

    Lim D U, Jo S B, Kang J, Cho J H 2021 Adv. Mater. 33 2101243Google Scholar

    [65]

    Shao Y, Pala M, Tang H, Wang B, Li J, Esseni D, del Alamo J A 2025 Nat. Electron. 8 157Google Scholar

    [66]

    Li J, Ding Y, Wei Zhang D, Zhou P 2019 Acta Phys. Chim. Sin. 35 1058Google Scholar

    [67]

    Luo J Y, Selopal G S, Tong X, Wang Z M 2024 Electron 2 e30Google Scholar

    [68]

    Zhu Y F, Liu R Z, Yi A L, Wang X D, Qin Y H, Zhao Z H, Zhao J Y, Chen B W, Zhang X Q, Song S N, Huo Y H, Ou X, Zhang J X 2025 Light: Sci. Appl. 14 86Google Scholar

    [69]

    Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, Lü Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254Google Scholar

    [70]

    Pezeshki A, Shokouh S H H, Nazari T, Oh K, Im S 2016 Adv. Mater. 28 3216Google Scholar

    [71]

    Fan S D, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2D Mater. 7 022005Google Scholar

    [72]

    Ye K, Liu L X, Liu Y J, Nie A M, Zhai K, Xiang J Y, Wang B C, Wen F S, Mu C P, Zhao Z S, Gong Y J, Liu Z Y, Tian Y J 2019 Adv. Opt. Mater. 7 1900815Google Scholar

    [73]

    Vikraman D, Hussain S, Akbar K, Truong L, Kathalingam A, Chun S H, Jung J, Park H J, Kim H S 2018 ACS Sustainable Chem. Eng. 6 8400Google Scholar

    [74]

    Cui Y, Li B, Li J B, Wei Z M 2017 Sci. China: Phys. Mech. Astron. 61 016801Google Scholar

    [75]

    Zhang Z P, Ji X J, Shi J P, Zhou X B, Zhang S, Hou Y, Qi Y, Fang Q Y, Ji Q Q, Zhang Y, Hong M, Yang P F, Liu X F, Zhang Q, Liao L, Jin C H, Liu Z F, Zhang Y F 2017 ACS Nano 11 4328Google Scholar

    [76]

    Tian B, Li J Z, Chen M G, Dong H C, Zhang X X 2022 Adv. Sci. 9 2201324Google Scholar

    [77]

    Zhang T, Fu L 2018 Chem 4 671Google Scholar

    [78]

    Liang J Y, Zhu X L, Chen M X, Duan X D, Li D, Pan A L 2022 Acc. Mater. Res. 3 999Google Scholar

    [79]

    Li M Y, Chen C H, Shi Y, Li L J 2016 Mater. Today 19 322Google Scholar

    [80]

    Liao M Z, Nicolini P, Du L H, Yuan J H, Wang S P, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, Gu L, Claerbout V E P, Silva A, Kramer D, Polcar T, Yang R, Shi D X, Zhang G Y 2022 Nat. Mater. 21 47Google Scholar

    [81]

    Jiang J F, Meng F Q, Cheng Q L, Wang A Z, Chen Y K, Qiao J, Pang J B, Xu W D, Ji H, Zhang Y, Zhang Q H, Wang S P, Feng X J, Gu L, Liu H, Han L 2020 Small Methods 4 2000238Google Scholar

    [82]

    Jiang X, Chen F, Zhao S C, Su W T 2021 CrystEngComm 23 8239Google Scholar

    [83]

    Liu X, Deng C Y, Wei H, Fang M K, Yan B, Zhu T, Luo S F, Peng G, Cai W W, Long M S, Zhang X A 2025 Adv. Funct. Mater. 35 2423102Google Scholar

    [84]

    Wan X, Xu S J, Gao M L, Huang T H, Duan Y Y, Zhan R Z, Chen K, Gu X F, Xie W, Xu J G 2022 ACS Appl. Nano Mater. 5 15775Google Scholar

    [85]

    Sheng M Y, Chang X, Mao X J, Gao Y, Xuan X Y, Xie H F, Mu H C, Niu Y P, Gong S Q, Qian M 2024 Adv. Electron. Mater. 10 2300842Google Scholar

    [86]

    Long Y Y, Wang X, Tan W, Li B W, Li J D, Deng W, Li X M, Guo W L, Yin J 2024 Nano Lett. 24 7572Google Scholar

    [87]

    Guo H J, Garro-Hernandorena A, Martínez-Galera A J, Gómez-Rodríguez J M 2023 Small 19 2207217Google Scholar

    [88]

    Jariwala D, Marks T J, Hersam M C 2017 Nat. Mater. 16 170Google Scholar

    [89]

    Liu Y, Weiss N O, Duan X L, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 16042Google Scholar

    [90]

    Hao G L, Xiao J B, Hao Y L, Zhou G L, Zhu H, Gao H, Xu Z Q, Zhao Z K, Miao L L, Li J, Sun H T, Zhao C J 2023 Mater. Today Phys. 34 101069Google Scholar

    [91]

    Ma X R, Wang K Y, Fan C, Li X B, Hao Y L, Zhou J, Lu X M, Shu T, Miao L L, Li J, Hao G L 2025 Adv. Opt. Mater. 13 2402434Google Scholar

    [92]

    Li H N, Li Y, Aljarb A, Shi Y M, Li L J 2018 Chem. Rev. 118 6134Google Scholar

    [93]

    Wu W H, Zhang Q, Zhou X, Li L, Su J W, Wang F K, Zhai T Y 2018 Nano Energy 51 45Google Scholar

    [94]

    Chen K, Wan X, Wen J X, Xie W G, Kang Z W, Zeng X L, Chen H J, Xu J B 2015 ACS Nano 9 9868Google Scholar

    [95]

    Chen K, Wan X, Xie W G, Wen J X, Kang Z W, Zeng X L, Chen H J, Xu J B 2015 Adv. Mater. 27 6431Google Scholar

    [96]

    Li M Y, Pu J, Huang J K, Miyauchi Y, Matsuda K, Takenobu T, Li L J 2018 Adv. Funct. Mater. 28 1706860Google Scholar

    [97]

    Chen F, Wang L, Ji X H, Zhang Q Y 2017 ACS Appl. Mater. Interfaces 9 30821Google Scholar

    [98]

    Liu S H, Qin K, Yang J S, Hu T, Luo H, Wu J S, Cui Z, Li T T, Ding F, Wang X R, Li Y M, Zhai T Y 2025 Natl. Sci. Rev. 12 nwaf119Google Scholar

    [99]

    Wang Z, Xie Y, Wang H L, Wu R X, Nan T, Zhan Y, Sun J, Jiang T, Zhao Y, Lei Y, Yang M, Wang W D, Zhu Q, Ma X H, Hao Y 2017 Nanotechnology 28 325602Google Scholar

    [100]

    Yoo Y, Degregorio Z P, Johns J E 2015 J. Am. Chem. Soc. 137 14281Google Scholar

    [101]

    Sharma A, Mahlouji R, Wu L, Verheijen M A, Vandalon V, Balasubramanyam S, Hofmann J P, Kessels W M M, Bol A A 2020 Nanotechnology 31 255603Google Scholar

    [102]

    Zhang Y, Yao Y Y, Sendeku M G, Yin L, Zhan X Y, Wang F, Wang Z X, He J 2019 Adv. Mater. 31 1901694Google Scholar

    [103]

    Xue Y Z, Zhang Y P, Liu Y, Liu H T, Song J C, Sophia J, Liu J Y, Xu Z Q, Xu Q Y, Wang Z Y, Zheng J L, Liu Y Q, Li S J, Bao Q L 2016 ACS Nano 10 573Google Scholar

    [104]

    Zhang X M, Huangfu L Y, Gu Z J, Xiao S Q, Zhou J D, Nan H Y, Gu X F, Ostrikov K 2021 Small 17 2007312Google Scholar

    [105]

    Gong Y J, Lei S D, Ye G L, Li B, He Y M, Keyshar K, Zhang X, Wang Q Z, Lou J, Liu Z, Vajtai R, Zhou W, Ajayan P M 2015 Nano Lett. 15 6135Google Scholar

    [106]

    Chen H L, Wen X W, Zhang J, Wu T M, Gong Y J, Zhang X, Yuan J T, Yi C Y, Lou J, Ajayan P M, Zhuang W, Zhang G Y, Zheng J R 2016 Nat. Commun. 7 12512Google Scholar

    [107]

    Chen F, Wang Y L, Su W T, Ding S, Fu L 2019 J. Phys. Chem. C 123 30519Google Scholar

    [108]

    Zhang X Q, Lin C H, Tseng Y W, Huang K H, Lee Y H 2015 Nano Lett. 15 410Google Scholar

    [109]

    Vashishtha P, Kofler C, Verma A K, et al. 2025 Adv. Funct. Mater. e12962Google Scholar

    [110]

    Chen T, Hao G L, Kou L Z, Wang C, Zhong J X 2018 Nanotechnology 29 484003Google Scholar

    [111]

    Trivedi D B, Turgut G, Qin Y, et al. 2020 Adv. Mater. 32 2006320Google Scholar

    [112]

    Yang H H, Gao F, Dai M J, Jia D C, Zhou Y, Hu P A 2017 J. Semicond. 38 031004Google Scholar

    [113]

    Xu Z W, Ning C C, Yang Q, Jin Y, Liu F L, Chen X K, Gong X N, Hu B S 2025 Carbon 240 120377Google Scholar

    [114]

    Shim G W, Yoo K, Seo S B, Shin J, Jung D Y, Kang I S, Ahn C W, Cho B J, Choi S Y 2014 ACS Nano 8 6655Google Scholar

    [115]

    Zhou X H, Liu M Y, Xue X D, Liu S, Yu G 2025 Adv. Mater. Technol. 10 2400901Google Scholar

    [116]

    Kim S, Kim Y C, Choi Y J, Woo H J, Song Y J, Kang M S, Lee C, Cho J H 2019 ACS Appl. Mater. Interfaces 11 35444Google Scholar

    [117]

    Wang M, Jang S K, Jang W J, Kim M, Park S Y, Kim S W, Kahng S J, Choi J Y, Ruoff R S, Song Y J, Lee S 2013 Adv. Mater. 25 2746Google Scholar

    [118]

    Geng D C, Dong J C, Kee Ang L, Ding F, Yang H Y 2019 NPG Asia Mater. 11 56Google Scholar

    [119]

    Mishra N, Miseikis V, Convertino D, Gemmi M, Piazza V, Coletti C 2016 Carbon 96 497Google Scholar

    [120]

    Zhang C H, Zhao S L, Jin C H, Koh A L, Zhou Y, Xu W G, Li Q C, Xiong Q H, Peng H L, Liu Z F 2015 Nat. Commun. 6 6519Google Scholar

    [121]

    Song X J, Sun J Y, Qi Y, Gao T, Zhang Y F, Liu Z F 2016 Adv. Energy Mater. 6 1600541Google Scholar

    [122]

    Shin H C, Jang Y, Kim T H, Lee J H, Oh D H, Ahn S J, Lee J H, Moon Y, Park J H, Yoo S J, Park C Y, Whang D, Yang C W, Ahn J R 2015 J. Am. Chem. Soc. 137 6897Google Scholar

    [123]

    Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P, Gu G 2014 Science 343 163Google Scholar

    [124]

    Yang Y, Fu Q, Li H B, Wei M M, Xiao J P, Wei W, Bao X H 2015 ACS Nano 9 11589Google Scholar

    [125]

    Li J, Yang X D, Liu Y, Huang B L, Wu R X, Zhang Z W, Zhao B, Ma H F, Dang W Q, Wei Z, Wang K, Lin Z Y, Yan X X, Sun M Z, Li B, Pan X Q, Luo J, Zhang G Y, Liu Y, Huang Y, Duan X D, Duan X F 2020 Nature 579 368Google Scholar

    [126]

    Wu R X, Tao Q Y, Dang W Q, Liu Y, Li B, Li J, Zhao B, Zhang Z W, Ma H F, Sun G Z, Duan X D, Duan X F 2019 Adv. Funct. Mater. 29 1806611Google Scholar

    [127]

    Liu D Y, Hong J H, Li X B, Zhou X, Jin B, Cui Q N, Chen J P, Feng Q L, Xu C X, Zhai T Y, Suenaga K, Xu H 2020 Adv. Funct. Mater. 30 1910169Google Scholar

    [128]

    Li J X, Chen J R, He Y X, Xiao J Y, Li G Q, Wang W L 2025 Adv. Funct. Mater. 35 2421508Google Scholar

    [129]

    Baidoo J K, Choi S H, Agyapong-Fordjour F O T, Boandoh S, Yun S J, Adofo L A, Ben-Smith A, Kim Y I, Jin J W, Jung M H, Jeong H Y, Kim Y M, Lee Y H, Kim S M, Kim K K 2022 ACS Nano 16 8851Google Scholar

    [130]

    Yan B, Ning B, Zhang G X, Zhou D H, Shi X, Wang C X, Zhao H Q 2022 Adv. Opt. Mater. 10 2102413Google Scholar

    [131]

    Zhou N, Wang R Y, Zhou X, Song H Y, Xiong X, Ding Y, Lü J T, Gan L, Zhai T Y 2018 Small 14 1702731Google Scholar

    [132]

    Zhang Y, Yin L, Chu J W, Shifa T A, Xia J, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2018 Adv. Mater. 30 1803665Google Scholar

    [133]

    Fu Q D, Wang X W, Zhou J D, Xia J, Zeng Q S, Lü D H, Zhu C, Wang X L, Shen Y, Li X M, Hua Y N, Liu F C, Shen Z X, Jin C H, Liu Z 2018 Chem. Mater. 30 4001Google Scholar

    [134]

    Ding Y, Zhou N, Gan L, Yan X X, Wu R Z, Abidi I H, Waleed A, Pan J, Ou X W, Zhang Q C, Zhuang M H, Wang P, Pan X Q, Fan Z Y, Zhai T Y, Luo Z T 2018 Nano Energy 49 200Google Scholar

    [135]

    Zhai X K, Xu X, Peng J B, Jing F L, Zhang Q L, Liu H J, Hu Z G 2020 ACS Appl. Mater. Interfaces 12 24093Google Scholar

    [136]

    Zhao B, Wan Z, Liu Y, Xu J Q, Yang X D, Shen D Y, Zhang Z C, Guo C H, Qian Q, Li J, Wu R X, Lin Z Y, Yan X X, Li B L, Zhang Z W, Ma H F, Li B, Chen X, Qiao Y, Shakir I, Almutairi Z, Wei F, Zhang Y, Pan X Q, Huang Y, Ping Y, Duan X D, Duan X F 2021 Nature 591 385Google Scholar

    [137]

    Li B, Huang L, Zhong M Z, Li Y, Wang Y, Li J B, Wei Z M 2016 Adv. Electron. Mater. 2 1600298Google Scholar

    [138]

    Liu H W, Li D, Ma C, Zhang X H, Sun X X, Zhu C G, Zheng B Y, Zou Z X, Luo Z Y, Zhu X L, Wang X, Pan A L 2019 Nano Energy 59 66Google Scholar

    [139]

    Zhou J D, Kong X H, Sekhar M C, Lin J H, Le Goualher F, Xu R, Wang X W, Chen Y, Zhou Y, Zhu C, Lu W, Liu F C, Tang B J, Guo Z L, Zhu C, Cheng Z H, Yu T, Suenaga K, Sun D, Ji W, Liu Z 2019 ACS Nano 13 10929Google Scholar

    [140]

    Li L, Zhang Q, Li H, Geng D C 2023 Chem. Commun. 59 14636Google Scholar

    [141]

    Yuan J, Sun T, Hu Z X, Yu W Z, Ma W L, Zhang K, Sun B Q, Lau S P, Bao Q L, Lin S H, Li S J 2018 ACS Appl. Mater. Interfaces 10 40614Google Scholar

    [142]

    Shao G L, Yang M Q, Xiang H Y, Luo S, Xue X X, Li H M, Zhang X, Liu S, Zhou Z 2023 Nano Res. 16 1670Google Scholar

    [143]

    Heo H, Sung J H, Ahn J H, Ghahari F, Taniguchi T, Watanabe K, Kim P, Jo M H 2017 Adv. Electron. Mater. 3 1600375Google Scholar

    [144]

    Fang X D, Tian Q Q, Sheng Y, Yang G F, Lu N Y, Wang J, Zhang X M, Zhang Y X, Yan X M, Hua B 2018 Superlattice Microst 123 323Google Scholar

    [145]

    Lee J, Pak S, Lee Y W, Park Y, Jang A R, Hong J, Cho Y, Hou B, Lee S, Jeong H Y, Shin H S, Morris S M, Cha S, Sohn J I, Kim J M 2019 ACS Nano 13 13047Google Scholar

    [146]

    Zhang S W, Hao Y L, Hao S J, Lu X M, Zhou J, Fan C, Liu J, Hao G L 2025 Nanotechnology 36 232004Google Scholar

    [147]

    Zhou G L, Gao H, Li J, He X Y, He Y B, Li Y, Hao G L 2022 Nanotechnology 33 175602Google Scholar

    [148]

    Wang Q, Wang S, Li J Y, Gan Y C, Jin M T, Shi R, Amini A, Wang N, Cheng C 2023 Adv. Sci. 10 2205638Google Scholar

    [149]

    Wang D, Zhang Z W, Huang B L, Zhang H M, Huang Z W, Liu M M, Duan X D 2022 ACS Nano 16 1198Google Scholar

    [150]

    Huang C, Wu S, Sanchez A M, Peters J J P, Beanland R, Ross J S, Rivera P, Yao W, Cobden D H, Xu X 2014 Nat. Mater. 13 1096Google Scholar

    [151]

    Duan X D, Wang C, Shaw J C, Cheng R, Chen Y, Li H L, Wu X P, Tang Y, Zhang Q L, Pan A L, Jiang J H, Yu R Q, Huang Y, Duan X F 2014 Nat. Nanotechnol. 9 1024Google Scholar

    [152]

    Zhang Q, Xiao X, Zhao R Q, Lü D H, Xu G C, Lu Z X, Sun L F, Lin S Z, Gao X, Zhou J, Jin C H, Ding F, Jiao L Y 2015 Angew. Chem. Int. Ed 54 8957Google Scholar

    [153]

    Li F, Feng Y X, Li Z W, et al. 2019 Adv. Mater. 31 1901351Google Scholar

    [154]

    Zhou J D, Tang B J, Lin J H, Lü D H, Shi J, Sun L F, Zeng Q S, Niu L, Liu F C, Wang X W, Liu X F, Suenaga K, Jin C H, Liu Z 2018 Adv. Funct. Mater. 28 1801568Google Scholar

    [155]

    Seok H, Megra Y T, Kanade C K, Cho J, Kanade V K, Kim M, Lee I, Yoo P J, Kim H U, Suk J W, Kim T 2021 ACS Nano 15 707Google Scholar

    [156]

    Chen C, Yang Y, Zhou X, Xu W X, Cui Q N, Lu J B, Jing H M, Tian D, Xu C X, Zhai T Y, Xu H 2021 ACS Appl. Nano Mater. 4 5522Google Scholar

    [157]

    Choudhary N, Park J, Hwang J Y, Chung H S, Dumas K H, Khondaker S I, Choi W, Jung Y 2016 Sci. Rep. 6 25456Google Scholar

    [158]

    Woods J M, Jung Y, Xie Y, Liu W, Liu Y, Wang H, Cha J J 2016 ACS Nano 10 2004Google Scholar

    [159]

    Li W, Qin Q Y, Li X, Huangfu Y, Shen D Y, Liu J L, Li J, Li B, Wu R X, Duan X D 2024 Adv. Mater. 36 2408367Google Scholar

    [160]

    Zou Z X, Liang J W, Zhang X H, Ma C, Xu P, Yang X, Zeng Z X, Sun X X, Zhu C G, Liang D L, Zhuang X J, Li D, Pan A L 2021 ACS Nano 15 10039Google Scholar

    [161]

    Cai Y H, Xu K, Zhu W J 2018 Mater. Res. Express 5 095904Google Scholar

    [162]

    Shi J P, Tong R, Zhou X B, Gong Y, Zhang Z P, Ji Q Q, Zhang Y, Fang Q Y, Gu L, Wang X N, Liu Z F, Zhang Y F 2016 Adv. Mater. 28 10664Google Scholar

    [163]

    Heo H, Sung J H, Jin G, Ahn J H, Kim K, Lee M J, Cha S, Choi H, Jo M H 2015 Adv. Mater. 27 3803Google Scholar

    [164]

    Lin Y C, Ghosh R K, Addou R, Lu N, Eichfeld S M, Zhu H, Li M Y, Peng X, Kim M J, Li L J, Wallace R M, Datta S, Robinson J A 2015 Nat. Commun. 6 7311Google Scholar

    [165]

    Li Z P, Zheng J L, Zhang Y P, Zheng C X, Woon W Y, Chuang M C, Tsai H C, Chen C H, Davis A, Xu Z Q, Lin J, Zhang H, Bao Q L 2017 ACS Appl. Mater. Interfaces 9 34204Google Scholar

    [166]

    Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay Beng K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014 Nat. Mater. 13 1135Google Scholar

    [167]

    Cain J D, Hanson E D, Dravid V P 2018 J. Appl. Phys. 123 204304Google Scholar

    [168]

    Zhang Z W, Chen P, Duan X D, Zang K T, Luo J, Duan X F 2017 Science 357 788Google Scholar

    [169]

    Zhou Z J, Hou F C, Huang X L, Wang G, Fu Z H, Liu W L, Yuan G W, Xi X X, Xu J, Lin J H, Gao L B 2023 Nature 621 499Google Scholar

    [170]

    Sahoo P K, Memaran S, Xin Y, Balicas L, Gutiérrez H R 2018 Nature 553 63Google Scholar

    [171]

    Sahoo P K, Memaran S, Nugera F A, Xin Y, Díaz Márquez T, Lu Z, Zheng W, Zhigadlo N D, Smirnov D, Balicas L, Gutiérrez H R 2019 ACS Nano 13 12372Google Scholar

    [172]

    Zhang Z P, Gong Y, Zou X L, Liu P R, Yang P F, Shi J P, Zhao L Y, Zhang Q, Gu L, Zhang Y F 2019 ACS Nano 13 885Google Scholar

    [173]

    Li X, Lin M W, Lin J, et al. 2014 Sci. Adv. 2 e1501882Google Scholar

    [174]

    Hong Y J, Fukui T 2011 ACS Nano 5 7576Google Scholar

    [175]

    Zhang S, Hao Y, Gao F, Wu X, Hao S, Qiu M, Zheng X, Wei Y, Hao G 2024 2D Mater. 11 015007Google Scholar

    [176]

    Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K, Li L J 2015 Science 349 524Google Scholar

    [177]

    Suenaga K, Ji H G, Lin Y C, Vincent T, Maruyama M, Aji A S, Shiratsuchi Y, Ding D, Kawahara K, Okada S, Panchal V, Kazakova O, Hibino H, Suenaga K, Ago H 2018 ACS Nano 12 10032Google Scholar

    [178]

    Zhang T, Jiang B, Xu Z, Mendes R G, Xiao Y, Chen L F, Fang L W, Gemming T, Chen S L, Rümmeli M H, Fu L 2016 Nat. Commun. 7 13911Google Scholar

    [179]

    Ling X, Lee Y H, Lin Y X, Fang W J, Yu L L, Dresselhaus M S, Kong J 2014 Nano Lett. 14 464Google Scholar

    [180]

    Ling X, Lin Y X, Ma Q, et al. 2016 Adv. Mater. 28 2322Google Scholar

    [181]

    Wang L, Yue Q Y, Pei C J, Fan H C, Dai J, Huang X, Li H, Huang W 2020 Nano Res. 13 959Google Scholar

    [182]

    Duan Z J, Chen T, Shi J W, Li J, Song K, Zhang C, Ding S J, Li B, Wang G, Hu S G, He X Y, He C Y, Xu H, Liu X F, Jin C H, Zhong J X, Hao G L 2020 Sci. Bull. 65 1013Google Scholar

  • 图 1  (a) WO3–x/MoO3–x核壳纳米线及MoS2/WS2 VHS合成的原子结构示意图; (b) WO3–x/MoO3–x核壳纳米线的TEM图像, 其核直径约为100 nm, 壳厚度约为20 nm; (c) WO3–x和MoO3–x界面的HR-TEM图像; (d) CVD生长的MoS2/WS2 VHS OM图像; (e)单独的MoS2/WS2 VHS OM图像; (f) 图(e)中所示VHS的拉曼面扫描图像; (g), (j)单层MoS2, WS2, MoS2/WS2 VHS的拉曼和PL光谱; (h), (i)分别具有1.84 eV (MoS2的A-激子峰)和1.97 eV (WS2的A-激子峰)的MoS2/WS2 VHS PL面扫描图像[152]

    Fig. 1.  (a) Atomic structure schematic of WO3–x/MoO3–x core-shell nanowires and the synthesis of MoS2/WS2 VHS; (b) TEM image of WO3–x/MoO3–x core-shell nanowires, with a core diameter of ~100 nm and shell thickness of ~20 nm; (c) HR-TEM image of the interface between WO3–x and MoO3–x; (d) OM image of the CVD-grown MoS2/WS2 VHS; (e) OM image of an individual MoS2/WS2 VHS; (f) Raman mapping image of the VHS shown in (e); (g), (j) Raman and PL spectra of monolayer MoS2, WS2, and MoS2/WS2 VHS; (h), (i) PL mapping images of the MoS2/WS2 VHS at 1.84 eV (A-exciton peak of MoS2) and 1.97 eV (A-exciton peak of WS2), respectively[152].

    图 2  (a) 磁辅助CVD石英管示意图; (b) 在第1阶段中生长底层MoS2, 再快速冷却和引入Te形成MoTe2/MoS2 VHS; (c) MoTe2/MoS2 VHS的示意性侧视图; (d) MoTe2/MoS2 VHS的OM图像; (e) MoTe2/MoS2 VHS的背散射SEM图像; (f) 图(d)中MoTe2/MoS2 VHS的原子力显微镜AFM表征[134]

    Fig. 2.  (a) Schematic of the magnetic-field-assisted CVD quartz tube; (b) growth of the bottom-layer MoS2 in the first stage, followed by rapid cooling and introduction of Te to form a MoTe2/MoS2 VHS; (c) schematic side view of the MoTe2/MoS2 VHS; (d) OM image of the MoTe2/MoS2 VHS; (e) backscattered SEM image of the MoTe2/MoS2 VHS; (f) AFM characterization of the MoTe2/MoS2 VHS in panel (d)[134].

    图 3  (a1)—(e2) 随着W/Se比例增加, MoS2/WSe2异质结形貌从横向主导、混合模式到垂直主导连续演变的原子结构示意图; (f) 横向生长长度和纵向生长长度随W/Se组成比的变化趋势; (g) 异质结构类型与W前体 (WO3)和Se前体的剂量的关系; (h) 在不同W/Se比下的横向、混合和垂直异质结构的统计; (i) 吸附各种活性团簇W1SeX的横向/垂直MoS2/WSe2异质结构可控生长过程示意图; (j) 不同垂直异质结构的空间分辨的拉曼面扫描图像[153]; (k) 活性团簇在WSe2表面不同位置的结合能; (l) WSe2活性团簇在WSe2表面的扩散行为; (m) WSe2活性团簇在WSe2表面的扩散行为; (n) WSe3活性团簇在WSe2表面的扩散行为; (o) 双层-双层和双层-单层 WS2/WSe2生长过程示意图[149]

    Fig. 3.  (a1)–(e2) Schematic diagrams illustrating the continuous evolution of the MoS2/WSe2 heterostructure morphology, which transitions from being LHS-dominated to VHS-dominated with an increasing W/Se ratio; (f) the evolution trends of lateral and vertical growth length with composition ratio of W/Se; (g) the relation of heterostructure type with the dosage of W precursor (WO3) and Se precursor; (h) the statistics of LHS, HHS, and VHS at different W/Se ratios; (i) schematic view of controllable growth process of MoS2/WSe2 LHS/VHS with the adsorption of various active clusters W1SeX; (j) spatially resolved Raman mapping image of diverse VHS[153]; (k) binding energies of the active clusters on the different positions of the WSe2 surface; (l) diffusion behavior of the WSe2 active cluster on the WSe2 surface; (m) diffusion behavior of the WSe active cluster on the WSe2 surface; (n) diffusion behavior of the WSe3 active cluster on the WSe2 surface; (o) schematic view of the growth process of bilayer-bilayer and bilayer-monolayer WS2/WSe2[149].

    图 4  (a) 通过PECVD在300 ℃下的单步穿透硫化合成MoS2/WS2 VHS的示意图; (b) 随时间相关的等离子体硫化机制的横截面HR-TEM图像; (c) 硫化时间相关条件的拉曼光谱; (d) WS2/MoS2 VHS合成过程的示意图; (e)—(g) 不同金属厚度的穿透H2S等离子体过程, (e) Mo 1 nm/W 2 nm, (f) Mo 2 nm/W 1 nm, (g) Mo 2 nm/W 2 nm[155]; (h) 通过旋涂将Mo溶液前体分散在蓝宝石衬底上的示意图; (i) 通过氢触发一锅法CVD方法合成的MoS2/WS2 LHS的示意图; (j) MoS2/WS2 LHS外延生长过程的原子结构模型[156]

    Fig. 4.  (a) Schematic illustration of one-step through-plane sulfurization via PECVD at 300 ℃ for synthesizing MoS2/WS2 VHS; (b) cross-sectional HR-TEM images revealing the time-dependent plasma-assisted sulfurization mechanism; (c) Raman spectra under varying sulfurization durations; (d) schematic of the synthesis process for WS2/MoS2 VHS; (e)–(g) through-plane H2S plasma process with different metal thicknesses: (e) Mo 1 nm/W 2 nm, (f) Mo 2 nm/W 1 nm, (g) Mo 2 nm/W 2 nm[155]; (h) schematic showing the dispersion of Mo solution precursor on a sapphire substrate via spin-coating; (i) illustration of one-pot CVD synthesis of MoS2/WS2 LHS triggered by hydrogen; (j) atomic structure model of the epitaxial growth process of a MoS2/WS2 LHS[156].

    图 5  (a) 辅助剂复合前驱体CVD工艺示意图; (b)—(f) NH4Cl充足供应时生长的MoS2/WS2 VHS的原子结构、OM、拉曼面扫描和AFM图像; (g)—(k) NH4Cl供应不足时生长的MoS2/WS2 HHS的原子结构图、OM、拉曼面扫描和AFM图像; (i)—(p) 无NH4Cl供应时生长的MoS2/WS2 LHS的原子结构图、OM、拉曼面扫描和AFM图像[159]; (q) 由液态Ga和Ga2Se3粉末的前驱体复合的反应系统以及相应的GaSe/MoS2异质结原子结构; (r)—(u), (v)—(y) 单层MoS2, GaSe/MoS2横向、混合和垂直异质结构的OM和AFM图像[160]

    Fig. 5.  (a) Schematic diagram of the CVD process using an auxiliary-agent-modified precursor; (b)–(f) atomic structure diagram, OM, Raman mapping, and AFM images of MoS2/WS2 VHS grown with sufficient NH4Cl supply; (g)–(k) atomic structure, OM, Raman mapping, and AFM images of MoS2/WS2 HHS grown under insufficient NH4Cl supply; (i)–(p) atomic structure diagram, OM, Raman mapping, and AFM images of MoS2/WS2 LHS obtained in the absence of NH4Cl[159]; (q) reaction system based on a precursor composite of liquid Ga and Ga2Se3 powder, along with the corresponding atomic structure of a GaSe/MoS2 heterostructure; (r)–(u), (v)–(y) OM and AFM images of monolayer MoS2, GaSe/MoS2 LHS, HHS and VHS[160].

    图 6  (a) WS2/MoS2 LHS和VHS的生长系统; (b) WS2/MoS2 LHS的生长示意图; (c) 大面积单层WS2的OM图像; (d) WS2/MoS2 LHS的生长机理图; (e) 单个WS2/MoS2 LHS的OM图像; (f) WS2/MoS2 VHS的生长示意图; (g) 大面积单层MoS2的OM图像; (h) WS2/MoS2 VHS的生长机理图; (i) 单个WS2/MoS2 VHS的OM图像[163]; (j) MoS2/WSe2/EG或WSe2/MoSe2/EG VHS的形成[164]

    Fig. 6.  (a) Growth system for WS2/MoS2 LHS and VHS; (b) schematic illustration of the growth of a WS2/MoS2 LHS; (c) OM image of a large-area monolayer WS2; (d) growth mechanism diagram of the WS2/MoS2 LHS; (e) OM image of an individual WS2/MoS2 LHS; (f) schematic illustration of the growth of a WS2/MoS2 VHS; (g) OM image of a large-area monolayer MoS2; (h) growth mechanism diagram of the WS2/MoS2 VHS; (i) OM image of an individual WS2/MoS2 VHS[163]; (j) formation of MoS2/WSe2/EG or WSe2/MoSe2/EG VHS[164].

    图 7  (a1) 合成WSe2/WS2 LHS的CVD系统示意图; (b1) 第一和第二加热温区温度分布; (c1) WSe2/WS2 LHS的OM图像; (d1) WSe2/WS2 LHS的尺寸和厚度分布; (e1) 拉曼光谱, 其取自WSe2/WS2异质结构的中心和边缘区域; (f1) 中心和边缘处异质结构的PL光谱; (g1), (h1) 异质结中WS2 (g1)和WSe2 $ {E}_{1\mathrm{g}}^{2} $ (h1)振动模式的拉曼面扫描图像; (i1) 异质结构的AFM形貌图像; (j1) 异质结构的相位图像[165]; (a2) 两种异质结构的合成过程示意图; (b2)—(e2) 在850 ℃下合成WS2/MoS2 VHS的示意图、OM和SEM图像, 显示了异质结的特征和高产率; (f2)—(i2) 在650 ℃下生长的WS2/MoS2 LHS的示意图、OM和SEM图像; (h2) WS2和MoS2之间界面的OM图像, 具有增强的颜色对比度, 显示界面处对比度的突变[166]

    Fig. 7.  (a1) Schematic of the CVD system for synthesizing WSe2/WS2 LHS; (b1) temperature profiles of the first and second heating zones; (c1) OM image of the WSe2/WS2 LHS; (d1) size and thickness distribution of the WSe2/WS2 LHS; (e1) Raman spectra acquired from the center and edge regions of the WSe2/WS2 heterostructure; (f1) PL spectra of the heterostructure at the center and edge regions; (g1), (h1) Raman mapping images of the WS2 (g1) and WSe2 $ {E}_{1\mathrm{g}}^{2} $ (h1) vibration modes in the heterostructure; (i1) AFM topographic image of the heterostructure; (j1) phase image of the heterostructure[165]; (a2) schematic illustration of the synthesis process for the two types of heterostructures; (b2)–(e2) schematic diagram, OM, and SEM images of WS2/MoS2 VHS synthesized at 850 ℃, demonstrating the characteristics and high yield of the heterostructures; (f2)–(i2) schematic diagram, OM, and SEM images of WS2/MoS2 LHS grown at 650 ℃; (h2) OM image of the interface between WS2 and MoS2 with enhanced color contrast, showing an abrupt change in contrast at the boundary[166].

    图 8  (a)—(d) 异质结和合金的晶体结构示意图; (e)—(h) MoS2-WS2 VH、RH、HH和合金的OM图像, 分别对应它们的最终生长温度; (i) MoS2-WS2系统TTA图; (j) MoSe2-WSe2系统TTA图[167]

    Fig. 8.  (a)–(d) Schematic diagrams of the crystal structures of heterostructures and alloys; (e)–(h) OM images of MoS2/WS2 VHS, LHS, HHS, and alloys, corresponding to their respective final growth temperatures; (i) TTA diagram of the MoS2/WS2 system; (j) TTA diagram of the MoSe2/WSe2 system[167].

    图 9  (a) 改进逆流CVD系统的示意图; (b1) WS2/WSe2横向异质结的OM图像; (b2) WS2/WSe2横向异质结的拉曼面扫描图像; (b3), (b4) WS2/WSe2横向异质结PL面扫描图像; (c1), (c2) WSe2/MoS2横向异质结构的OM图像和PL面扫描图像; (d1), (d2) WS2/MoS2横向异质结的OM图像和PL面扫描图像; (e1), (e2) WSe2/MoSe2横向异质结的OM图像和PL面扫描图像; (f1), (f2) WS2/MoSe2横向异质结的OM图像和PL面扫描图像; (g1)—(j5) 二维超晶格和多异质结的拉曼和PL面扫描图像[168]

    Fig. 9.  (a) Schematic diagram of the modified counter-flow CVD system; (b1) OM image of the WS2/WSe2 LHS; (b2) Raman mapping image of the WS2/WSe2 LHS; (b3), (b4) PL mapping images of the WS2/WSe2 LHS; (c1), (c2) OM image and PL mapping image of the WSe2/MoS2 LHS; (d1), (d2) OM image and PL mapping image of the WS2/MoS2 LHS; (e1), (e2) OM image and PL mapping image of the WSe2/MoSe2 LHS; (f1), (f2) OM image and PL mapping image of the WS2/MoSe2 LHS; (g1)–(j5) Raman and PL mapping image of two-dimensional superlattices and multi-heterostructures[168].

    图 10  (a) 通过4个两步气相沉积循环的晶圆级四层异质结生长的示意图, 每个循环组合金属膜涂层和TMDC膜; (b) TMDC物质的排列遵循高温到低温策略, 从WS2开始, 因为这需要最高的温度. 石墨烯和hBN被显示用于比较, 这里制造的TMDC薄膜包含2D超导体、调谐超导体和邻近诱导超导体, 颜色条显示了过程中每个部分所需的温度方向[169]

    Fig. 10.  (a) Schematic showing the growth of a wafer-scale four-block vdWSH through four cycles of two-step vapour deposition, each combining a metal film coating and a TMDC film; (b) the arrangement of TMDC species follows the high-to-low temperature strategy, starting with WS2, as that requires the highest temperature, graphene and hBN are shown for comparison, the TMDC films fabricated here contain 2D superconductors, tuned superconductors and proximity-induced superconductors, as indicated, the colour bar shows the direction of temperature required for each part of the process[169].

    图 11  (a) 改进的化学气相沉积系统的示意图, 该系统允许交替切换载气, 载气通过鼓泡器而引入水蒸气, 载气通过放置在石英管入口处的三通阀来选择; (b) 原子球模型, 以横截面和平面视图显示异质结上的材料分布; (c) 三结异质结的OM图像; (d), (e) 五结异质结构的OM图像; (f) 七结异质结构的OM图像; (g), (h) 拉曼(g)和PL (h)光谱在(c)位置的1, 2, 3和4上; (i), (j) WSe2 (1.6 eV, 顶部)和MoSe2 (1.52 eV, 底部)的PL面扫描图以及(d)中异质结构的复合PL图(j); (k), (l) 三结(k)和五结(l)异质结构的归一化PL强度的等高线彩色图[170]

    Fig. 11.  (a) Schematic diagram of the modified chemical vapor deposition system, which allows alternate switching of carrier gas. The carrier gas introduces water vapor via a bubbler and is selected using a three-way valve positioned at the inlet of the quartz tube; (b) atomic ball-and-stick model showing the material distribution in the heterostructure, in both cross-sectional and planar views; (c) OM image of a triple-junction heterostructure; (d), (e) OM images of a five-junction heterostructure; (f) OM image of a seven-junction heterostructure; (g), (h) Raman (g) and PL (h) spectra taken at positions 1, 2, 3, and 4 marked in (c); (i), (j) PL maps of WSe2 (1.6 eV, top)and MoSe2 (1.52 eV, bottom), and the composite PL map (j) of the heterostructure in (d); (k), (l) Contour-colored maps of normalized PL intensity for the triple-junction (k) and five-junction (l) heterostructures[170].

    图 12  (a) 用于合成MoS2/WS2LHS的CVD装置的示意图; (b) MoS2结构、(c) WS2结构和(d)用于多结LHS生长的机制示意图; (e) MoS2/WS2 LHS的OM图像, 以及(f)相应的放大图像和(g)多结异质结, 显示存在MoS2和WS2的明确畴; (h) Kn+/Kn作为温度的函数, 随着温度的升高, 生长从横向生长变为横向和垂直生长的组合[171]

    Fig. 12.  (a) Schematic diagram of the CVD setup used for synthesizing MoS2/WS2 LHS; (b) MoS2 structure, (c) WS2 structure, and (d) mechanism illustration for the growth of multi-junction LHS; (e) OM image of a MoS2/WS2 LHS, along with (f) corresponding magnified view and (g) multi-junction heterostructure, showing distinct domains of MoS2 and WS2; (h) Kn+/Kn– as a function of temperature, indicating a transition from purely lateral growth to a combination of LHS and VHS growth with increasing temperature[171].

    图 13  (a) 通过一锅CVD法合成WS2/ReS2 LHS的示意图; (b) 异质结的氢触发一锅生长过程的原子模型; (c) 在Ar条件下生长的ReS2和(d) 在Ar + H2条件下生长的WS2的SEM图像; (e), (f) 在第1阶段的Ar条件下和在第2阶段的Ar+H2条件下生长的WS2/ReS2 LHS的SEM图像和对应的AFM图像; (g) WS2/ReS2横向异质结的OM图像; (h) WS2/ReS2异质结的拉曼光谱; (i) 在异质结的这3个区域获得的相应PL光谱; (j)—(m) 在418, 355, 161和213 cm–1处获得的拉曼面扫描图像; (n) 由213和418 cm–1处的两个不同的拉曼峰组成的复合拉曼面扫描图像[127]

    Fig. 13.  (a) Schematic illustration of the one-pot CVD synthesis of WS2/ReS2 LHS; (b) atomic model of the hydrogen-triggered one-pot growth process for the heterostructure; (c) SEM image of ReS2 grown under Ar atmosphere; (d) SEM image of WS2 grown under Ar+H2 atmosphere; (e), (f) SEM and corresponding AFM images of WS2/ReS2 LHS grown first under Ar atmosphere and then under Ar+H2 atmosphere; (g) OM image of the WS2/ReS2 LHS; (h) Raman spectrum of the WS2/ReS2 heterostructure; (i) corresponding PL spectra obtained from the three marked regions of the heterostructure; (j)–(m) Raman mapping images acquired at 418, 355, 161, and 213 cm–1; (n) composite Raman mapping image formed by integrating two distinct Raman peaks at 213 and 418 cm–1[127].

    图 14  (a) MoS2/石墨烯面LHS的合成示意图; (b) 在蓝宝石衬底上生长的LHS的CLSM和(c) SEM图像; (d) 当使用SiO2代替蓝宝石作为衬底时获得的MoS2/石墨烯VHS结构的SEM图像[177]

    Fig. 14.  (a) Schematic of the synthesis of a MoS2/graphene LHS; (b) CLSM and (c) SEM images of the LHS grown on a sapphire substrate; (d) SEM image of a MoS2/graphene VHS obtained when SiO2 was used as a substrate instead of sapphire[177].

    图 15  (a) 在Au(111)表面生长ReS2/WS2 异质结的示意图; (b)—(d) 模拟的Re原子(b)和W原子(c)在Au(111)表面以及Re原子在WS2(001)面上的侧视图吸附情况; (e)—(g) 以W箔(e)、Re箔(f)和W-Re合金箔(g)作为支撑基底在Au上生长的示意图[178]

    Fig. 15.  (a) Schematic illustration of the growth process of ReS2/WS2 heterostructures on the Au(111) surface; (b)–(d) side views of the simulated adsorption configurations of Re atoms (b) and W atoms (c) on the Au(111) surface, and of Re atoms on the WS2(001) surface (d); (e)–(g) schematics of growth on Au using W foil (e), Re foil (f), and W-Re alloy foil (g) as support substrates[178].

    图 16  (a) SiO2/Si衬底上的Sb2Te3/Bi2Te3叠层的顺序两步堆叠生长的示意图; (b) SiO2/Si衬底上底层Bi2Te3的生长示意图; (c) SiO2/Si衬底上的Sb2Te3/Bi2Te3 VHS的OM图像和AFM图像; (d) h-BN衬底上的Sb2Te3/Bi2Te3 VHS的生长示意图; (e) h-BN衬底上底层Bi2Te3的生长示意图; (f) h-BN衬底上的Sb2Te3/Bi2Te3 VHS的OM图像和AFM图像[143]

    Fig. 16.  (a) Schematic diagram of the sequential two-step stacking growth of Sb2Te3/Bi2Te3 on SiO2/Si substrate; (b) schematic illustration of the bottom-layer Bi2Te3 growth on SiO2/Si substrate; (c) OM and AFM images of the Sb2Te3/Bi2Te3 VHS on SiO2/Si substrate; (d) schematic diagram of the growth of Sb2Te3/Bi2Te3 VHS on h-BN substrate; (e) schematic illustration of the bottom-layer Bi2Te3 growth on h-BN substrate; (f) OM and AFM images of the Sb2Te3/Bi2Te3 VHS on h-BN substrate[143].

    图 17  (a) CVD装置和平行缝合2D-TMD异质结构的合成过程的示意图; (b), (d), (f)石墨烯/MoS2 (b), WS2/MoS2 (d)和hBN/MoS2 (f)的平行缝合异质结构的示意图; (c), (e), (g)对应于图(b), (d), (f)的光学图像和PL面扫描图像[180]

    Fig. 17.  (a) Schematic of the CVD setup and the synthesis process of laterally stitched 2D-TMD heterostructures; (b), (d), (f) illustrations of laterally stitched heterostructures of graphene/MoS2 (b), WS2/MoS2 (d), and hBN/MoS2 (f); (c), (e), (g) optical images and corresponding PL mapping images of the structures shown in panels (b), (d), and (f), respectively[180].

  • [1]

    Sheng C M, Dong X Q, Zhu Y X, Wang X Y, Chen X Y, Xia Y, Xu Z H, Zhou P, Wan J, Bao W Z 2023 Adv. Funct. Mater. 33 2304778Google Scholar

    [2]

    Huang X H, Liu C S, Zhou P 2022 npj 2D Mater. Appl. 6 51Google Scholar

    [3]

    Yin L, Cheng R Q, Ding J H, Jiang J, Hou Y T, Feng X Q, Wen Y, He J 2024 ACS Nano 18 7739Google Scholar

    [4]

    Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W, Ahn J R 2018 Science 361 782Google Scholar

    [5]

    Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804Google Scholar

    [6]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [7]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [8]

    Papageorgiou D G, Kinloch I A, Young R J 2017 Prog. Mater. Sci. 90 75Google Scholar

    [9]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [10]

    Dutta T, Yadav N, Wu Y, Cheng G J, Liang X, Ramakrishna S, Sbai A, Gupta R, Mondal A, Hongyu Z, Yadav A 2024 Nano Mater. Sci. 6 1Google Scholar

    [11]

    Xie Z X, Zhao T X, Yu X C, Wang J J 2024 Small 20 2311621Google Scholar

    [12]

    Guo B, Xiao Q L, Wang S H, Zhang H 2019 Laser Photonics Rev. 13 1800327Google Scholar

    [13]

    Dai C Y, He P, Luo L X, Zhan P X, Guan B, Zheng J 2023 Sci. China Mater. 66 859Google Scholar

    [14]

    肖寒, 弭孟娟, 王以林 2021 物理学报 70 127503Google Scholar

    Xiao H, Mi M J, Wang Y L 2021 Acta Phys. Sin. 70 127503Google Scholar

    [15]

    Qiao S X, Han Y L, Jiao N, Zheng M M, Lu H Y, Zhang P 2025 Phys. Rev. B 111 L041404Google Scholar

    [16]

    Lee M H, Wu W 2022 Adv. Mater. Technol. 7 2101623Google Scholar

    [17]

    Kaul A B 2014 J. Mater. Res. 29 348Google Scholar

    [18]

    Ma H X, Xing Y H, Cui B Y, Han J, Wang B H, Zeng Z M 2022 Chin. Phys. B 31 108502Google Scholar

    [19]

    Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [20]

    Tan T, Jiang X T, Wang C, Yao B C, Zhang H 2020 Adv. Sci. 7 2000058Google Scholar

    [21]

    Das S, Kim M, Lee J W, Choi W 2014 Crit. Rev. Solid State Mater. Sci. 39 231Google Scholar

    [22]

    Liu A H, Zhang X W, Liu Z Y, Li Y N, Peng X Y, Li X, Qin Y, Hu C, Qiu Y Q, Jiang H, Wang Y, Li Y F, Tang J, Liu J, Guo H, Deng T, Peng S G, Tian H, Ren T L 2024 Nano-Micro Lett. 16 119Google Scholar

    [23]

    Aftab S, Hussain S, Al-Kahtani A A 2023 Adv. Mater. 35 2301280Google Scholar

    [24]

    Hoang A T, Hu L, Katiyar A K, Ahn J H 2022 Matter 5 4116Google Scholar

    [25]

    Wang S K, Hung N T, Sun M L 2025 Molecules 30 741Google Scholar

    [26]

    Arora H, Fekri Z, Vekariya Y N, Chava P, Watanabe K, Taniguchi T, Helm M, Erbe A 2023 Adv. Mater. Technol. 8 2200546Google Scholar

    [27]

    Xiao Z C, Guo R J, Zhang C M, Liu Y Y 2024 ACS Nano 18 8511Google Scholar

    [28]

    Chen Y, Lu D L, Kong L G, Tao Q Y, Ma L K, Liu L K, Lu Z Y, Li Z, W Wu R X, Duan X D, Liao L, Liu Y 2023 ACS Nano 17 14954Google Scholar

    [29]

    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lægsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekær L 2010 Nat. Mater. 9 315Google Scholar

    [30]

    Sahu S, Rout G C 2017 Int. Nano Lett. 7 81Google Scholar

    [31]

    Liu W J, Yu Y Y, Peng M, Zheng Z H, Jian P C, Wang Y, Zou Y C, Zhao Y M, Wang F, Wu F, Chen C Q, Dai J N, Wang P, Hu W D 2023 InfoMat 5 e12470Google Scholar

    [32]

    Wang J W, Li Z Q, Chen H Y, Deng G W, Niu X B 2019 Nano-Micro Lett. 11 48Google Scholar

    [33]

    Zhang S H, Liu H, Zhang F, Zheng X M, Zhang X Z, Zhang B H, Zhang T, Ao Z K, Zhang X Y, Lan X, Yang X D, Zhong M Z, Li J, Li B, Ma H F, Duan X D, He J, Zhang Z W 2024 ACS Nano 18 30321Google Scholar

    [34]

    Chen K, Wan X, Xu J B 2017 Adv. Funct. Mater. 27 1603884Google Scholar

    [35]

    Hu W, Yang J L 2017 J. Mater. Chem. C 5 12289Google Scholar

    [36]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [37]

    Zhou X, Hu X Z, Yu J, Liu S Y, Shu Z W, Zhang Q, Li H Q, Ma Y, Xu H, Zhai T Y 2023 Adv. Funct. Mater. 33 2302474Google Scholar

    [38]

    Yao J D, Yang G W 2022 J. Appl. Phys. 131 161101Google Scholar

    [39]

    Hao Y L, Zhang S W, Fan C, Liu J, Hao S J, Lu X M, Zhou J, Qiu M C, Li J, Hao G L 2025 Appl. Phys. Lett. 126 031904Google Scholar

    [40]

    Liang S J, Cheng B, Cui X, Miao F 2020 Adv. Mater. 32 1903800Google Scholar

    [41]

    Chakraborty S K, Kundu B, Nayak B, Dash S P, Sahoo P K 2022 iScience 25 103942Google Scholar

    [42]

    Zhu Y T, Wu X L 2023 Prog. Mater. Sci. 131 101019Google Scholar

    [43]

    Li Z Q, Wang Q B, Xu Q Q, Han Z H, Cheng T, Yin J Z 2024 CrystEngComm 26 3694Google Scholar

    [44]

    Chen D X, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z H, Zhang C W, Cui Y T, Shi S F 2022 Nat. Phys. 18 1171Google Scholar

    [45]

    Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A, Conti G, Conlon C, Palsson G K, Martin M C, Minor A M, Fadley C S, Yablonovitch E, Maboudian R, Javey A 2014 Proc. Natl. Acad. Sci. 111 6198Google Scholar

    [46]

    Liang Z F, Zhang J S, Hua C Q, Wang Y, Song F 2024 Phys. Rev. B 110 085110Google Scholar

    [47]

    Guo D L, Fu Q, Zhang G T, Cui Y Y, Liu K Y, Zhang X Y, Yu Y L, Zhao W W, Zheng T, Long H R, Zeng P Y, Han X, Zhou J, Xin K Y, Gu T C, Wang W H, Zhang Q, Hu Z L, Zhang J L, Chen Q, Wei Z M, Zhao B, Lu J P, Ni Z H 2024 Adv. Mater. 36 2400060Google Scholar

    [48]

    高琦璇, 钟浩源, 周树云 2022 物理 51 310Google Scholar

    Gao Q X, Zhong H Y, Zhou S Y 2022 Physics 51 310Google Scholar

    [49]

    Miao S G, Wang T M, Huang X, Chen D X, Lian Z, Wang C, Blei M, Taniguchi T, Watanabe K, Tongay S, Wang Z H, Xiao D, Cui Y T, Shi S F 2021 Nat. Commun. 12 3608Google Scholar

    [50]

    Ren W J, Lu S, Yu C Q, He J, Zhang Z W, Chen J, Zhang G 2023 Appl. Phys. Rev. 10 041404Google Scholar

    [51]

    Xiao Y, Liu J L, Fu L 2020 Matter 3 1142Google Scholar

    [52]

    Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2023 Nature 615 231Google Scholar

    [53]

    Liu S B, Tian C K, Fang Y Q, Rong H T, Cao L, Wei X J, Cui H, Chen M T, Chen D, Song Y J, Cui J, Li J K, Guan S Y, Jia S, Chen C Y, He W Y, Huang F Q, Jiang Y H, Mao J H, Xie X C, Law K T, Chen J H 2024 Nat. Commun. 15 7569Google Scholar

    [54]

    Nie J H, Xie T, Chen G, Zhang W H, Fu Y S 2023 Nano Lett. 23 8370Google Scholar

    [55]

    Kezilebieke S, Huda M N, Vaňo V, Aapro M, Ganguli S C, Silveira O J, Głodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424Google Scholar

    [56]

    Tilak N, Altvater M, Hung S H, Won C J, Li G, Kaleem T, Cheong S W, Chung C H, Jeng H T, Andrei E Y 2024 Nat. Commun. 15 8056Google Scholar

    [57]

    Feng R F, Zhang Y, Li J H, Li Q, Bao C H, Zhang H Y, Chen W Y, Tang X, Yaegashi K, Sugawara K, Sato T, Duan W H, Yu P, Zhou S Y 2025 Nat. Commun. 16 2667Google Scholar

    [58]

    Zhang W L, Wang J, Zhang T T, Shao B, Zuo X 2025 J. Materiomics 11 100986Google Scholar

    [59]

    Zhang Y L, Zhao W M, Zhang C C, Wang P, Wang T, Li S C, Xing Z W, Xing D Y 2022 Adv. Mater. 34 2107799Google Scholar

    [60]

    He J D, Ding Y F, Teng B L, Dong P, Li Y F, Zhang Y W, Wu Y S, Wang J H, Zhou X, Wang Z, Li J 2021 Prog. Phys. 41 113Google Scholar

    [61]

    Xu R H, Song L Y, Li X H, Du Z, Xiao C X, Sun H, Peng Y N, Huang L, Jiang Y L, Li Y N, Li Y H, He J, Shi J P 2025 ACS Nano 19 25870Google Scholar

    [62]

    Jadwiszczak J, Sherman J, Lynall D, Liu Y, Penkov B, Young E, Keneipp R, Drndić M, Hone J C, Shepard K L 2022 ACS Nano 16 1639Google Scholar

    [63]

    Liu B L, Ma Y Q, Zhang A Y, Chen L, Abbas A N, Liu Y H, Shen C F, Wan H C, Zhou C W 2016 ACS Nano 10 5153Google Scholar

    [64]

    Lim D U, Jo S B, Kang J, Cho J H 2021 Adv. Mater. 33 2101243Google Scholar

    [65]

    Shao Y, Pala M, Tang H, Wang B, Li J, Esseni D, del Alamo J A 2025 Nat. Electron. 8 157Google Scholar

    [66]

    Li J, Ding Y, Wei Zhang D, Zhou P 2019 Acta Phys. Chim. Sin. 35 1058Google Scholar

    [67]

    Luo J Y, Selopal G S, Tong X, Wang Z M 2024 Electron 2 e30Google Scholar

    [68]

    Zhu Y F, Liu R Z, Yi A L, Wang X D, Qin Y H, Zhao Z H, Zhao J Y, Chen B W, Zhang X Q, Song S N, Huo Y H, Ou X, Zhang J X 2025 Light: Sci. Appl. 14 86Google Scholar

    [69]

    Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, Lü Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254Google Scholar

    [70]

    Pezeshki A, Shokouh S H H, Nazari T, Oh K, Im S 2016 Adv. Mater. 28 3216Google Scholar

    [71]

    Fan S D, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2D Mater. 7 022005Google Scholar

    [72]

    Ye K, Liu L X, Liu Y J, Nie A M, Zhai K, Xiang J Y, Wang B C, Wen F S, Mu C P, Zhao Z S, Gong Y J, Liu Z Y, Tian Y J 2019 Adv. Opt. Mater. 7 1900815Google Scholar

    [73]

    Vikraman D, Hussain S, Akbar K, Truong L, Kathalingam A, Chun S H, Jung J, Park H J, Kim H S 2018 ACS Sustainable Chem. Eng. 6 8400Google Scholar

    [74]

    Cui Y, Li B, Li J B, Wei Z M 2017 Sci. China: Phys. Mech. Astron. 61 016801Google Scholar

    [75]

    Zhang Z P, Ji X J, Shi J P, Zhou X B, Zhang S, Hou Y, Qi Y, Fang Q Y, Ji Q Q, Zhang Y, Hong M, Yang P F, Liu X F, Zhang Q, Liao L, Jin C H, Liu Z F, Zhang Y F 2017 ACS Nano 11 4328Google Scholar

    [76]

    Tian B, Li J Z, Chen M G, Dong H C, Zhang X X 2022 Adv. Sci. 9 2201324Google Scholar

    [77]

    Zhang T, Fu L 2018 Chem 4 671Google Scholar

    [78]

    Liang J Y, Zhu X L, Chen M X, Duan X D, Li D, Pan A L 2022 Acc. Mater. Res. 3 999Google Scholar

    [79]

    Li M Y, Chen C H, Shi Y, Li L J 2016 Mater. Today 19 322Google Scholar

    [80]

    Liao M Z, Nicolini P, Du L H, Yuan J H, Wang S P, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, Gu L, Claerbout V E P, Silva A, Kramer D, Polcar T, Yang R, Shi D X, Zhang G Y 2022 Nat. Mater. 21 47Google Scholar

    [81]

    Jiang J F, Meng F Q, Cheng Q L, Wang A Z, Chen Y K, Qiao J, Pang J B, Xu W D, Ji H, Zhang Y, Zhang Q H, Wang S P, Feng X J, Gu L, Liu H, Han L 2020 Small Methods 4 2000238Google Scholar

    [82]

    Jiang X, Chen F, Zhao S C, Su W T 2021 CrystEngComm 23 8239Google Scholar

    [83]

    Liu X, Deng C Y, Wei H, Fang M K, Yan B, Zhu T, Luo S F, Peng G, Cai W W, Long M S, Zhang X A 2025 Adv. Funct. Mater. 35 2423102Google Scholar

    [84]

    Wan X, Xu S J, Gao M L, Huang T H, Duan Y Y, Zhan R Z, Chen K, Gu X F, Xie W, Xu J G 2022 ACS Appl. Nano Mater. 5 15775Google Scholar

    [85]

    Sheng M Y, Chang X, Mao X J, Gao Y, Xuan X Y, Xie H F, Mu H C, Niu Y P, Gong S Q, Qian M 2024 Adv. Electron. Mater. 10 2300842Google Scholar

    [86]

    Long Y Y, Wang X, Tan W, Li B W, Li J D, Deng W, Li X M, Guo W L, Yin J 2024 Nano Lett. 24 7572Google Scholar

    [87]

    Guo H J, Garro-Hernandorena A, Martínez-Galera A J, Gómez-Rodríguez J M 2023 Small 19 2207217Google Scholar

    [88]

    Jariwala D, Marks T J, Hersam M C 2017 Nat. Mater. 16 170Google Scholar

    [89]

    Liu Y, Weiss N O, Duan X L, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 16042Google Scholar

    [90]

    Hao G L, Xiao J B, Hao Y L, Zhou G L, Zhu H, Gao H, Xu Z Q, Zhao Z K, Miao L L, Li J, Sun H T, Zhao C J 2023 Mater. Today Phys. 34 101069Google Scholar

    [91]

    Ma X R, Wang K Y, Fan C, Li X B, Hao Y L, Zhou J, Lu X M, Shu T, Miao L L, Li J, Hao G L 2025 Adv. Opt. Mater. 13 2402434Google Scholar

    [92]

    Li H N, Li Y, Aljarb A, Shi Y M, Li L J 2018 Chem. Rev. 118 6134Google Scholar

    [93]

    Wu W H, Zhang Q, Zhou X, Li L, Su J W, Wang F K, Zhai T Y 2018 Nano Energy 51 45Google Scholar

    [94]

    Chen K, Wan X, Wen J X, Xie W G, Kang Z W, Zeng X L, Chen H J, Xu J B 2015 ACS Nano 9 9868Google Scholar

    [95]

    Chen K, Wan X, Xie W G, Wen J X, Kang Z W, Zeng X L, Chen H J, Xu J B 2015 Adv. Mater. 27 6431Google Scholar

    [96]

    Li M Y, Pu J, Huang J K, Miyauchi Y, Matsuda K, Takenobu T, Li L J 2018 Adv. Funct. Mater. 28 1706860Google Scholar

    [97]

    Chen F, Wang L, Ji X H, Zhang Q Y 2017 ACS Appl. Mater. Interfaces 9 30821Google Scholar

    [98]

    Liu S H, Qin K, Yang J S, Hu T, Luo H, Wu J S, Cui Z, Li T T, Ding F, Wang X R, Li Y M, Zhai T Y 2025 Natl. Sci. Rev. 12 nwaf119Google Scholar

    [99]

    Wang Z, Xie Y, Wang H L, Wu R X, Nan T, Zhan Y, Sun J, Jiang T, Zhao Y, Lei Y, Yang M, Wang W D, Zhu Q, Ma X H, Hao Y 2017 Nanotechnology 28 325602Google Scholar

    [100]

    Yoo Y, Degregorio Z P, Johns J E 2015 J. Am. Chem. Soc. 137 14281Google Scholar

    [101]

    Sharma A, Mahlouji R, Wu L, Verheijen M A, Vandalon V, Balasubramanyam S, Hofmann J P, Kessels W M M, Bol A A 2020 Nanotechnology 31 255603Google Scholar

    [102]

    Zhang Y, Yao Y Y, Sendeku M G, Yin L, Zhan X Y, Wang F, Wang Z X, He J 2019 Adv. Mater. 31 1901694Google Scholar

    [103]

    Xue Y Z, Zhang Y P, Liu Y, Liu H T, Song J C, Sophia J, Liu J Y, Xu Z Q, Xu Q Y, Wang Z Y, Zheng J L, Liu Y Q, Li S J, Bao Q L 2016 ACS Nano 10 573Google Scholar

    [104]

    Zhang X M, Huangfu L Y, Gu Z J, Xiao S Q, Zhou J D, Nan H Y, Gu X F, Ostrikov K 2021 Small 17 2007312Google Scholar

    [105]

    Gong Y J, Lei S D, Ye G L, Li B, He Y M, Keyshar K, Zhang X, Wang Q Z, Lou J, Liu Z, Vajtai R, Zhou W, Ajayan P M 2015 Nano Lett. 15 6135Google Scholar

    [106]

    Chen H L, Wen X W, Zhang J, Wu T M, Gong Y J, Zhang X, Yuan J T, Yi C Y, Lou J, Ajayan P M, Zhuang W, Zhang G Y, Zheng J R 2016 Nat. Commun. 7 12512Google Scholar

    [107]

    Chen F, Wang Y L, Su W T, Ding S, Fu L 2019 J. Phys. Chem. C 123 30519Google Scholar

    [108]

    Zhang X Q, Lin C H, Tseng Y W, Huang K H, Lee Y H 2015 Nano Lett. 15 410Google Scholar

    [109]

    Vashishtha P, Kofler C, Verma A K, et al. 2025 Adv. Funct. Mater. e12962Google Scholar

    [110]

    Chen T, Hao G L, Kou L Z, Wang C, Zhong J X 2018 Nanotechnology 29 484003Google Scholar

    [111]

    Trivedi D B, Turgut G, Qin Y, et al. 2020 Adv. Mater. 32 2006320Google Scholar

    [112]

    Yang H H, Gao F, Dai M J, Jia D C, Zhou Y, Hu P A 2017 J. Semicond. 38 031004Google Scholar

    [113]

    Xu Z W, Ning C C, Yang Q, Jin Y, Liu F L, Chen X K, Gong X N, Hu B S 2025 Carbon 240 120377Google Scholar

    [114]

    Shim G W, Yoo K, Seo S B, Shin J, Jung D Y, Kang I S, Ahn C W, Cho B J, Choi S Y 2014 ACS Nano 8 6655Google Scholar

    [115]

    Zhou X H, Liu M Y, Xue X D, Liu S, Yu G 2025 Adv. Mater. Technol. 10 2400901Google Scholar

    [116]

    Kim S, Kim Y C, Choi Y J, Woo H J, Song Y J, Kang M S, Lee C, Cho J H 2019 ACS Appl. Mater. Interfaces 11 35444Google Scholar

    [117]

    Wang M, Jang S K, Jang W J, Kim M, Park S Y, Kim S W, Kahng S J, Choi J Y, Ruoff R S, Song Y J, Lee S 2013 Adv. Mater. 25 2746Google Scholar

    [118]

    Geng D C, Dong J C, Kee Ang L, Ding F, Yang H Y 2019 NPG Asia Mater. 11 56Google Scholar

    [119]

    Mishra N, Miseikis V, Convertino D, Gemmi M, Piazza V, Coletti C 2016 Carbon 96 497Google Scholar

    [120]

    Zhang C H, Zhao S L, Jin C H, Koh A L, Zhou Y, Xu W G, Li Q C, Xiong Q H, Peng H L, Liu Z F 2015 Nat. Commun. 6 6519Google Scholar

    [121]

    Song X J, Sun J Y, Qi Y, Gao T, Zhang Y F, Liu Z F 2016 Adv. Energy Mater. 6 1600541Google Scholar

    [122]

    Shin H C, Jang Y, Kim T H, Lee J H, Oh D H, Ahn S J, Lee J H, Moon Y, Park J H, Yoo S J, Park C Y, Whang D, Yang C W, Ahn J R 2015 J. Am. Chem. Soc. 137 6897Google Scholar

    [123]

    Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P, Gu G 2014 Science 343 163Google Scholar

    [124]

    Yang Y, Fu Q, Li H B, Wei M M, Xiao J P, Wei W, Bao X H 2015 ACS Nano 9 11589Google Scholar

    [125]

    Li J, Yang X D, Liu Y, Huang B L, Wu R X, Zhang Z W, Zhao B, Ma H F, Dang W Q, Wei Z, Wang K, Lin Z Y, Yan X X, Sun M Z, Li B, Pan X Q, Luo J, Zhang G Y, Liu Y, Huang Y, Duan X D, Duan X F 2020 Nature 579 368Google Scholar

    [126]

    Wu R X, Tao Q Y, Dang W Q, Liu Y, Li B, Li J, Zhao B, Zhang Z W, Ma H F, Sun G Z, Duan X D, Duan X F 2019 Adv. Funct. Mater. 29 1806611Google Scholar

    [127]

    Liu D Y, Hong J H, Li X B, Zhou X, Jin B, Cui Q N, Chen J P, Feng Q L, Xu C X, Zhai T Y, Suenaga K, Xu H 2020 Adv. Funct. Mater. 30 1910169Google Scholar

    [128]

    Li J X, Chen J R, He Y X, Xiao J Y, Li G Q, Wang W L 2025 Adv. Funct. Mater. 35 2421508Google Scholar

    [129]

    Baidoo J K, Choi S H, Agyapong-Fordjour F O T, Boandoh S, Yun S J, Adofo L A, Ben-Smith A, Kim Y I, Jin J W, Jung M H, Jeong H Y, Kim Y M, Lee Y H, Kim S M, Kim K K 2022 ACS Nano 16 8851Google Scholar

    [130]

    Yan B, Ning B, Zhang G X, Zhou D H, Shi X, Wang C X, Zhao H Q 2022 Adv. Opt. Mater. 10 2102413Google Scholar

    [131]

    Zhou N, Wang R Y, Zhou X, Song H Y, Xiong X, Ding Y, Lü J T, Gan L, Zhai T Y 2018 Small 14 1702731Google Scholar

    [132]

    Zhang Y, Yin L, Chu J W, Shifa T A, Xia J, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2018 Adv. Mater. 30 1803665Google Scholar

    [133]

    Fu Q D, Wang X W, Zhou J D, Xia J, Zeng Q S, Lü D H, Zhu C, Wang X L, Shen Y, Li X M, Hua Y N, Liu F C, Shen Z X, Jin C H, Liu Z 2018 Chem. Mater. 30 4001Google Scholar

    [134]

    Ding Y, Zhou N, Gan L, Yan X X, Wu R Z, Abidi I H, Waleed A, Pan J, Ou X W, Zhang Q C, Zhuang M H, Wang P, Pan X Q, Fan Z Y, Zhai T Y, Luo Z T 2018 Nano Energy 49 200Google Scholar

    [135]

    Zhai X K, Xu X, Peng J B, Jing F L, Zhang Q L, Liu H J, Hu Z G 2020 ACS Appl. Mater. Interfaces 12 24093Google Scholar

    [136]

    Zhao B, Wan Z, Liu Y, Xu J Q, Yang X D, Shen D Y, Zhang Z C, Guo C H, Qian Q, Li J, Wu R X, Lin Z Y, Yan X X, Li B L, Zhang Z W, Ma H F, Li B, Chen X, Qiao Y, Shakir I, Almutairi Z, Wei F, Zhang Y, Pan X Q, Huang Y, Ping Y, Duan X D, Duan X F 2021 Nature 591 385Google Scholar

    [137]

    Li B, Huang L, Zhong M Z, Li Y, Wang Y, Li J B, Wei Z M 2016 Adv. Electron. Mater. 2 1600298Google Scholar

    [138]

    Liu H W, Li D, Ma C, Zhang X H, Sun X X, Zhu C G, Zheng B Y, Zou Z X, Luo Z Y, Zhu X L, Wang X, Pan A L 2019 Nano Energy 59 66Google Scholar

    [139]

    Zhou J D, Kong X H, Sekhar M C, Lin J H, Le Goualher F, Xu R, Wang X W, Chen Y, Zhou Y, Zhu C, Lu W, Liu F C, Tang B J, Guo Z L, Zhu C, Cheng Z H, Yu T, Suenaga K, Sun D, Ji W, Liu Z 2019 ACS Nano 13 10929Google Scholar

    [140]

    Li L, Zhang Q, Li H, Geng D C 2023 Chem. Commun. 59 14636Google Scholar

    [141]

    Yuan J, Sun T, Hu Z X, Yu W Z, Ma W L, Zhang K, Sun B Q, Lau S P, Bao Q L, Lin S H, Li S J 2018 ACS Appl. Mater. Interfaces 10 40614Google Scholar

    [142]

    Shao G L, Yang M Q, Xiang H Y, Luo S, Xue X X, Li H M, Zhang X, Liu S, Zhou Z 2023 Nano Res. 16 1670Google Scholar

    [143]

    Heo H, Sung J H, Ahn J H, Ghahari F, Taniguchi T, Watanabe K, Kim P, Jo M H 2017 Adv. Electron. Mater. 3 1600375Google Scholar

    [144]

    Fang X D, Tian Q Q, Sheng Y, Yang G F, Lu N Y, Wang J, Zhang X M, Zhang Y X, Yan X M, Hua B 2018 Superlattice Microst 123 323Google Scholar

    [145]

    Lee J, Pak S, Lee Y W, Park Y, Jang A R, Hong J, Cho Y, Hou B, Lee S, Jeong H Y, Shin H S, Morris S M, Cha S, Sohn J I, Kim J M 2019 ACS Nano 13 13047Google Scholar

    [146]

    Zhang S W, Hao Y L, Hao S J, Lu X M, Zhou J, Fan C, Liu J, Hao G L 2025 Nanotechnology 36 232004Google Scholar

    [147]

    Zhou G L, Gao H, Li J, He X Y, He Y B, Li Y, Hao G L 2022 Nanotechnology 33 175602Google Scholar

    [148]

    Wang Q, Wang S, Li J Y, Gan Y C, Jin M T, Shi R, Amini A, Wang N, Cheng C 2023 Adv. Sci. 10 2205638Google Scholar

    [149]

    Wang D, Zhang Z W, Huang B L, Zhang H M, Huang Z W, Liu M M, Duan X D 2022 ACS Nano 16 1198Google Scholar

    [150]

    Huang C, Wu S, Sanchez A M, Peters J J P, Beanland R, Ross J S, Rivera P, Yao W, Cobden D H, Xu X 2014 Nat. Mater. 13 1096Google Scholar

    [151]

    Duan X D, Wang C, Shaw J C, Cheng R, Chen Y, Li H L, Wu X P, Tang Y, Zhang Q L, Pan A L, Jiang J H, Yu R Q, Huang Y, Duan X F 2014 Nat. Nanotechnol. 9 1024Google Scholar

    [152]

    Zhang Q, Xiao X, Zhao R Q, Lü D H, Xu G C, Lu Z X, Sun L F, Lin S Z, Gao X, Zhou J, Jin C H, Ding F, Jiao L Y 2015 Angew. Chem. Int. Ed 54 8957Google Scholar

    [153]

    Li F, Feng Y X, Li Z W, et al. 2019 Adv. Mater. 31 1901351Google Scholar

    [154]

    Zhou J D, Tang B J, Lin J H, Lü D H, Shi J, Sun L F, Zeng Q S, Niu L, Liu F C, Wang X W, Liu X F, Suenaga K, Jin C H, Liu Z 2018 Adv. Funct. Mater. 28 1801568Google Scholar

    [155]

    Seok H, Megra Y T, Kanade C K, Cho J, Kanade V K, Kim M, Lee I, Yoo P J, Kim H U, Suk J W, Kim T 2021 ACS Nano 15 707Google Scholar

    [156]

    Chen C, Yang Y, Zhou X, Xu W X, Cui Q N, Lu J B, Jing H M, Tian D, Xu C X, Zhai T Y, Xu H 2021 ACS Appl. Nano Mater. 4 5522Google Scholar

    [157]

    Choudhary N, Park J, Hwang J Y, Chung H S, Dumas K H, Khondaker S I, Choi W, Jung Y 2016 Sci. Rep. 6 25456Google Scholar

    [158]

    Woods J M, Jung Y, Xie Y, Liu W, Liu Y, Wang H, Cha J J 2016 ACS Nano 10 2004Google Scholar

    [159]

    Li W, Qin Q Y, Li X, Huangfu Y, Shen D Y, Liu J L, Li J, Li B, Wu R X, Duan X D 2024 Adv. Mater. 36 2408367Google Scholar

    [160]

    Zou Z X, Liang J W, Zhang X H, Ma C, Xu P, Yang X, Zeng Z X, Sun X X, Zhu C G, Liang D L, Zhuang X J, Li D, Pan A L 2021 ACS Nano 15 10039Google Scholar

    [161]

    Cai Y H, Xu K, Zhu W J 2018 Mater. Res. Express 5 095904Google Scholar

    [162]

    Shi J P, Tong R, Zhou X B, Gong Y, Zhang Z P, Ji Q Q, Zhang Y, Fang Q Y, Gu L, Wang X N, Liu Z F, Zhang Y F 2016 Adv. Mater. 28 10664Google Scholar

    [163]

    Heo H, Sung J H, Jin G, Ahn J H, Kim K, Lee M J, Cha S, Choi H, Jo M H 2015 Adv. Mater. 27 3803Google Scholar

    [164]

    Lin Y C, Ghosh R K, Addou R, Lu N, Eichfeld S M, Zhu H, Li M Y, Peng X, Kim M J, Li L J, Wallace R M, Datta S, Robinson J A 2015 Nat. Commun. 6 7311Google Scholar

    [165]

    Li Z P, Zheng J L, Zhang Y P, Zheng C X, Woon W Y, Chuang M C, Tsai H C, Chen C H, Davis A, Xu Z Q, Lin J, Zhang H, Bao Q L 2017 ACS Appl. Mater. Interfaces 9 34204Google Scholar

    [166]

    Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay Beng K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014 Nat. Mater. 13 1135Google Scholar

    [167]

    Cain J D, Hanson E D, Dravid V P 2018 J. Appl. Phys. 123 204304Google Scholar

    [168]

    Zhang Z W, Chen P, Duan X D, Zang K T, Luo J, Duan X F 2017 Science 357 788Google Scholar

    [169]

    Zhou Z J, Hou F C, Huang X L, Wang G, Fu Z H, Liu W L, Yuan G W, Xi X X, Xu J, Lin J H, Gao L B 2023 Nature 621 499Google Scholar

    [170]

    Sahoo P K, Memaran S, Xin Y, Balicas L, Gutiérrez H R 2018 Nature 553 63Google Scholar

    [171]

    Sahoo P K, Memaran S, Nugera F A, Xin Y, Díaz Márquez T, Lu Z, Zheng W, Zhigadlo N D, Smirnov D, Balicas L, Gutiérrez H R 2019 ACS Nano 13 12372Google Scholar

    [172]

    Zhang Z P, Gong Y, Zou X L, Liu P R, Yang P F, Shi J P, Zhao L Y, Zhang Q, Gu L, Zhang Y F 2019 ACS Nano 13 885Google Scholar

    [173]

    Li X, Lin M W, Lin J, et al. 2014 Sci. Adv. 2 e1501882Google Scholar

    [174]

    Hong Y J, Fukui T 2011 ACS Nano 5 7576Google Scholar

    [175]

    Zhang S, Hao Y, Gao F, Wu X, Hao S, Qiu M, Zheng X, Wei Y, Hao G 2024 2D Mater. 11 015007Google Scholar

    [176]

    Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K, Li L J 2015 Science 349 524Google Scholar

    [177]

    Suenaga K, Ji H G, Lin Y C, Vincent T, Maruyama M, Aji A S, Shiratsuchi Y, Ding D, Kawahara K, Okada S, Panchal V, Kazakova O, Hibino H, Suenaga K, Ago H 2018 ACS Nano 12 10032Google Scholar

    [178]

    Zhang T, Jiang B, Xu Z, Mendes R G, Xiao Y, Chen L F, Fang L W, Gemming T, Chen S L, Rümmeli M H, Fu L 2016 Nat. Commun. 7 13911Google Scholar

    [179]

    Ling X, Lee Y H, Lin Y X, Fang W J, Yu L L, Dresselhaus M S, Kong J 2014 Nano Lett. 14 464Google Scholar

    [180]

    Ling X, Lin Y X, Ma Q, et al. 2016 Adv. Mater. 28 2322Google Scholar

    [181]

    Wang L, Yue Q Y, Pei C J, Fan H C, Dai J, Huang X, Li H, Huang W 2020 Nano Res. 13 959Google Scholar

    [182]

    Duan Z J, Chen T, Shi J W, Li J, Song K, Zhang C, Ding S J, Li B, Wang G, Hu S G, He X Y, He C Y, Xu H, Liu X F, Jin C H, Zhong J X, Hao G L 2020 Sci. Bull. 65 1013Google Scholar

  • [1] 汪成阳, 李月鑫, 何沿沿, 李美, 钟轮, 接文静. 低温化学气相沉积法可控合成二维铁电α-In2Se3. 物理学报, 2025, 74(22): 228102. doi: 10.7498/aps.74.20251070
    [2] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [3] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结. 物理学报, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [4] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制. 物理学报, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [5] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [6] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [7] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [8] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼. 物理学报, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [9] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [10] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [11] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [12] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [13] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征. 物理学报, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [14] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [15] 韩道丽, 赵元黎, 赵海波, 宋天福, 梁二军. 化学气相沉积法制备定向碳纳米管阵列. 物理学报, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [16] 张 萍, 李萍剑, 侯士敏, 张琦锋, 吴锦雷. 碳纳米管氧化成环制备研究. 物理学报, 2005, 54(8): 3734-3739. doi: 10.7498/aps.54.3734
    [17] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [18] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响. 物理学报, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [19] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究. 物理学报, 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  300
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-22
  • 修回日期:  2025-10-25
  • 上网日期:  2025-10-31
  • 刊出日期:  2025-11-20

/

返回文章
返回