搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温化学气相沉积法可控合成二维铁电α-In2Se3

汪成阳 李月鑫 何沿沿 李美 钟轮 接文静

引用本文:
Citation:

低温化学气相沉积法可控合成二维铁电α-In2Se3

汪成阳, 李月鑫, 何沿沿, 李美, 钟轮, 接文静

Controllable Synthesis of Two-Dimensional Ferroelectric α-In2Se3 via Low-Temperature Chemical Vapor Deposition

Wang Chengyang, Li Yuexin, He YanYan, Li Mei, Zhong Lun, Jie Wenjing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 二维铁电半导体α-In2Se3在新型电子器件中具有重要应用前景.然而采用化学气相沉积法(CVD),该材料通常需要高于650℃的高温.本研究提出一种低温合成策略,通过引入KCl/LiCl/NH4Cl三元催化剂体系,在400-460℃(优化条件440℃)制备α-In2Se3薄膜,该工艺较传统方法降低温度200℃以上.扫描电子显微镜(SEM)表征显示材料形貌可通过温度与气体流速协同调控,从六边形薄片转变为连续均匀薄膜;能量色散谱仪(EDS)分析表明元素比例接近理想化学计量比(In∶Se=36.38∶63.62);拉曼光谱(特征峰103/180/195 cm-1)与X射线光电子能谱(XPS)(In∶Se=1.92∶3.00)共同证实材料为纯α相、化学计量比接近理想值.基于此材料构建的阻变器件表现出模拟阻变的特性,模拟了生物突触的长时程增强/抑制行为.在人工神经网络仿真中,对MNIST数据集的图像识别准确率均在90%以上.该低温合成工艺突破高温限制,为α-In2Se3在硅基神经形态计算芯片中的规模化集成提供可行路径.
    Two-dimensional ferroelectric α-In2Se3 possess many fascinating physical properties. However, chemical-vapor-deposited ferroelectric α-In2Se3 typically requires high temperatures (> 650 °C). In this work, a KCl/LiCl/NH4Cl ternary catalyst was introduced to synthesize α-In2Se3 at 400-460 °C, giving rise to a 200 °C reduction in growth temperature compared with traditional chemical vapor deposition (CVD) method for ferroelectric α-In2Se3. The surface morphology of the as-prepared materials was controlled by temperature and gas flow rate. As the growth temperature increased from 400 to 460 °C, the synthesized α-In2Se3 was changed from discrete hexagonal flakes to a continuous and uniform thin film, which was confirmed by the scanning electron microscope. Raman spectroscopy showed the characteristic peaks of In2Se3 located at 103, 180, and 195 cm-1, respectively, indicating that the CVD-grown In2Se3 was α-phase. Furthermore, energy dispersive spectrometer and X-ray photoelectron spectroscopy indicated that the elemental composition was close to the ideal stoichiometric ratio, confirming the successful synthesis of the α-In2Se3. Then, the as-prepared α-In2Se3 was transferred onto Si/SiO2 substrate for device fabrication. Atomic force microscope showed that the film was uniform with the thickness of approximately 63 nm. The fabricated two-terminal memristors exhibited analog resistive switching behaviors. And such memristors were used to achieve synaptic functions of long-term potentiation/long-term depression. For artificial neural network simulations based on the synaptic memristors, the recognition accuracy for hand-written digit image exceeded 90%. This work provides a feasible way to low-temperature growth 2D ferroelectric α-In2Se3 for applications in synaptic devices and neuromorphic computing.
  • [1]

    Wu J, Chen H-Y, Yang N, Cao J, Yan X, Liu F, Sun Q, Ling X, Guo J, Wang H 2020 Nature Electronics 3 466

    [2]

    Wang S, Liu L, Gan L, Chen H, Hou X, Ding Y, Ma S, Zhang D W, Zhou P 2021 Nature Communications 12 53

    [3]

    Wang X, Zhu C, Deng Y, Duan R, Chen J, Zeng Q, Zhou J, Fu Q, You L, Liu S 2021 Nature Communications 12 1109

    [4]

    Dai M, Wang Z, Wang F, Qiu Y, Zhang J, Xu C-Y, Zhai T, Cao W, Fu Y, Jia D 2019 Nano Letters 19 5410

    [5]

    Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C 2017 Nano Letters 17 5508

    [6]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W 2016 Science 353 274

    [7]

    Li M, He Y, Wang C, Io W F, Guo F, Jie W, Hao J 2025 Small 10.1002/smll.202412314

    [8]

    Si M, Saha A K, Gao S, Qiu G, Qin J, Duan Y, Jian J, Niu C, Wang H, Wu W 2019 Nature Electronics 2 580

    [9]

    Popović S, Čelustka B, Bidjin D 1971 Physica Status Solidi (a) 6 301

    [10]

    Osamura K, Murakami Y, Tomiie Y 1966 Journal of the Physical Society of Japan 21 1848

    [11]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nature Communications 8 14956

    [12]

    Cui C, Hu W-J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P 2018 Nano Letters 18 1253

    [13]

    Han W, Zheng X, Yang K, Tsang C S, Zheng F, Wong L W, Lai K H, Yang T, Wei Q, Li M 2023 Nature Nanotechnology 18 55

    [14]

    Liu L, Dong J, Huang J, Nie A, Zhai K, Xiang J, Wang B, Wen F, Mu C, Zhao Z, Gong Y, Tian Y, Liu Z 2019 Chemistry of Materials 31 10143

    [15]

    Li J, Wang X, Ma Y, Han W, Li K, Li J, Wu Y, Zhao Y, Yan T, Liu X 2025 ACS Nano 19 13220

    [16]

    Jiang Y, Ning X, Liu R, Song K, Ali S, Deng H, Li Y, Huang B, Qiu J, Zhu X 2025 Nature Communications 16 7364

    [17]

    Xu L, Wu Z, Han Y, Wang M, Li J, Chen C, Wang L, Yuan Y, Shi L, Redwing J M 2025 Nano Letters 25 8423

    [18]

    Sangster J, Pelton A D 1987 Journal of Physical and Chemical Reference Data 16 509

    [19]

    Li Z, Zhou J, Wang Z, Gu J, Zhang Y, Wei Y 2012 Advanced Materials Research 567 41

    [20]

    Won Y S, Kim Y S, Kryliouk O, Anderson T 2008 Physica Status Solidi c 5 1633

    [21]

    Yang K, Wang J, Wu L, Yan Y, Tang X, Gan W, Li L, Li Y, Han H, Li H 2023 Results in Physics 51 106643

    [22]

    Kim J H, Kim S H, Yu H Y 2024 Small 20 2405459

    [23]

    He Q, Tang Z, Dai M, Shan H, Yang H, Zhang Y, Luo X 2023 Nano Letters 23 3098

    [24]

    Zhou S, Liao L, Chen J, Yu Y, Lv Z, Yang M, Yao B, Zhang S, Peng G, Huang Z, Liu Y, Qi X, Wang G 2023 ACS Applied Materials & Interfaces 15 23613

    [25]

    Mukherjee S, Dutta D, Mohapatra P K, Dezanashvili L, Ismach A, Koren E 2020 ACS Nano 14 17543

    [26]

    Zhang Z, Shi L, Wang B, Qu J, Wang X, Wang T, Jiang Q, Xue W, Xu X 2025 Chinese Chemical Letters 36 109687

    [27]

    He Q, Jiang B, Ma J, Chen W, Luo X, Zheng Y 2025 Small Methods 9 2401549

    [28]

    Zhou J, Zeng Q, Lv D, Sun L, Niu L, Fu W, Liu F, Shen Z, Jin C, Liu Z 2015 Nano Letters 15 6400

    [29]

    Feng W, Zheng W, Gao F, Chen X, Liu G, Hasan T, Cao W, Hu P 2016 Chemistry of Materials 28 4278

    [30]

    Io W F, Yuan S, Pang S Y, Wong L W, Zhao J, Hao J 2020 Nano Research 13 1897

    [31]

    Wang D, Yin J, Li Y, Li H, Wang M, Guo F, Jie W, Song F, Hao J 2025 Aggregate 10.1002/agt2.70099

    [32]

    Zhong Y N, Wang T, Gao X, Xu J L, Wang S D 2018 Advanced Functional Materials 28 1800854

    [33]

    Guo F, Song M, Wong M C, Ding R, Io W F, Pang S Y, Jie W, Hao J 2022 Advanced Functional Materials 32 2108014

  • [1] 刘怀远, 肖建飞, 吕昭征, 吕力, 屈凡明. Bi2O2Se纳米线的生长及其超导量子干涉器件. 物理学报, doi: 10.7498/aps.73.20231600
    [2] 王璇, 杜健嵘, 李志军, 马铭磷, 李春来. 串扰忆阻突触异质离散神经网络的共存放电与同步行为. 物理学报, doi: 10.7498/aps.73.20231972
    [3] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结. 物理学报, doi: 10.7498/aps.71.20211735
    [4] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究. 物理学报, doi: 10.7498/aps.70.20210750
    [5] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, doi: 10.7498/aps.69.20200617
    [6] 冯秋菊, 石博, 李昀铮, 王德煜, 高冲, 董增杰, 解金珠, 梁红伟. 单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能. 物理学报, doi: 10.7498/aps.69.20191530
    [7] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器. 物理学报, doi: 10.7498/aps.69.20201044
    [8] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, doi: 10.7498/aps.68.20181577
    [9] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, doi: 10.7498/aps.68.20190808
    [10] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, doi: 10.7498/aps.68.20190279
    [11] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, doi: 10.7498/aps.68.20182306
    [12] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件. 物理学报, doi: 10.7498/aps.68.20191262
    [13] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, doi: 10.7498/aps.67.20180805
    [14] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究. 物理学报, doi: 10.7498/aps.67.20180425
    [15] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, doi: 10.7498/aps.65.098101
    [16] 邵楠, 张盛兵, 邵舒渊. 具有突触特性忆阻模型的改进与模型经验学习特性机理. 物理学报, doi: 10.7498/aps.65.128503
    [17] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, doi: 10.7498/aps.64.148501
    [18] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, doi: 10.7498/aps.63.176801
    [19] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, doi: 10.7498/aps.63.187301
    [20] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, doi: 10.7498/aps.61.217306
计量
  • 文章访问数:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-30

/

返回文章
返回