-
二维铁电半导体α-In2Se3在新型电子器件中具有重要应用前景.然而采用化学气相沉积法(CVD),该材料通常需要高于650℃的高温.本研究提出一种低温合成策略,通过引入KCl/LiCl/NH4Cl三元催化剂体系,在400-460℃(优化条件440℃)制备α-In2Se3薄膜,该工艺较传统方法降低温度200℃以上.扫描电子显微镜(SEM)表征显示材料形貌可通过温度与气体流速协同调控,从六边形薄片转变为连续均匀薄膜;能量色散谱仪(EDS)分析表明元素比例接近理想化学计量比(In∶Se=36.38∶63.62);拉曼光谱(特征峰103/180/195 cm-1)与X射线光电子能谱(XPS)(In∶Se=1.92∶3.00)共同证实材料为纯α相、化学计量比接近理想值.基于此材料构建的阻变器件表现出模拟阻变的特性,模拟了生物突触的长时程增强/抑制行为.在人工神经网络仿真中,对MNIST数据集的图像识别准确率均在90%以上.该低温合成工艺突破高温限制,为α-In2Se3在硅基神经形态计算芯片中的规模化集成提供可行路径.Two-dimensional ferroelectric α-In2Se3 possess many fascinating physical properties. However, chemical-vapor-deposited ferroelectric α-In2Se3 typically requires high temperatures (> 650 °C). In this work, a KCl/LiCl/NH4Cl ternary catalyst was introduced to synthesize α-In2Se3 at 400-460 °C, giving rise to a 200 °C reduction in growth temperature compared with traditional chemical vapor deposition (CVD) method for ferroelectric α-In2Se3. The surface morphology of the as-prepared materials was controlled by temperature and gas flow rate. As the growth temperature increased from 400 to 460 °C, the synthesized α-In2Se3 was changed from discrete hexagonal flakes to a continuous and uniform thin film, which was confirmed by the scanning electron microscope. Raman spectroscopy showed the characteristic peaks of In2Se3 located at 103, 180, and 195 cm-1, respectively, indicating that the CVD-grown In2Se3 was α-phase. Furthermore, energy dispersive spectrometer and X-ray photoelectron spectroscopy indicated that the elemental composition was close to the ideal stoichiometric ratio, confirming the successful synthesis of the α-In2Se3. Then, the as-prepared α-In2Se3 was transferred onto Si/SiO2 substrate for device fabrication. Atomic force microscope showed that the film was uniform with the thickness of approximately 63 nm. The fabricated two-terminal memristors exhibited analog resistive switching behaviors. And such memristors were used to achieve synaptic functions of long-term potentiation/long-term depression. For artificial neural network simulations based on the synaptic memristors, the recognition accuracy for hand-written digit image exceeded 90%. This work provides a feasible way to low-temperature growth 2D ferroelectric α-In2Se3 for applications in synaptic devices and neuromorphic computing.
-
Keywords:
- α-In2Se3 /
- Chemical Vapor Deposition /
- Memristor /
- Synaptic Device
-
[1] Wu J, Chen H-Y, Yang N, Cao J, Yan X, Liu F, Sun Q, Ling X, Guo J, Wang H 2020 Nature Electronics 3 466
[2] Wang S, Liu L, Gan L, Chen H, Hou X, Ding Y, Ma S, Zhang D W, Zhou P 2021 Nature Communications 12 53
[3] Wang X, Zhu C, Deng Y, Duan R, Chen J, Zeng Q, Zhou J, Fu Q, You L, Liu S 2021 Nature Communications 12 1109
[4] Dai M, Wang Z, Wang F, Qiu Y, Zhang J, Xu C-Y, Zhai T, Cao W, Fu Y, Jia D 2019 Nano Letters 19 5410
[5] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C 2017 Nano Letters 17 5508
[6] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W 2016 Science 353 274
[7] Li M, He Y, Wang C, Io W F, Guo F, Jie W, Hao J 2025 Small 10.1002/smll.202412314
[8] Si M, Saha A K, Gao S, Qiu G, Qin J, Duan Y, Jian J, Niu C, Wang H, Wu W 2019 Nature Electronics 2 580
[9] Popović S, Čelustka B, Bidjin D 1971 Physica Status Solidi (a) 6 301
[10] Osamura K, Murakami Y, Tomiie Y 1966 Journal of the Physical Society of Japan 21 1848
[11] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nature Communications 8 14956
[12] Cui C, Hu W-J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P 2018 Nano Letters 18 1253
[13] Han W, Zheng X, Yang K, Tsang C S, Zheng F, Wong L W, Lai K H, Yang T, Wei Q, Li M 2023 Nature Nanotechnology 18 55
[14] Liu L, Dong J, Huang J, Nie A, Zhai K, Xiang J, Wang B, Wen F, Mu C, Zhao Z, Gong Y, Tian Y, Liu Z 2019 Chemistry of Materials 31 10143
[15] Li J, Wang X, Ma Y, Han W, Li K, Li J, Wu Y, Zhao Y, Yan T, Liu X 2025 ACS Nano 19 13220
[16] Jiang Y, Ning X, Liu R, Song K, Ali S, Deng H, Li Y, Huang B, Qiu J, Zhu X 2025 Nature Communications 16 7364
[17] Xu L, Wu Z, Han Y, Wang M, Li J, Chen C, Wang L, Yuan Y, Shi L, Redwing J M 2025 Nano Letters 25 8423
[18] Sangster J, Pelton A D 1987 Journal of Physical and Chemical Reference Data 16 509
[19] Li Z, Zhou J, Wang Z, Gu J, Zhang Y, Wei Y 2012 Advanced Materials Research 567 41
[20] Won Y S, Kim Y S, Kryliouk O, Anderson T 2008 Physica Status Solidi c 5 1633
[21] Yang K, Wang J, Wu L, Yan Y, Tang X, Gan W, Li L, Li Y, Han H, Li H 2023 Results in Physics 51 106643
[22] Kim J H, Kim S H, Yu H Y 2024 Small 20 2405459
[23] He Q, Tang Z, Dai M, Shan H, Yang H, Zhang Y, Luo X 2023 Nano Letters 23 3098
[24] Zhou S, Liao L, Chen J, Yu Y, Lv Z, Yang M, Yao B, Zhang S, Peng G, Huang Z, Liu Y, Qi X, Wang G 2023 ACS Applied Materials & Interfaces 15 23613
[25] Mukherjee S, Dutta D, Mohapatra P K, Dezanashvili L, Ismach A, Koren E 2020 ACS Nano 14 17543
[26] Zhang Z, Shi L, Wang B, Qu J, Wang X, Wang T, Jiang Q, Xue W, Xu X 2025 Chinese Chemical Letters 36 109687
[27] He Q, Jiang B, Ma J, Chen W, Luo X, Zheng Y 2025 Small Methods 9 2401549
[28] Zhou J, Zeng Q, Lv D, Sun L, Niu L, Fu W, Liu F, Shen Z, Jin C, Liu Z 2015 Nano Letters 15 6400
[29] Feng W, Zheng W, Gao F, Chen X, Liu G, Hasan T, Cao W, Hu P 2016 Chemistry of Materials 28 4278
[30] Io W F, Yuan S, Pang S Y, Wong L W, Zhao J, Hao J 2020 Nano Research 13 1897
[31] Wang D, Yin J, Li Y, Li H, Wang M, Guo F, Jie W, Song F, Hao J 2025 Aggregate 10.1002/agt2.70099
[32] Zhong Y N, Wang T, Gao X, Xu J L, Wang S D 2018 Advanced Functional Materials 28 1800854
[33] Guo F, Song M, Wong M C, Ding R, Io W F, Pang S Y, Jie W, Hao J 2022 Advanced Functional Materials 32 2108014
计量
- 文章访问数: 4
- PDF下载量: 0
- 被引次数: 0