Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of morphological characteristics of graphene on its field emission properties

Zheng Qin-Ren Zhan Fu-Zhi She Jun-Yi Wang Jian-Yu Shi Ruo-Li Meng Guo-Dong

Citation:

Influence of morphological characteristics of graphene on its field emission properties

Zheng Qin-Ren, Zhan Fu-Zhi, She Jun-Yi, Wang Jian-Yu, Shi Ruo-Li, Meng Guo-Dong
PDF
HTML
Get Citation
  • Graphene is one of the most potential field emission cathode materials due to its excellent electrical, thermal, and mechanical properties, as well as rich edge structures. In this paper, we study the growth parameters of graphene prepared by chemical vapor deposition, and prepare three kinds of morphologies of graphene: single-layer graphene, graphene islands, and graphene with buffer layers, and then we explore the influence of the morphological characteristics of graphene on its field emission properties, and analyze the mechanism of influence of the morphological characteristics of graphene on its field emission properties through COMSOL. Comparing with single-layer graphene, the turn-on field of graphene islands and that of graphene with buffer layers decrease to 5.55 V/μm and 5.85 V/μm, respectively. The current densities also increase to 40.3 μA/cm2 and 26.4 μA/cm2, respectively. On the other hand, the field emission currents of single-layer graphene and graphene with buffer layers are more stable. In a 5-hour test, the current densities only decrease by 2% and 4%, respectively. COMSOL simulation shows that the morphological characteristics of graphene have significant influences on the electric field distribution characteristics and heat dissipation capacity. Graphene islands and graphene with buffer layers have exposed edges, leading to local electric field concentration, and thus improving field emission properties. The graphene islands are distributed discretely on the substrate, forming no continuous graphene film and lacking transverse heat dissipation channels, so the accumulation of heat will cause damage to the graphene emitter, and affect the stability of its field emission current. This study will be of great benefit to the understanding of the influence of the morphological characteristics of graphene on its field emission properties, and improving the field emission properties of graphene materials.
      Corresponding author: Meng Guo-Dong, gdmengxjtu@xjtu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 51977169), the Fundamental Research Funds for the Central Universities, China (Grant Nos. xzy012023152, xtr062023001), and the State Key Laboratory of Elec-trical Insulation and Power Equipment, China (Grant No. EIPE22315).
    [1]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [2]

    Prasher R 2010 Science 328 185Google Scholar

    [3]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [4]

    Novoselov K S, Fal′ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [5]

    Chen Y C, Chen J, Li Z B 2023 Nanomaterials 13 2437Google Scholar

    [6]

    Patra A, More M A, Late D J, Rout C S 2021 J. Mater. Chem. C 9 11059Google Scholar

    [7]

    Shao X Y, Srinivasan A, Ang W K, Khursheed A 2018 Nat. Commun. 9 1288Google Scholar

    [8]

    Yamaguchi H, Murakami K, Eda G, Fujita T, Guan P, Wang W H, Gong C, Boisse J, Miller S, Acik M, Cho K, Chabal Y J, Chen M W, Wakaya F, Takai M, Chhowalla M 2011 ACS Nano 5 4945Google Scholar

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [10]

    陈浩, 彭同江, 刘波, 孙红娟, 雷德会 2017 物理学报 66 080701Google Scholar

    Chen H, Peng T J, Liu B, Sun H J, Lie D H 2017 Acta Phys. Sin. 66 080701Google Scholar

    [11]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, Heer W A D 2006 Science 312 1191Google Scholar

    [12]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268Google Scholar

    [13]

    Meng G D, Zhan F Z, She J Y, Xie J A, Zheng Q R, Cheng Y H, Yin Z Y 2023 Nanoscale 15 15994Google Scholar

    [14]

    Xie J A, Meng G D, Chen B Y, Li Z, Yin Z Y, Cheng Y H 2022 ACS Appl. Mater. Interfaces 14 45716Google Scholar

    [15]

    Regmi M, Chisholm M F, Eres G 2012 Carbon 50 134Google Scholar

    [16]

    Liu W, Li H, Xu C, Khatami Y, Banerjee K 2011 Carbon 49 4122Google Scholar

    [17]

    Deokar G, Avila J, Razado-Colambo I, Codron J L, Boyaval C, Galopin E, Asensio M C, Vignaud D 2015 Carbon 89 82Google Scholar

    [18]

    Kleshch V I, Bandurin D A, Orekhov A S, Purcell S T, Obraztsov A N 2015 Appl. Surf. Sci. 357 1967Google Scholar

    [19]

    成桂霖, 杨健君, 全盛, 钟健, 于军胜 2022 真空科学与技术学报 42 290

    Cheng G L, Yang J J, Quan S, Zhong J, Yu J S 2022 Vacuum Sci. Tech. 42 290

    [20]

    Li Z B 2015 Ultramicroscopy 159 162Google Scholar

    [21]

    张晓波, 青芳竹, 李雪松 2019 物理学报 68 096801Google Scholar

    Zhang X B, Qing F Z, Li X S 2019 Acta Phys. Sin. 68 096801Google Scholar

    [22]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238Google Scholar

    [23]

    Wang Y Y, Ni Z H, Yu T, Shen Z X, Wang H M, Wu Y H, Chen W, Shen Wee A T 2008 J. Phys. Chem. C 112 10637Google Scholar

    [24]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. Lond. A 119 173Google Scholar

    [25]

    Zhang X, Wang L, Xin J, Yakobson B I, Ding F 2014 J. Am. Chem. Soc. 136 3040Google Scholar

    [26]

    Lee S W, Lee S S, Yang E H 2009 Nanoscale Res. Lett. 4 1218Google Scholar

    [27]

    Qian M, Feng T, Ding H, Lin L, Li H, Chen Y, Sun Z 2009 Nanotechnology 20 425702Google Scholar

    [28]

    Liu J, Zeng B, Wu Z, Zhu J, Liu X 2010 Appl. Phys. Lett. 97 033109Google Scholar

    [29]

    Xiao Z M, She J C, Deng S Z, Tang Z K, Li Z B, Lu J M, Xu N S 2010 ACS Nano 4 6332Google Scholar

    [30]

    Tang S, Zhang Y, Zhao P, Zhan R, Chen J, Deng S 2021 Nanoscale 13 5234Google Scholar

  • 图 1  (a)石墨烯生长实验装置示意图; (b)场发射测试系统示意图; (c)场发射测试系统实物图

    Figure 1.  (a) Schematic diagram of the experimental setup for graphene growth; (b) schematic diagram of the testing system for field emission; (c) physical diagram of the testing system for field emission.

    图 2  转移前的石墨烯. 光镜图 (a)单层石墨烯薄膜; (b)石墨烯岛; (c)有缓冲层石墨烯. 电镜图 (d)单层石墨烯薄膜; (e)石墨烯岛; (f)有缓冲层石墨烯

    Figure 2.  Graphene before transferring. Optical microscope images of (a) single-layer grapheme, (b) graphene islands, (c) graphene with buffer layers. Scanning electron microscope images of (d) single-layer grapheme, (e) graphene islands, (f) graphene with buffer layers.

    图 3  转移后的石墨烯. 光镜图 (a)单层石墨烯薄膜; (b)石墨烯岛; (c)有缓冲层石墨烯. 电镜图 (d)单层石墨烯薄膜; (e)石墨烯岛; (f)有缓冲层石墨烯. 拉曼光谱图 (g)单层石墨烯薄膜; (h)石墨烯岛; (i)有缓冲层石墨烯

    Figure 3.  Graphene after transferring. Optical microscope images of (a) single-layer grapheme, (b) graphene islands, (c) graphene with buffer layers. Scanning electron microscope images of (d) single-layer grapheme, (e) graphene islands, (f) graphene with buffer layers. Raman spectra images of (g) single-layer grapheme, (h) graphene islands, (i) graphene with buffer layers.

    图 4  不同形貌石墨烯宏观形貌电镜表征结果及结构示意图 (a)单层石墨烯薄膜; (b)石墨烯岛; (c)有缓冲层石墨烯

    Figure 4.  Scanning electron microscope images and schematic diagrams of graphene with different macroscopic morphologies: (a) Single-layer graphene; (b) graphene islands; (c) graphene with buffer layers.

    图 5  不同形貌石墨烯场发射性能 (a)J-E曲线; (b) F-N曲线

    Figure 5.  Field emission properties of graphene with different morphologies: (a) J-E curves; (b) F-N curves.

    图 6  不同形貌石墨烯场发射电流稳定性 (a)单层石墨烯薄膜; (b)有缓冲层石墨烯; (c)石墨烯岛

    Figure 6.  Field emission current stability of graphene with different morphologies: (a) Single-layer graphene; (b) graphene with buffer layers; (c) graphene islands.

    图 7  石墨烯电场分布云图 (a)连续薄膜; (b)边界结构

    Figure 7.  Electric field distribution map of graphene: (a) Contimuous layer; (b) edge.

    图 8  场发射后石墨烯的电镜图 (a)单层石墨烯薄膜; (b)有缓冲层石墨烯; (c)石墨烯岛

    Figure 8.  Scanning electron microscope images of graphene after field emission: (a) Single-layer graphene; (b) graphene with buffer layers; (c) graphene islands.

    图 9  石墨烯场发射温度分布情况 (a)单层石墨烯薄膜; (b)有缓冲层石墨烯; (c)石墨烯岛

    Figure 9.  Temperature distribution of graphene after field emission: (a) Single-layer graphene; (b) graphene with buffer layers; (c) graphene islands.

    表 1  不同形貌石墨烯的CVD生长参数

    Table 1.  CVD growth parameters of graphene with different morphologies.

    石墨烯形貌类型生长温度/
    甲烷浓度/
    sccm
    氢气浓度/
    sccm
    生长时间/
    min
    单层石墨烯薄膜10302205
    石墨烯岛10302305
    有缓冲层石墨烯10305205
    DownLoad: CSV
  • [1]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [2]

    Prasher R 2010 Science 328 185Google Scholar

    [3]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [4]

    Novoselov K S, Fal′ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [5]

    Chen Y C, Chen J, Li Z B 2023 Nanomaterials 13 2437Google Scholar

    [6]

    Patra A, More M A, Late D J, Rout C S 2021 J. Mater. Chem. C 9 11059Google Scholar

    [7]

    Shao X Y, Srinivasan A, Ang W K, Khursheed A 2018 Nat. Commun. 9 1288Google Scholar

    [8]

    Yamaguchi H, Murakami K, Eda G, Fujita T, Guan P, Wang W H, Gong C, Boisse J, Miller S, Acik M, Cho K, Chabal Y J, Chen M W, Wakaya F, Takai M, Chhowalla M 2011 ACS Nano 5 4945Google Scholar

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [10]

    陈浩, 彭同江, 刘波, 孙红娟, 雷德会 2017 物理学报 66 080701Google Scholar

    Chen H, Peng T J, Liu B, Sun H J, Lie D H 2017 Acta Phys. Sin. 66 080701Google Scholar

    [11]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, Heer W A D 2006 Science 312 1191Google Scholar

    [12]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268Google Scholar

    [13]

    Meng G D, Zhan F Z, She J Y, Xie J A, Zheng Q R, Cheng Y H, Yin Z Y 2023 Nanoscale 15 15994Google Scholar

    [14]

    Xie J A, Meng G D, Chen B Y, Li Z, Yin Z Y, Cheng Y H 2022 ACS Appl. Mater. Interfaces 14 45716Google Scholar

    [15]

    Regmi M, Chisholm M F, Eres G 2012 Carbon 50 134Google Scholar

    [16]

    Liu W, Li H, Xu C, Khatami Y, Banerjee K 2011 Carbon 49 4122Google Scholar

    [17]

    Deokar G, Avila J, Razado-Colambo I, Codron J L, Boyaval C, Galopin E, Asensio M C, Vignaud D 2015 Carbon 89 82Google Scholar

    [18]

    Kleshch V I, Bandurin D A, Orekhov A S, Purcell S T, Obraztsov A N 2015 Appl. Surf. Sci. 357 1967Google Scholar

    [19]

    成桂霖, 杨健君, 全盛, 钟健, 于军胜 2022 真空科学与技术学报 42 290

    Cheng G L, Yang J J, Quan S, Zhong J, Yu J S 2022 Vacuum Sci. Tech. 42 290

    [20]

    Li Z B 2015 Ultramicroscopy 159 162Google Scholar

    [21]

    张晓波, 青芳竹, 李雪松 2019 物理学报 68 096801Google Scholar

    Zhang X B, Qing F Z, Li X S 2019 Acta Phys. Sin. 68 096801Google Scholar

    [22]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238Google Scholar

    [23]

    Wang Y Y, Ni Z H, Yu T, Shen Z X, Wang H M, Wu Y H, Chen W, Shen Wee A T 2008 J. Phys. Chem. C 112 10637Google Scholar

    [24]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. Lond. A 119 173Google Scholar

    [25]

    Zhang X, Wang L, Xin J, Yakobson B I, Ding F 2014 J. Am. Chem. Soc. 136 3040Google Scholar

    [26]

    Lee S W, Lee S S, Yang E H 2009 Nanoscale Res. Lett. 4 1218Google Scholar

    [27]

    Qian M, Feng T, Ding H, Lin L, Li H, Chen Y, Sun Z 2009 Nanotechnology 20 425702Google Scholar

    [28]

    Liu J, Zeng B, Wu Z, Zhu J, Liu X 2010 Appl. Phys. Lett. 97 033109Google Scholar

    [29]

    Xiao Z M, She J C, Deng S Z, Tang Z K, Li Z B, Lu J M, Xu N S 2010 ACS Nano 4 6332Google Scholar

    [30]

    Tang S, Zhang Y, Zhao P, Zhan R, Chen J, Deng S 2021 Nanoscale 13 5234Google Scholar

  • [1] Gao Feng, Li Huan-Qing, Song Zhuo, Zhao Yu-Hong. Strain induced dislocation evolution at graphene grain boundary by three-mode phase-field crystal method. Acta Physica Sinica, 2024, 73(24): 248101. doi: 10.7498/aps.73.20241368
    [2] Yang Meng-Qi, Ji Yu-Hang, Liang Qi, Wang Chang-Hao, Zhang Yue-fei, Zhang Ming, Wang Bo, Wang Ru-Zhi. Preparation, doping modulation and field emission properties of square-shaped GaN nanowires. Acta Physica Sinica, 2020, 69(16): 167805. doi: 10.7498/aps.69.20200445
    [3] Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai. Phase-field crystal modelling the nucleation processes of graphene structures on different substrates. Acta Physica Sinica, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [4] Ye Yun, Chen Tian-Yuan, Guo Tai-Liang, Jiang Ya-Dong. Effect of magnetic field assisted heat-treatment on field emission properties of metalized multi-walled carbon nanotubes cathodes. Acta Physica Sinica, 2014, 63(8): 086802. doi: 10.7498/aps.63.086802
    [5] Chen Cheng-Cheng, Liu Li-Ying, Wang Ru-Zhi, Song Xue-Mei, Wang Bo, Yan Hui. Preparation of nanostructured GaN films and their field emission enhancement for different substrates. Acta Physica Sinica, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [6] Lu Wen-Hui, Zhang Shuai. Effect of contact resistance on field emission from carbon nanotube. Acta Physica Sinica, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [7] Wu Zhi-Guo, Zhang Peng-Ju, Xu Liang, Li Shuan-Kui, Wang Jun, Li Xu-Dong, Yan Peng-Xun. Field emission properties of amorphous carbon nanodot arrays in a novel anodic aluminum oxide template by self-assembly technique. Acta Physica Sinica, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [8] Yang Yan-Ning, Zhang Zhi-Yong, Zhang Fu-Chun, Zhang Wei-Hu, Yan Jun-Feng, Zhai Chun-Xue. Temperature dependence of field emission of nano-diamond. Acta Physica Sinica, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [9] Qin Yu-Xiang, Hu Ming. Field emission properties of titanium carbide-modified carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [10] Wang Xin-Qing, Li Liang, Chu Ning-Jie, Jin Hong-Xiao, Ge Hong-Liang. Theoretical optimization for field emission current density from carbon nanotubes array. Acta Physica Sinica, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [11] Zheng Xin-Liang, Li Guang-Shan, Zhong Shou-Xian, Tian Jin-Shou, Li Zhen-Hong, Ren Zhao-Yu. Ablating of carbon nanotube by laser beam and its effect on field emission performance. Acta Physica Sinica, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [12] Yuan Guang, Guo Da-Bo, Gu Chang-Zhi, Dou Yan, Song Hang. Field emission from single diamond particle. Acta Physica Sinica, 2007, 56(1): 143-146. doi: 10.7498/aps.56.143
    [13] Hu Li-Qin, Lin Zhi-Xian, Guo Tai-Liang, Yao Liang, Wang Jing-Jing, Yang Chun-Jian, Zhang Yong-Ai, Zheng Ke-Lu. Field-emission properties of aligned and unaligned In2O3 nanowires. Acta Physica Sinica, 2006, 55(11): 6136-6140. doi: 10.7498/aps.55.6136
    [14] Luo Min, Wang Xin-Qing, Ge Hong-Liang, Wang Miao, Xu Ya-Bo, Chen Qiang, Li Li-Pei, Chen Lei, Guan Gao-Fei, Xia Juan, Jiang Feng. Influence of arrangement and matrix number on the field emission from conductive nanowire array. Acta Physica Sinica, 2006, 55(11): 6061-6067. doi: 10.7498/aps.55.6061
    [15] Li Qiang, Liang Er-Jun. Comparison of field emission of carbon, carbon nitride and boron carbon nitride nanotubes. Acta Physica Sinica, 2005, 54(12): 5931-5936. doi: 10.7498/aps.54.5931
    [16] Wang Xin-Qing, Wang Miao, Li Zhen-Hua, Yang Bing, Wang Feng-Fei, He Pi-Mo, Xu Ya-Bo. Calculation of the enhancement factor for the individual conductive nanowire in field emission. Acta Physica Sinica, 2005, 54(3): 1347-1351. doi: 10.7498/aps.54.1347
    [17] Li Hai-Jun, Gu Chang-Zhi, Dou Yan, Li Jun-Jie. Field emission from individual vertically carbon nanofibers. Acta Physica Sinica, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [18] Song Jiao-Hua, Zhang Geng-Min, Zhang Zhao-Xiang, Sun Ming-Yan, Xue Zeng-Quan. A study of field emission of an array of multi-walled carbon nanotubes*. Acta Physica Sinica, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [19] Zhang Zhao-Xiang, Zhang Geng-Min, Hou Shi-Min, Zhang Hao, Gu Zhen-Nan, Liu Wei-Min, Zhao Xing-Yu, Xue Zeng-Quan. FEM study on the influence of oxygen on field emission of singlewalled carbon nanotubes. Acta Physica Sinica, 2003, 52(5): 1282-1286. doi: 10.7498/aps.52.1282
    [20] SUN JIAN-PING, ZHANG ZHAO-XIANG, HOU SHI-MIN, ZHAO XING-YU, SHI ZU-JIN, GU ZHEN-NAN, LIU WEI-MIN, XUE ZENG-QUAN. A STUDY OF FIELD EMISSION OF SINGLE-WALLED CARBONNANOTUBES USING FIELD EMISSION MICROSCOPY. Acta Physica Sinica, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
Metrics
  • Abstract views:  2161
  • PDF Downloads:  183
  • Cited By: 0
Publishing process
  • Received Date:  11 November 2023
  • Accepted Date:  27 January 2024
  • Available Online:  19 February 2024
  • Published Online:  20 April 2024

/

返回文章
返回