-
Polymeric nitrogen has been recognized to be a new type of high-energy density material (HEDM). However, the polymeric nitrogen structure formed under high-pressure and high-temperature conditions is usually in poor thermodynamic stability. Confinement strategy is conductive to the stabilization of the high-pressure phase of polymeric nitrogen structures, providing a new modulation approach for realizing the polymerization of nitrogen. In this work, nitrogen molecules are confined into the boron nitride nanotubes (N2@BNNTs) under high-pressure condition. The pressure-induced polymerization of nitrogen in N2@BNNT samples with varying nitrogen content and the stabilities of polymeric nitrogen structure are characterized by high-pressure in situ Raman spectroscopy method. In the N2@BNNT sample with higher nitrogen content, the N2 confined to boron nitride nanotubes exhibits different Raman spectral pressure response behaviors compared with that of non confined N2, but both of them are transformed into cg-N structure after laser heating at about 123 GPa. With pressure decreasing to 40 GPa, the unconfined cg-N decomposes and releases huge energy, which affects the stability and results in the decomposition of the confined cg-N. Under ambient conditions, the confined N2 is stabilized in the liquid phase. In the N2@BNNTs sample with lower nitrogen content, the confined N2 is transformed into new polymeric nitrogen structure, which possesses N=N double bonds with different bond lengths close to the those in the
${\mathrm{N}}_3^- $ anion and${\mathrm{N}}_4^+ $ clusters, respectively, after laser-heating in the pressure range of 122–150 GPa. This polynitrogen structure is stable with pressure decreasing to 25 GPa. This work provides new insights into the synthesis and stabilization of polymeric nitrogen structures, opening up new avenues for developing these advanced structures.-
Keywords:
- confinement /
- polymerization /
- high temperature and high pressure
[1] Légaré M A, Rang M, Bélanger-Chabot G, Schweizer J I, Krummenacher I, Bertermann R, Arrowsmith M, Holthausen M C, Braunschweig H 2019 Science 363 1329Google Scholar
[2] Qi C, Li S H, Li Y C, Wang Y, Chen X K, Pang S P 2011 J. Mater. Chem. 21 3221Google Scholar
[3] Klapötke T M, Piercey D G 2011 Inorg. Chem. 50 2732Google Scholar
[4] Li Y C, Qi C, Li S H, Zhang H J, Sun C H, Yu Y Z, Pang S P 2010 J. Am. Chem. Soc. 132 12172Google Scholar
[5] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar
[6] Tomasino D, Kim M, Smith J, Yoo C S 2014 Phys. Rev. Lett. 113 205502Google Scholar
[7] Laniel D, Geneste G, Weck G, Mezouar M, Loubeyre P 2019 Phys. Rev. Lett. 122 066001Google Scholar
[8] Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y 1, Yao Y S, Li B1, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, Mao H K 2019 Nat. Commun. 10 4515Google Scholar
[9] Abou-Rachid H, Hu A, Timoshevskii V, Song Y F, Lussier L S 2008 Phys. Rev. Lett. 100 196401Google Scholar
[10] VTimoshevskii V, Ji W, Abou-Rachid H, Lussier L S, Guo H 2009 Phys. Rev. B 80 115409Google Scholar
[11] Shi X H, Liu B, Liu S J, Niu S F, Liu S, Liu R, Liu B B 2018 Sci. Rep. 8 13758Google Scholar
[12] Li S, Li H Y, Yao Z, Lu S C 2021 Mater. Today. Commun. 26 101670Google Scholar
[13] Lv H, Yao M G, Li Q J, Liu R, Liu B, Yao Z, Liu D D, Liu Z D, Liu J, Chen Z Q, Zou B, Cui T, Liu B B 2015 Sci. Rep. 5 13234Google Scholar
[14] Wu Z Y, Benchafia E M, Iqbal Z, Wang X Q 2014 Chem. Int. Ed. 53 12555Google Scholar
[15] Zhang C, Sun C, Hu B C, Yu C M, Lu M 2017 Science 355 374Google Scholar
[16] Zhang C, Yang C, Yu C M, Zheng Z S, Sun C G 2017 Angew. Chem. 56 4512Google Scholar
[17] Schneider H, Hafner W, Wokaun A, Olijnyk H 1992 J. Chem. Phys. 96 8046Google Scholar
[18] Schiferl D, Buchsbaum S, Mills R L 1985 J. Phys. Chem. 89 2324Google Scholar
[19] Eremets M I, Popov Yu M, Trojan I A, Denisov V N, Boehle R R 2004 J. Chem. Phys. 120 10618Google Scholar
[20] Medvedev S A, Trojan I A, Eremets M I, Palasyuk T, Klapotke T M, Evers J 2009 J. Phys. Condens. Matter. 21 195404Google Scholar
[21] Steele B A, Stavrou E, Crowhurst J C, Zaug J M, Prakapenka V B, Oleynik I I 2017 Chem. Mater. 29 735Google Scholar
[22] Bartlett R J, web site http://www.qtp.ufl.edu/; bartlett/ downloads/polynitrog-en.pdf
[23] Lauderdale W J, Stanton J F, Bartlett R J 1992 J. Phys. Chem. 96 1173Google Scholar
[24] Fathalizadeh A, Pham T, Mickelson W, Zettl A 2014 Nano. Lett. 14 48Google Scholar
[25] Lin J F, Santoro M, Struzhkin V V, Mao H K, Hemley R J, 2004 Rev. Sci. Instrum. 75 3302Google Scholar
-
图 3 123 GPa压力下高含氮量N2@BNNTs样品(a)激光加热前及(b)激光热后样品腔的显微图像; 红色圆圈内为样品激光加热区域(c)高含氮量N2@BNNTs样品激光加热前后的拉曼光谱
Figure 3. Microscopic images of sample cavity before (a) and after (b) laser heating at 123 GPa. Red circle shows an area where the sample was laser-heated; (c) the Raman spectra of high nitrogen content N2@BNNTs sample before and after laser heating at 123 GPa.
图 6 (a)封装液氮后样品腔的显微图像; (b)在122 GPa, 130 GPa以及150 GPa压力下分别激光加热后样品腔的显微图像; (c)低含氮量N2@BNNTs样品的部分升压拉曼光谱及在122 GPa, 130 GPa以及150 GPa压力下分别激光加热后的拉曼光谱
Figure 6. (a) Microscopic image of the sample cavity after encapsulating liquid nitrogen; (b) microscopic images of sample cavities after laser heating at 122 GPa, 130 GPa, and 150 GPa, respectively; (c) the Raman spectra of low nitrogen content N2@BNNTs sample before and after laser heating at 122 GPa, 130 GPa and 150 GPa, respectively.
-
[1] Légaré M A, Rang M, Bélanger-Chabot G, Schweizer J I, Krummenacher I, Bertermann R, Arrowsmith M, Holthausen M C, Braunschweig H 2019 Science 363 1329Google Scholar
[2] Qi C, Li S H, Li Y C, Wang Y, Chen X K, Pang S P 2011 J. Mater. Chem. 21 3221Google Scholar
[3] Klapötke T M, Piercey D G 2011 Inorg. Chem. 50 2732Google Scholar
[4] Li Y C, Qi C, Li S H, Zhang H J, Sun C H, Yu Y Z, Pang S P 2010 J. Am. Chem. Soc. 132 12172Google Scholar
[5] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar
[6] Tomasino D, Kim M, Smith J, Yoo C S 2014 Phys. Rev. Lett. 113 205502Google Scholar
[7] Laniel D, Geneste G, Weck G, Mezouar M, Loubeyre P 2019 Phys. Rev. Lett. 122 066001Google Scholar
[8] Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y 1, Yao Y S, Li B1, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, Mao H K 2019 Nat. Commun. 10 4515Google Scholar
[9] Abou-Rachid H, Hu A, Timoshevskii V, Song Y F, Lussier L S 2008 Phys. Rev. Lett. 100 196401Google Scholar
[10] VTimoshevskii V, Ji W, Abou-Rachid H, Lussier L S, Guo H 2009 Phys. Rev. B 80 115409Google Scholar
[11] Shi X H, Liu B, Liu S J, Niu S F, Liu S, Liu R, Liu B B 2018 Sci. Rep. 8 13758Google Scholar
[12] Li S, Li H Y, Yao Z, Lu S C 2021 Mater. Today. Commun. 26 101670Google Scholar
[13] Lv H, Yao M G, Li Q J, Liu R, Liu B, Yao Z, Liu D D, Liu Z D, Liu J, Chen Z Q, Zou B, Cui T, Liu B B 2015 Sci. Rep. 5 13234Google Scholar
[14] Wu Z Y, Benchafia E M, Iqbal Z, Wang X Q 2014 Chem. Int. Ed. 53 12555Google Scholar
[15] Zhang C, Sun C, Hu B C, Yu C M, Lu M 2017 Science 355 374Google Scholar
[16] Zhang C, Yang C, Yu C M, Zheng Z S, Sun C G 2017 Angew. Chem. 56 4512Google Scholar
[17] Schneider H, Hafner W, Wokaun A, Olijnyk H 1992 J. Chem. Phys. 96 8046Google Scholar
[18] Schiferl D, Buchsbaum S, Mills R L 1985 J. Phys. Chem. 89 2324Google Scholar
[19] Eremets M I, Popov Yu M, Trojan I A, Denisov V N, Boehle R R 2004 J. Chem. Phys. 120 10618Google Scholar
[20] Medvedev S A, Trojan I A, Eremets M I, Palasyuk T, Klapotke T M, Evers J 2009 J. Phys. Condens. Matter. 21 195404Google Scholar
[21] Steele B A, Stavrou E, Crowhurst J C, Zaug J M, Prakapenka V B, Oleynik I I 2017 Chem. Mater. 29 735Google Scholar
[22] Bartlett R J, web site http://www.qtp.ufl.edu/; bartlett/ downloads/polynitrog-en.pdf
[23] Lauderdale W J, Stanton J F, Bartlett R J 1992 J. Phys. Chem. 96 1173Google Scholar
[24] Fathalizadeh A, Pham T, Mickelson W, Zettl A 2014 Nano. Lett. 14 48Google Scholar
[25] Lin J F, Santoro M, Struzhkin V V, Mao H K, Hemley R J, 2004 Rev. Sci. Instrum. 75 3302Google Scholar
Catalog
Metrics
- Abstract views: 2381
- PDF Downloads: 57
- Cited By: 0