Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of large diamond single crystals under high pressure and high temperature

You Yue Li Shang-Sheng Su Tai-Chao Hu Mei-Hua Hu Qiang Wang Jun-Zhuo Gao Guang-Jin Guo Ming-Ming Nie Yuan

Citation:

Research progress of large diamond single crystals under high pressure and high temperature

You Yue, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Hu Qiang, Wang Jun-Zhuo, Gao Guang-Jin, Guo Ming-Ming, Nie Yuan
PDF
HTML
Get Citation
  • Diamond has a series of extreme characteristics superior to other materials, and also very wide application scope. The large diamond single crystal can play a role in its functional characteristics, which has become a research hotspot. In this paper, we introduce the principle and process of synthesizing large diamond single crystal by temperature gradient method (TGM) under high pressure and high temperature (HPHT), and summarizes the research status and research directions of different types of and additives-doped large diamond single crystals respectively. The principle of the temperature gradient method is that the carbon source, driven by the temperature gradient, diffuses from the high concentration region at the high temperature end to the low concentration region at the low temperature end, and diamonds are grown on the seed crystal. The growth rate of diamond crystal is controlled by adjusting the axial temperature gradient at synthesis cell, and the shape growth of Ib-type large diamond is controlled by the distribution in the V-shaped growth area. We introduce different kinds of diamond large single crystals from five aspects. Firstly, the Ia-type diamond large single crystal can be obtained by the annealing treatment of Ib-type diamond under HPHT. The conversion rate of C centre to A centre for nitrogen in diamond is improved by optimizing the conditions of HPHT. Secondly, the Ib-type larger diamond is studied very much in the following areas: the analysis of its surface characteristic, the control of inclusions and cracks, the precipitation mechanism and the elimination measures of regrown graphite and the mass production technology of multiseed method. Thirdly, IIa-type large diamond single crystal is introduced in which the nitrogen getter is selected due to the ability Al and Ti (Cu) to getter nitrogen, the catalyst is selected because of its effect on the nitrogen content in the diamond synthesized with Fe or Ni based catalyst, and the elimination method of microcrystalline graphite precipitation is presented by analyzing its mechanism. Fourthly, the boron elements exist in IIb-type diamond and have influence on the growth characteristics of synthetic diamond. Fifthly, introduced is the research status of diamond synthesized with B, N, S, P doping elements, in which its individual substance or their compound is used as a doping source or boron and other elements with small radius are used as co-doping agent. Then S or P with B co-doping is more conducive to the improvement of the performance of n-type diamond large single crystal semiconductor. Therefore, it is proposed that the large diamond single crystal need strengthening in mass production of IIa-type large diamond single crystal, superconducting characteristics of IIb-type large diamond single crystal, and doping of n-type semiconductors.
      Corresponding author: Li Shang-Sheng, lishsh@hpu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Henan Province, China (Grant No. 182300410279), the Key Science and Technology Program of Henan Province, China (Grant No. 182102210311), the Key Scientific Research Project in Colleges and Universities of Henan Province, China (Grant No. 18A430017), the Young Core Instructor Training Program of Higher Education of Henan Province, China (Grant No. 2018GGJS057), and the Science and Technology Innovation Team in Colleges and Universities of Henan Province, China (Grant No. 19IRTSTHN027)
    [1]

    Kiflawi I, Bruley J 2000 Diamond Relat. Mater. 9 87Google Scholar

    [2]

    龚春生, 李尚升, 张贺 2016 材料导报 30 36Google Scholar

    Gong C S, Li S S, Zhang H 2016 Mater. Rev. 30 36Google Scholar

    [3]

    唐敬友, 董庆东, 谷岩 2000 金刚石与磨料磨具工程 03 24Google Scholar

    Tang J Y, Dong Q D, Gu Y 2000 Diamond Abras. Eng. 03 24Google Scholar

    [4]

    胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏 2012 物理学报 61 078102Google Scholar

    Hu M H, Ma H A, Yan B M, Zhang Z F, Li Y, Zhou Z X, Qin J M, Jia X P 2012 Acta Phys. Sin. 61 078102Google Scholar

    [5]

    满卫东, 吕继磊, 吴宇琼, 陈朋, 朱金凤, 董维 2010 宝石和宝石学杂志 12 6Google Scholar

    Man W D, Lv J L, Wu Y Q, Chen P, Zhu J F, Dong W 2010 J. Gems Gemmol. 12 6Google Scholar

    [6]

    Mankelevich Y A, May P W 2008 Diamond Relat. Mater. 17 1021Google Scholar

    [7]

    Chrenko R M, Strong H M, Tuft R E 1971 Philos. Mag. A 23 313Google Scholar

    [8]

    Kanda H, Akaishi M, Yamaoka S 1999 Diamond Relat. Mater. 8 1441Google Scholar

    [9]

    Sumiya H, Harano K, Tamasaku K 2015 Diamond Relat. Mater. 58 221Google Scholar

    [10]

    Demlow S N, Rechenberg R, Grotjohn T 2014 Diamond Relat. Mater. 49 19Google Scholar

    [11]

    Stefanova A, Ayata S, Erema A, Ernst S, Baltruschat H 2013 Electrochim. Acta 110 560Google Scholar

    [12]

    Blank V D, Kuznetsov M S, Nosukhin S A, Terentiev S A, Denisov V N 2007 Diamond Relat. Mater. 16 800Google Scholar

    [13]

    Grotjohn T A, Tran D T, Yaran M K, Demlow S N, Schuelke T 2014 Diamond Relat. Mater. 44 129Google Scholar

    [14]

    李尚升, 马红安, 臧传义, 田宇, 张亚飞, 肖宏宇, 尹斌华, 贾晓鹏 2006 金刚石与磨料磨具工程 152 16Google Scholar

    Li S S, Ma H A, Zang C Y, Tian Y, Zhang Y F, Xiao H Y, Yin B H, Jia X P 2006 Diamond Abras. Eng. 152 16Google Scholar

    [15]

    Li S S, Zhang H, Su T C, Hu Q, Hu M H, Gong C S, Ma H A, Jia X P, Li Y, Xiao H Y 2017 Chin. Phys. B 26 068102Google Scholar

    [16]

    Zhang H, Li S S, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Chin. Phys. B 26 058102Google Scholar

    [17]

    罗宁, 李尚升, 贾晓鹏 2012 金刚石与磨料磨具工程 32 15Google Scholar

    Luo N, Li S S, Jia X P 2012 Diamond Abras. Eng. 32 15Google Scholar

    [18]

    熊礼威, 汪建华, 满卫东, 刘长林, 翁俊 2010 材料导报 24 117Google Scholar

    Xiong L W, Wang J H, Man W D, Li C L, Weng J 2010 Mater. Rev. 24 117Google Scholar

    [19]

    Chevallier J, Ballutaud D, Bertrand T, Jomard F, Deneuville A, Etienne G, Pruvost F 1999 Phys. Status Solidi A 174 73Google Scholar

    [20]

    Wentorf R H 1971 J. Phys. Chem. 75 1833Google Scholar

    [21]

    肖宏宇, 苏剑峰, 张永胜, 鲍志刚 2012 物理学报 61 248101Google Scholar

    Xiao H Y, Su J F, Zhang Y S, Bao Z G 2012 Acta Phys. Sin. 61 248101Google Scholar

    [22]

    张聪, 韩奇钢, 马红安, 肖宏宇, 李瑞, 李战厂, 田宇, 贾晓鹏 2010 物理学报 59 1923Google Scholar

    Zhang C, Han Q G, Ma H A, Xiao H Y, Li R, Li Z C, Jia X P 2010 Acta Phys. Sin. 59 1923Google Scholar

    [23]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701Google Scholar

    [24]

    Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Ji X P 2012 Chin. Phys. B 21 098101Google Scholar

    [25]

    Li Y D, Jia X P, Yan B M, Chen N, Fang C, Li Y, Sun S S, Ma H A 2016 RSC Adv. 6 40330Google Scholar

    [26]

    肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏 2018 物理学报 67 140702Google Scholar

    Xiao H Y, Qin Y K, Li L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702Google Scholar

    [27]

    Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237 1281Google Scholar

    [28]

    Kiflawi I, Kanda H, Lawson S C 2002 Diamond Relat. Mater. 11 204Google Scholar

    [29]

    Reutsky V N, Borzdov Y M, Palyanov Y N 2012 Diamond Relat. Mater. 21 7Google Scholar

    [30]

    Tian Y, Ma H A, Li S S, Xiao H Y, Zhang Y F, Huang G F, Ma L Q, Jia X P 2007 Chin. Phys. Lett. 24 2115Google Scholar

    [31]

    肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜 2016 物理学报 65 070705Google Scholar

    Xiao H Y, Qin Y K, Sui Y M, Liang Z Z, Liu L N, Zhang Y S 2016 Acta Phys. Sin. 65 070705Google Scholar

    [32]

    秦玉琨, 肖宏宇, 刘利娜, 孙瑞瑞, 胡秋波, 鲍志刚, 张永胜, 李尚升, 贾晓鹏 2019 物理学报 68 020701Google Scholar

    Qin Y K, Xiao H Y, Liu L N, Sun R R, Hu Q B, Bao Z G, Zhang Y S, Li S S, Jia X P 2019 Acta Phys. Sin. 68 020701Google Scholar

    [33]

    张恒涛, 肖长江, 尚秋元, 栗正新, 朱玲艳 2013 材料导报 27 65Google Scholar

    Zhang H T, Xiao C J, Shang Q Y, Li Z X, Zhu L Y 2013 Mater. Rev. 27 65Google Scholar

    [34]

    Sumiya H, Toda N, Satoh S 2005 Sei. Tech. Rev. 60 10

    [35]

    Abbaschian R, Zhu H, Clarke C 2005 Diamond Relat. Mater. 14 1916Google Scholar

    [36]

    Xiao H Y, Jia X P, Zang C Y, Li S S, Tian Y, Zhang Y F, Huang G F, Ma L Q, Ma H A 2008 Chin. Phys. Lett. 25 1469Google Scholar

    [37]

    王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇 2018 物理学报 67 168101Google Scholar

    Wang J Z, Li S S, Su T C, Hu M H, Hu Q, Wu Y M, Wang J K, Han F, Yu K P, Gao G J, Guo M M, Jia X P, Ma H A, Xiao H Y 2018 Acta Phys. Sin. 67 168101Google Scholar

    [38]

    Chrenko R M, Tuft R E, Strong H M 1977 Nature 270 141Google Scholar

    [39]

    Chepurov A A, Dereppe J M, Fedorov I I, Chepurov A I 2000 Diamond Relat. Mater. 9 1374Google Scholar

    [40]

    Evans T, Qi Z 1982 Proc. R. Soc. A 381 159Google Scholar

    [41]

    Mainwood A 1994 Phys. Rev. B 49 7934Google Scholar

    [42]

    Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukunaga O 1980 J. Mater. Sci. 15 2743Google Scholar

    [43]

    Zang C Y, Huang G F, Ma H A, Jia X P 2007 Chin. Phys. Lett. 24 2991Google Scholar

    [44]

    张贺, 李尚升, 宿太超, 胡美华, 周佑默, 樊浩天, 龚春生, 贾晓鹏, 马红安, 肖宏宇 2015 物理学报 64 198103Google Scholar

    Zhang H, Li S S, Su T C, Hu M H, Zhou Y M, Fan H T, Gong C S, Jia X P, Ma H A, Xiao H Y 2015 Acta Phys. Sin. 64 198103Google Scholar

    [45]

    Beha K, Batalov A, Manson N B, Bratschitsch R, Leitenstorfer A 2012 Phys. Rev. Lett. 109 097404Google Scholar

    [46]

    董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 物理学报 67 160301Google Scholar

    Dong Y, Du B, Zhang S C, Chen S C, Sun F W 2018 Acta Phys. Sin. 67 160301Google Scholar

    [47]

    Chen L C, Miao X Y, Ma H A, Guo L S, Chen L X, Wang Z K, Yang Z Q, Jia X P 2018 CrystEngComm 20 7164Google Scholar

    [48]

    Chen N, Ma H A, Yan B M, Chen L C, Chen L X, Guo L S, Miao X Y, Fang C, Jia X P 2018 Cryst. Growth Des. 18 3870Google Scholar

    [49]

    Han F, Li S S, Jia X F, Chen W Q, Su T C, Hu M H, Yu K P, Wang J K, WuY M, Ma H A, Jia X P 2019 Chin. Phys. B 28 028103Google Scholar

    [50]

    Tatsumi N, Tamasaku K, Ito T, Sumiya H 2017 J. Cryst. Growth 458 27

    [51]

    Masuya S, Hanada K, Oshima T, Sumiya H, Kasu M 2017 Diamond Relat. Mater. 75 155Google Scholar

    [52]

    臧传义, 马红安, 黄国峰, 贾晓鹏 2007 人工晶体学报 36 536Google Scholar

    Zang C Y, Ma H A, Huang G F, Jia X P 2007 J. Synthetic Cryst. 36 536Google Scholar

    [53]

    臧传义, 马红安, 黄国锋, 贾晓鹏 2007 吉林大学学报: 工学版 37 1097

    Zang C Y, Ma H A, Huang G F, Jia X P 2007 J. Jilin Univ: Technol. Ed. 37 1097

    [54]

    Zang C Y, Chen X Z, Hu Q, Ma H A, Jia X P 2009 Chin. Sci. Bull. 54 2535Google Scholar

    [55]

    黄国锋, 臧传义, 马红安, 李尚升, 田宇, 肖宏宇, 张亚飞, 马利秋, 李勇, 陈孝洲, 贾晓鹏 2008 超硬材料工程 20 9Google Scholar

    Huang G F, Zang C Y, Ma H A, Li S S, Tian Y, Xiao H Y, Zhang Y F, Ma L Q, Li Y, Chen X Z, Jiao X P 2008 Superhard Mater. Eng. 20 9Google Scholar

    [56]

    胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安 2013 物理学报 62 188103

    Hu M H, Bi N, Li S S, Su T C, Li X L, Hu Q, Jia X P, Ma H A 2013 Acta Phys. Sin. 62 188103

    [57]

    Han Q G, Ban Q C, Zhu P W 2015 J. Cryst. Growth 422 29Google Scholar

    [58]

    Li S S, Li X L, Ma H A, Su TC, Xiao H Y, Huang G F, Li Y, Zhang Y S, Jia X P 2011 Chin. Phys. Lett. 28 68101Google Scholar

    [59]

    Wang X C, Ma H A, Zang C Y, Tian Y, Li S S, Jia X P 2005 Chin. Phys. Lett. 22 1800Google Scholar

    [60]

    Li S S, Jia X P, Zang C Y, Tian Y, Zang Y F, Xiao H Y, Huang G F, Ma L Q, Li Y, Li X L, Ma H A 2008 Chin. Phys. Lett. 25 3801Google Scholar

    [61]

    Lysakovskii V V, Ivakhnenko S A 2009 J. Superhard Mater. 31 7Google Scholar

    [62]

    Guo M M, Li S S, Hu M H, Su T C, Wang J Z, Gao G J, You Y, Nie Y 2020 Chin. Phys. B 29 018101Google Scholar

    [63]

    李尚升, 张曙光, 李小雷, 宿太超, 肖宏宇, 黄国锋, 李勇, 马红安, 贾晓鹏 2011 功能材料 42 58

    Li S S, Zhang S G, Li X L, Su T C, Xiao H Y, Huang G F, Li Y, Ma H A, Jia X P 2011 J. Funct. Mater. 42 58

    [64]

    Li S S, Gong C S, Su T C, Hu M H, Zhang H, Ma H A, Jia X P 2017 Int. J. Refract. Met. Hard Mater. 62 37Google Scholar

    [65]

    Bormashov V S, Tarelkin S A, Buga S G, Kuznetsov M S, Terentiev S A, Semenov A N, Blank V N 2013 Diamond Relat. Mater. 35 19Google Scholar

    [66]

    Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 677Google Scholar

    [67]

    肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺 2014 物理学报 63 198101Google Scholar

    Xiao H Y, Li S S, Qin Y K, Liang Z Z, Zhang Y S, Zhang D M, Zhang Y S 2014 Acta Phys. Sin. 63 198101Google Scholar

    [68]

    Howell D, Collins A T, Loudin L C, Diggle P L, D'Haenens-Johanssonf U F S, Smit K V, Katrusha A N, Butler J E, Nestola F 2019 Diamond Relat. Mater. 96 207Google Scholar

    [69]

    肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥 2016 物理学报 65 050701

    Xiao H Y, Liu L N, Qin Y K, Zhang D M, Zhang Y S, Sui Y M, Liang Z Z 2016 Acta Phys. Sin. 65 050701

    [70]

    Dai Y, Long R, Huang B B, Zhang Z K 2007 Diamond Relat. Mater. 16 353Google Scholar

    [71]

    Palyanov Y N, BorzdovY M, Khokhryakov A F, Kupriyanov I N, Sokol A G 2010 Cryst. Growth Des. 10 3169Google Scholar

    [72]

    Huang G F, Jia X P, Li S S, Zhang Y F, Li Y, Zhao M, Ma H A 2010 Chin. Phys. B 19 118101Google Scholar

    [73]

    Wang J Z, Li S S, Hu M H, Su T C, Gao G J, Guo M M, You Y, Nie Y 2020 Int. J. Refract. Met. Hard Mater. 87 105150Google Scholar

    [74]

    Kalish R 2001 Diamond Relat. Mater. 10 1749Google Scholar

    [75]

    Zhimulev E I, Sonin V M, Mironov A M, Chepurov A I 2016 Geochem. Int. 54 415Google Scholar

    [76]

    Fang S, Ma H A, Cai Z H, Chun X, Wang C X, Fang C, Zhao Z D, Lu Z Y, Wang Y K, Chen L C, Jia X P 2020 CrystEngComm 22 602Google Scholar

    [77]

    Chen N, Ma H A, Chen L X, Yan B M, Fang C, Liu X B, Li Y D, Guo L S, Chen L C, Jia X P 2018 Int. J. Refract. Met. Hard Mater. 71 141Google Scholar

    [78]

    Zhang H, Li S S, Su T C, Hu M H, Li G H, Ma H A, JiaX P 2016 Chin. Phys. B 25 118104Google Scholar

    [79]

    Wan J K, Li S S, Gui J L, Feng L, Yu H, Su T C, Hu M H, Yu K P, Han F, Ma H A, Jia X P 2019 Int. J. Refract. Met. Hard Mater. 81 100Google Scholar

    [80]

    Wan J K, Li S S, Wang N, Liu H J, Su T C, Hu M H, Yu K P, Han F, Ma H A 2019 Chin. Phys. Lett. 36 046101Google Scholar

    [81]

    Tang L, Yue R F, Wang Y 2018 Carbon 130 458Google Scholar

    [82]

    Zhang H, Li S S, Li G H, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Int. J. Refract. Met. Hard Mater. 66 26Google Scholar

    [83]

    Gong C S, Li S S, Zhang H R, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Int. J. Refract. Met. Hard Mater. 66 116Google Scholar

    [84]

    Yu K P, Li S S, Yang q, Leng K Q, Hu M H, Su T C, Guo M M, Gao G J, Wang J Z, You Y 2019 Cryst. Eng. Comm. 21 6810Google Scholar

    [85]

    Yan B M, Jia X P, Fang C, Chen N, Li Y D, Sun S S, Ma H A 2016 Int. J. Refract. Met. Hard Mater. 54 309Google Scholar

    [86]

    Yan B M, Jia X P, Sun S S, Zhou X Z, Fang C, Chen N, Li Y D, Li Y, Ma H A 2015 Int. J. Refract. Met. Hard Mater. 48 56Google Scholar

    [87]

    Sun S S, Cui W, Jia X P, Ma H A, Lv J 2016 Int. J. Refract. Met. Hard Mater. 59 56Google Scholar

    [88]

    Hu M H, Bi N, Li S S, Su T C, Hu Q, Ma H A, Jia X P 2017 CrystEngComm 19 4571Google Scholar

    [89]

    Liu X B, Chen X, Singh D J, Stern R A, Wu J, Petitgirard S, Bina C R, Jacobsen S D 2019 Proc. Natl. Acad. Sci. 116 7703Google Scholar

  • 图 1  TGM原理示意图

    Figure 1.  Schematic diagram of temperature gradient method

    图 2  金刚石晶体生长不同阶段的温度场分布 (a) 0.5 h; (b) 6.5 h; (c) 10.0 h; (d) 13.0 h; (e) 17.5 h; (f) 23.0 h[23]

    Figure 2.  Distribution of temperature field in different stages of diamond crystal growth: (a) 0.5 h; (b) 6.5 h; (c) 10.0 h; (d) 13.0 h; (e) 17.5 h; (f) 23.0 h[23].

    图 3  三种不同高度触媒的对流场分布 (a) 2.0 mm; (b) 2.4 mm; (c) 2.8 mm[25]

    Figure 3.  Distributions of convection field of the catalyst with three different heights: (a) 2.0 mm; (b) 2.4 mm; (c) 2.8 mm[25].

    图 4  不同尺寸籽晶生长优质金刚石单晶的极限生长速度与合成时间关系曲线 (a) 0.8 mm; (b) 1.5 mm; (c) 2.2 mm[32]

    Figure 4.  Curves between the limit growth rate and the synthesis time of the high quality diamonds with different diameters of the seed-crystals: (a) 0.8 mm; (b) 1.5 mm; (c) 2.2 mm[32].

    图 5  不同生长面生长的金刚石大单晶的V形生长区示意图[37]

    Figure 5.  Schematic diagram of the V-shaped growth region of large diamond single crystals grown on different growth surfaces[37].

    图 6  A中心(左)、B中心(中)和C中心(右)示意图, 氮原子以黑色、碳以白色、空位以虚线圆圈表示[41]

    Figure 6.  Schematics of A-centre(left), B-centre(middle), C-centre (right)[41].

    图 7  不同温度下合成Ib型金刚石大单晶表面中心及棱角处显微照片[44] (a), (a') 1250 ℃; (b), (b') 1280 ℃, (c), (c') 1310 ℃

    Figure 7.  The microscopic photographs of surface centers and angularities of type Ib single crystal diamond synthesized at different temperatures[44]: (a), (a') 1250 ℃; (b),(b') 1280 ℃, (c), (c') 1310 ℃

    图 8  金刚石NV色心介绍 (a) 金刚石中的NV色心原子结构; (b) NV色心的能级示意图[46]

    Figure 8.  Introduction of the NV center in diamond: (a) Schematic of the NV center structure in diamond; (b) energy level diagram of NV[46]

    图 9  再结晶石墨析出原理示意图[53]

    Figure 9.  Formation mechanism schematic diagram of regrown graphite [53].

    图 10  样品腔体组装图(左半部分)和腔体温度分布图及放大图(右半部分)[57] (a) 传统CHPA样品腔体组装图; (b) 新型CHPA样品腔体组装图

    Figure 10.  Plots of the sample cell assembly (in the left half) and the distributions of cell temperature as well as the enlarged figure (in the right half) [57]: (a) The sample cell assembly used for the conventional CHPA; (b) the sample cell assembly used for the novel CHPA.

    图 11  生长IIa型金刚石黑色石墨粉末SEM图[63]

    Figure 11.  The SEM photo of black powder at growing type IIa diamond[63].

    图 12  金刚石掺杂元素分类

    Figure 12.  Diamond doped element classification.

    图 13  氮源重量比为0.1%的合成孪晶金刚石的光学图像 (a) 1513 K; (b) 1553 K[73]

    Figure 13.  Optical image of diamond synthesized with N source weight percent of 0.1%: (a) 1513 K; (b) 1553 K[73].

    图 14  金刚石中B-O杂质态理论 (a) B3O和(b)B4O化合物的优化结构(左上)和电子定位功能等值面(左下). 为了清楚起见, 仅示出结构图中的B和O原子相邻的C原子. 蓝色、红色和黑色球体分别对应于B, O和C原子. B3O和B4O金刚石的计算带结构和PDOS分别在右侧图中显示[89]

    Figure 14.  Theoretical results of B-O impurity states in diamond. Optimized structures (upper left) and electron localization function isosurfaces (lower left) for (a) B3O and (b) B4O complexes. Only the C atoms adjacent to the B and O atoms in the structure pictures are illustrated for clarity. The blue, red, and black spheres correspond to B, O, and C atoms, respectively. The calculated band structures and PDOS for B3O and B4O diamond are shown in right, respectively[89].

    表 1  不同触媒和除氮剂组合的使用效果

    Table 1.  Effect of different catalysts and nitrogen getter.

    合金触媒除氮剂除氮效果晶体质量
    FeNiCoTi[59]氮含量明显减少, 除氮效果好, 很难得到优质IIa型金刚石金刚石晶体中存在夹杂物和表面蚀坑
    Ti/Cu[15]氮含量小于1 ppm, 除氮效果好优质IIa型金刚石
    NiMnCoAl[58]Al和N存在可逆反应, 除氮效果不好, 很难得到IIa型金刚石金刚石晶体中存在夹杂物和表面蚀坑
    Ti/Cu[15]氮含量小于1 ppm, 除氮效果好优质IIa型金刚石
    FeCoTi[61]氮含量明显减少, 除氮效果好, 很难得到优质IIa型金刚石表面出现夹杂物
    Zr[61]氮含量明显减少除氮效果好需要严格控制其生长速度
    DownLoad: CSV

    表 2  金刚石不同掺杂元素电学性能

    Table 2.  Electrical properties of different doped elements in diamond.

    掺杂元素P[83]Mn3P2[84]S[78]FeS[79]NiS[80]B-FeS[82]B-S[79]
    掺杂方式替位式替位式替位式替位式替位式替位式替位式
    半径大小rC < rPrC < rPrC < rSrC < rSrC < rSrC > rB
    rC < rS
    rC > rB
    rC < rS
    最小电阻率/106 Ω·cm3.5600.5160.9630.8131.1630.0960.933
    特性n型n型n型n型n型n型n(p)型
    DownLoad: CSV
  • [1]

    Kiflawi I, Bruley J 2000 Diamond Relat. Mater. 9 87Google Scholar

    [2]

    龚春生, 李尚升, 张贺 2016 材料导报 30 36Google Scholar

    Gong C S, Li S S, Zhang H 2016 Mater. Rev. 30 36Google Scholar

    [3]

    唐敬友, 董庆东, 谷岩 2000 金刚石与磨料磨具工程 03 24Google Scholar

    Tang J Y, Dong Q D, Gu Y 2000 Diamond Abras. Eng. 03 24Google Scholar

    [4]

    胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏 2012 物理学报 61 078102Google Scholar

    Hu M H, Ma H A, Yan B M, Zhang Z F, Li Y, Zhou Z X, Qin J M, Jia X P 2012 Acta Phys. Sin. 61 078102Google Scholar

    [5]

    满卫东, 吕继磊, 吴宇琼, 陈朋, 朱金凤, 董维 2010 宝石和宝石学杂志 12 6Google Scholar

    Man W D, Lv J L, Wu Y Q, Chen P, Zhu J F, Dong W 2010 J. Gems Gemmol. 12 6Google Scholar

    [6]

    Mankelevich Y A, May P W 2008 Diamond Relat. Mater. 17 1021Google Scholar

    [7]

    Chrenko R M, Strong H M, Tuft R E 1971 Philos. Mag. A 23 313Google Scholar

    [8]

    Kanda H, Akaishi M, Yamaoka S 1999 Diamond Relat. Mater. 8 1441Google Scholar

    [9]

    Sumiya H, Harano K, Tamasaku K 2015 Diamond Relat. Mater. 58 221Google Scholar

    [10]

    Demlow S N, Rechenberg R, Grotjohn T 2014 Diamond Relat. Mater. 49 19Google Scholar

    [11]

    Stefanova A, Ayata S, Erema A, Ernst S, Baltruschat H 2013 Electrochim. Acta 110 560Google Scholar

    [12]

    Blank V D, Kuznetsov M S, Nosukhin S A, Terentiev S A, Denisov V N 2007 Diamond Relat. Mater. 16 800Google Scholar

    [13]

    Grotjohn T A, Tran D T, Yaran M K, Demlow S N, Schuelke T 2014 Diamond Relat. Mater. 44 129Google Scholar

    [14]

    李尚升, 马红安, 臧传义, 田宇, 张亚飞, 肖宏宇, 尹斌华, 贾晓鹏 2006 金刚石与磨料磨具工程 152 16Google Scholar

    Li S S, Ma H A, Zang C Y, Tian Y, Zhang Y F, Xiao H Y, Yin B H, Jia X P 2006 Diamond Abras. Eng. 152 16Google Scholar

    [15]

    Li S S, Zhang H, Su T C, Hu Q, Hu M H, Gong C S, Ma H A, Jia X P, Li Y, Xiao H Y 2017 Chin. Phys. B 26 068102Google Scholar

    [16]

    Zhang H, Li S S, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Chin. Phys. B 26 058102Google Scholar

    [17]

    罗宁, 李尚升, 贾晓鹏 2012 金刚石与磨料磨具工程 32 15Google Scholar

    Luo N, Li S S, Jia X P 2012 Diamond Abras. Eng. 32 15Google Scholar

    [18]

    熊礼威, 汪建华, 满卫东, 刘长林, 翁俊 2010 材料导报 24 117Google Scholar

    Xiong L W, Wang J H, Man W D, Li C L, Weng J 2010 Mater. Rev. 24 117Google Scholar

    [19]

    Chevallier J, Ballutaud D, Bertrand T, Jomard F, Deneuville A, Etienne G, Pruvost F 1999 Phys. Status Solidi A 174 73Google Scholar

    [20]

    Wentorf R H 1971 J. Phys. Chem. 75 1833Google Scholar

    [21]

    肖宏宇, 苏剑峰, 张永胜, 鲍志刚 2012 物理学报 61 248101Google Scholar

    Xiao H Y, Su J F, Zhang Y S, Bao Z G 2012 Acta Phys. Sin. 61 248101Google Scholar

    [22]

    张聪, 韩奇钢, 马红安, 肖宏宇, 李瑞, 李战厂, 田宇, 贾晓鹏 2010 物理学报 59 1923Google Scholar

    Zhang C, Han Q G, Ma H A, Xiao H Y, Li R, Li Z C, Jia X P 2010 Acta Phys. Sin. 59 1923Google Scholar

    [23]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701Google Scholar

    [24]

    Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Ji X P 2012 Chin. Phys. B 21 098101Google Scholar

    [25]

    Li Y D, Jia X P, Yan B M, Chen N, Fang C, Li Y, Sun S S, Ma H A 2016 RSC Adv. 6 40330Google Scholar

    [26]

    肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏 2018 物理学报 67 140702Google Scholar

    Xiao H Y, Qin Y K, Li L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702Google Scholar

    [27]

    Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237 1281Google Scholar

    [28]

    Kiflawi I, Kanda H, Lawson S C 2002 Diamond Relat. Mater. 11 204Google Scholar

    [29]

    Reutsky V N, Borzdov Y M, Palyanov Y N 2012 Diamond Relat. Mater. 21 7Google Scholar

    [30]

    Tian Y, Ma H A, Li S S, Xiao H Y, Zhang Y F, Huang G F, Ma L Q, Jia X P 2007 Chin. Phys. Lett. 24 2115Google Scholar

    [31]

    肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜 2016 物理学报 65 070705Google Scholar

    Xiao H Y, Qin Y K, Sui Y M, Liang Z Z, Liu L N, Zhang Y S 2016 Acta Phys. Sin. 65 070705Google Scholar

    [32]

    秦玉琨, 肖宏宇, 刘利娜, 孙瑞瑞, 胡秋波, 鲍志刚, 张永胜, 李尚升, 贾晓鹏 2019 物理学报 68 020701Google Scholar

    Qin Y K, Xiao H Y, Liu L N, Sun R R, Hu Q B, Bao Z G, Zhang Y S, Li S S, Jia X P 2019 Acta Phys. Sin. 68 020701Google Scholar

    [33]

    张恒涛, 肖长江, 尚秋元, 栗正新, 朱玲艳 2013 材料导报 27 65Google Scholar

    Zhang H T, Xiao C J, Shang Q Y, Li Z X, Zhu L Y 2013 Mater. Rev. 27 65Google Scholar

    [34]

    Sumiya H, Toda N, Satoh S 2005 Sei. Tech. Rev. 60 10

    [35]

    Abbaschian R, Zhu H, Clarke C 2005 Diamond Relat. Mater. 14 1916Google Scholar

    [36]

    Xiao H Y, Jia X P, Zang C Y, Li S S, Tian Y, Zhang Y F, Huang G F, Ma L Q, Ma H A 2008 Chin. Phys. Lett. 25 1469Google Scholar

    [37]

    王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇 2018 物理学报 67 168101Google Scholar

    Wang J Z, Li S S, Su T C, Hu M H, Hu Q, Wu Y M, Wang J K, Han F, Yu K P, Gao G J, Guo M M, Jia X P, Ma H A, Xiao H Y 2018 Acta Phys. Sin. 67 168101Google Scholar

    [38]

    Chrenko R M, Tuft R E, Strong H M 1977 Nature 270 141Google Scholar

    [39]

    Chepurov A A, Dereppe J M, Fedorov I I, Chepurov A I 2000 Diamond Relat. Mater. 9 1374Google Scholar

    [40]

    Evans T, Qi Z 1982 Proc. R. Soc. A 381 159Google Scholar

    [41]

    Mainwood A 1994 Phys. Rev. B 49 7934Google Scholar

    [42]

    Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukunaga O 1980 J. Mater. Sci. 15 2743Google Scholar

    [43]

    Zang C Y, Huang G F, Ma H A, Jia X P 2007 Chin. Phys. Lett. 24 2991Google Scholar

    [44]

    张贺, 李尚升, 宿太超, 胡美华, 周佑默, 樊浩天, 龚春生, 贾晓鹏, 马红安, 肖宏宇 2015 物理学报 64 198103Google Scholar

    Zhang H, Li S S, Su T C, Hu M H, Zhou Y M, Fan H T, Gong C S, Jia X P, Ma H A, Xiao H Y 2015 Acta Phys. Sin. 64 198103Google Scholar

    [45]

    Beha K, Batalov A, Manson N B, Bratschitsch R, Leitenstorfer A 2012 Phys. Rev. Lett. 109 097404Google Scholar

    [46]

    董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 物理学报 67 160301Google Scholar

    Dong Y, Du B, Zhang S C, Chen S C, Sun F W 2018 Acta Phys. Sin. 67 160301Google Scholar

    [47]

    Chen L C, Miao X Y, Ma H A, Guo L S, Chen L X, Wang Z K, Yang Z Q, Jia X P 2018 CrystEngComm 20 7164Google Scholar

    [48]

    Chen N, Ma H A, Yan B M, Chen L C, Chen L X, Guo L S, Miao X Y, Fang C, Jia X P 2018 Cryst. Growth Des. 18 3870Google Scholar

    [49]

    Han F, Li S S, Jia X F, Chen W Q, Su T C, Hu M H, Yu K P, Wang J K, WuY M, Ma H A, Jia X P 2019 Chin. Phys. B 28 028103Google Scholar

    [50]

    Tatsumi N, Tamasaku K, Ito T, Sumiya H 2017 J. Cryst. Growth 458 27

    [51]

    Masuya S, Hanada K, Oshima T, Sumiya H, Kasu M 2017 Diamond Relat. Mater. 75 155Google Scholar

    [52]

    臧传义, 马红安, 黄国峰, 贾晓鹏 2007 人工晶体学报 36 536Google Scholar

    Zang C Y, Ma H A, Huang G F, Jia X P 2007 J. Synthetic Cryst. 36 536Google Scholar

    [53]

    臧传义, 马红安, 黄国锋, 贾晓鹏 2007 吉林大学学报: 工学版 37 1097

    Zang C Y, Ma H A, Huang G F, Jia X P 2007 J. Jilin Univ: Technol. Ed. 37 1097

    [54]

    Zang C Y, Chen X Z, Hu Q, Ma H A, Jia X P 2009 Chin. Sci. Bull. 54 2535Google Scholar

    [55]

    黄国锋, 臧传义, 马红安, 李尚升, 田宇, 肖宏宇, 张亚飞, 马利秋, 李勇, 陈孝洲, 贾晓鹏 2008 超硬材料工程 20 9Google Scholar

    Huang G F, Zang C Y, Ma H A, Li S S, Tian Y, Xiao H Y, Zhang Y F, Ma L Q, Li Y, Chen X Z, Jiao X P 2008 Superhard Mater. Eng. 20 9Google Scholar

    [56]

    胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安 2013 物理学报 62 188103

    Hu M H, Bi N, Li S S, Su T C, Li X L, Hu Q, Jia X P, Ma H A 2013 Acta Phys. Sin. 62 188103

    [57]

    Han Q G, Ban Q C, Zhu P W 2015 J. Cryst. Growth 422 29Google Scholar

    [58]

    Li S S, Li X L, Ma H A, Su TC, Xiao H Y, Huang G F, Li Y, Zhang Y S, Jia X P 2011 Chin. Phys. Lett. 28 68101Google Scholar

    [59]

    Wang X C, Ma H A, Zang C Y, Tian Y, Li S S, Jia X P 2005 Chin. Phys. Lett. 22 1800Google Scholar

    [60]

    Li S S, Jia X P, Zang C Y, Tian Y, Zang Y F, Xiao H Y, Huang G F, Ma L Q, Li Y, Li X L, Ma H A 2008 Chin. Phys. Lett. 25 3801Google Scholar

    [61]

    Lysakovskii V V, Ivakhnenko S A 2009 J. Superhard Mater. 31 7Google Scholar

    [62]

    Guo M M, Li S S, Hu M H, Su T C, Wang J Z, Gao G J, You Y, Nie Y 2020 Chin. Phys. B 29 018101Google Scholar

    [63]

    李尚升, 张曙光, 李小雷, 宿太超, 肖宏宇, 黄国锋, 李勇, 马红安, 贾晓鹏 2011 功能材料 42 58

    Li S S, Zhang S G, Li X L, Su T C, Xiao H Y, Huang G F, Li Y, Ma H A, Jia X P 2011 J. Funct. Mater. 42 58

    [64]

    Li S S, Gong C S, Su T C, Hu M H, Zhang H, Ma H A, Jia X P 2017 Int. J. Refract. Met. Hard Mater. 62 37Google Scholar

    [65]

    Bormashov V S, Tarelkin S A, Buga S G, Kuznetsov M S, Terentiev S A, Semenov A N, Blank V N 2013 Diamond Relat. Mater. 35 19Google Scholar

    [66]

    Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 677Google Scholar

    [67]

    肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺 2014 物理学报 63 198101Google Scholar

    Xiao H Y, Li S S, Qin Y K, Liang Z Z, Zhang Y S, Zhang D M, Zhang Y S 2014 Acta Phys. Sin. 63 198101Google Scholar

    [68]

    Howell D, Collins A T, Loudin L C, Diggle P L, D'Haenens-Johanssonf U F S, Smit K V, Katrusha A N, Butler J E, Nestola F 2019 Diamond Relat. Mater. 96 207Google Scholar

    [69]

    肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥 2016 物理学报 65 050701

    Xiao H Y, Liu L N, Qin Y K, Zhang D M, Zhang Y S, Sui Y M, Liang Z Z 2016 Acta Phys. Sin. 65 050701

    [70]

    Dai Y, Long R, Huang B B, Zhang Z K 2007 Diamond Relat. Mater. 16 353Google Scholar

    [71]

    Palyanov Y N, BorzdovY M, Khokhryakov A F, Kupriyanov I N, Sokol A G 2010 Cryst. Growth Des. 10 3169Google Scholar

    [72]

    Huang G F, Jia X P, Li S S, Zhang Y F, Li Y, Zhao M, Ma H A 2010 Chin. Phys. B 19 118101Google Scholar

    [73]

    Wang J Z, Li S S, Hu M H, Su T C, Gao G J, Guo M M, You Y, Nie Y 2020 Int. J. Refract. Met. Hard Mater. 87 105150Google Scholar

    [74]

    Kalish R 2001 Diamond Relat. Mater. 10 1749Google Scholar

    [75]

    Zhimulev E I, Sonin V M, Mironov A M, Chepurov A I 2016 Geochem. Int. 54 415Google Scholar

    [76]

    Fang S, Ma H A, Cai Z H, Chun X, Wang C X, Fang C, Zhao Z D, Lu Z Y, Wang Y K, Chen L C, Jia X P 2020 CrystEngComm 22 602Google Scholar

    [77]

    Chen N, Ma H A, Chen L X, Yan B M, Fang C, Liu X B, Li Y D, Guo L S, Chen L C, Jia X P 2018 Int. J. Refract. Met. Hard Mater. 71 141Google Scholar

    [78]

    Zhang H, Li S S, Su T C, Hu M H, Li G H, Ma H A, JiaX P 2016 Chin. Phys. B 25 118104Google Scholar

    [79]

    Wan J K, Li S S, Gui J L, Feng L, Yu H, Su T C, Hu M H, Yu K P, Han F, Ma H A, Jia X P 2019 Int. J. Refract. Met. Hard Mater. 81 100Google Scholar

    [80]

    Wan J K, Li S S, Wang N, Liu H J, Su T C, Hu M H, Yu K P, Han F, Ma H A 2019 Chin. Phys. Lett. 36 046101Google Scholar

    [81]

    Tang L, Yue R F, Wang Y 2018 Carbon 130 458Google Scholar

    [82]

    Zhang H, Li S S, Li G H, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Int. J. Refract. Met. Hard Mater. 66 26Google Scholar

    [83]

    Gong C S, Li S S, Zhang H R, Su T C, Hu M H, Ma H A, Jia X P, Li Y 2017 Int. J. Refract. Met. Hard Mater. 66 116Google Scholar

    [84]

    Yu K P, Li S S, Yang q, Leng K Q, Hu M H, Su T C, Guo M M, Gao G J, Wang J Z, You Y 2019 Cryst. Eng. Comm. 21 6810Google Scholar

    [85]

    Yan B M, Jia X P, Fang C, Chen N, Li Y D, Sun S S, Ma H A 2016 Int. J. Refract. Met. Hard Mater. 54 309Google Scholar

    [86]

    Yan B M, Jia X P, Sun S S, Zhou X Z, Fang C, Chen N, Li Y D, Li Y, Ma H A 2015 Int. J. Refract. Met. Hard Mater. 48 56Google Scholar

    [87]

    Sun S S, Cui W, Jia X P, Ma H A, Lv J 2016 Int. J. Refract. Met. Hard Mater. 59 56Google Scholar

    [88]

    Hu M H, Bi N, Li S S, Su T C, Hu Q, Ma H A, Jia X P 2017 CrystEngComm 19 4571Google Scholar

    [89]

    Liu X B, Chen X, Singh D J, Stern R A, Wu J, Petitgirard S, Bina C R, Jacobsen S D 2019 Proc. Natl. Acad. Sci. 116 7703Google Scholar

  • [1] Tian Yi, Du Ming-Hao, Zhang Jia-Wei, He Duan-Wei. Research on pressure transmission and sealing performance of pyrophyllite in a cubic large chamber static high-pressure device. Acta Physica Sinica, 2024, 73(1): 019101. doi: 10.7498/aps.73.20231087
    [2] Xiao Hong-Yu, Li Yong, Bao Zhi-Gang, She Yan-Chao, Wang Ying, Li Shang-Sheng. Effect of catalyst composition on growth and crack defects of large diamond single crystal under high temperature and pressure. Acta Physica Sinica, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] Yang Gong-Zhang, Xie Lei, Chen Xi-Ping, He Rui-Qi, Han Tie-Xin, Niu Guo-Liang, Fang Lei-Ming, He Duan-Wei. Experimental study of simultaneous high-temperature and high-pressure assembly of Paris-Edinburgh press for neutron diffraction. Acta Physica Sinica, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [4] Qin Yu-Kun, Xiao Hong-Yu, Liu Li-Na, Sun Rui-Rui, Hu Qiu-Bo, Bao Zhi-Gang, Zhang Yong-Sheng, Li Shang-Sheng, Jia Xiao-Peng. Effects of seed crystal size on growth of gem-diamond single crystal. Acta Physica Sinica, 2019, 68(2): 020701. doi: 10.7498/aps.68.20181855
    [5] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [6] Zhang Bu-Qiang, Xu Zhen-Yu, Liu Jian-Guo, Yao Lu, Ruan Jun, Hu Jia-Yi, Xia Hui-Hui, Nie Wei, Yuan Feng, Kan Rui-Feng. Temperature measurement method of high temperature and high pressure flow field based on wavelength modulation spectroscopy technology. Acta Physica Sinica, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [7] Xiao Hong-Yu, Qin Yu-Kun, Liu Li-Na, Bao Zhi-Gang, Tang Chun-Juan, Sun Rui-Rui, Zhang Yong-Sheng, Li Shang-Sheng, Jia Xiao-Peng. Effects of cooling process on qualities of Gem-diamond single crystals. Acta Physica Sinica, 2018, 67(14): 140702. doi: 10.7498/aps.67.20180207
    [8] Wang Jun-Zhuo, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Hu Qiang, Wu Yu-Min, Wang Jian-Kang, Han Fei, Yu Kun-Peng, Gao Guang-Jin, Guo Ming-Ming, Jia Xiao-Peng, Ma Hong-An, Xiao Hong-Yu. Shape controlled growth for type Ib large diamond crystals. Acta Physica Sinica, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [9] Xiao Hong-Yu, Liu Li-Na, Qin Yu-Kun, Zhang Dong-Mei, Zhang Yong-Sheng, Sui Yong-Ming, Liang Zhong-Zhu. Syntheses of B2O3-doped gem-diamond single crystals. Acta Physica Sinica, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [10] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [11] Xiao Hong-Yu, Qin Yu-Kun, Sui Yong-Ming, Liang Zhong-Zhu, Liu Li-Na, Zhang Yong-Sheng. Effects of cavity size on the growth of hexahedral type-Ib gem-diamond single crystals. Acta Physica Sinica, 2016, 65(7): 070705. doi: 10.7498/aps.65.070705
    [12] Fang Chao, Jia Xiao-Peng, Chen Ning, Zhou Zhen-Xiang, Li Ya-Dong, Li Yong, Ma Hong-An. Crystal growth and characterization of hydrogen-doped single diamond with Fe(C5H5)2 additive. Acta Physica Sinica, 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [13] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [14] Zhang He, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Zhou You-Mo, Fan Hao-Tian, Gong Chun-Sheng, Jia Xiao-Peng, Ma Hong-An, Xiao Hong-Yu. Effect of temperature on the (100) surface features of type Ib and type IIa large single crystal diamonds. Acta Physica Sinica, 2015, 64(19): 198103. doi: 10.7498/aps.64.198103
    [15] Xiao Hong-Yu, Li Shang-Sheng, Qin Yu-Kun, Liang Zhong-Zhu, Zhang Yong-Sheng, Zhang Dong-Mei, Zhang Yi-Shun. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure. Acta Physica Sinica, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [16] Hu Mei-Hua, Bi Ning, Li Shang-Sheng, Su Tai-Chao, Li Xiao-Lei, Hu Qiang, Jia Xiao-Peng, Ma Hong-An. Synthesis of gem diamond crystals by multiseed method using China-type cubic high-pressure apparatus. Acta Physica Sinica, 2013, 62(18): 188103. doi: 10.7498/aps.62.188103
    [17] Xiao Hong-Yu, Su Jian-Feng, Zhang Yong-Sheng, Bao Zhi-Gang. Synthesis and characterization of the Gem-diamond by temperature gradient method. Acta Physica Sinica, 2012, 61(24): 248101. doi: 10.7498/aps.61.248101
    [18] Qin Jie-Ming, Ying Zhang, Cao Jian-Ming, Tian Li-Fei. Synthesis and characterization of the grinding compoundlevel diamond by pure Fe catalyst. Acta Physica Sinica, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [19] Jiang Ben-Xue, Xu Jun, Li Hong-Jun, Wang Jing-Ya, Zhao Guang-Jun, Zhao Zhi-Wei. Core center distribution of Nd∶YAG crystal grown by Temperature gradient technique. Acta Physica Sinica, 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [20] Zeng Xiong-Hui, Zhao Guang-Jun, Xu Jun. Spectra analysis of Ce:YAlOZr3 single crystals grown by temperature gradient technique. Acta Physica Sinica, 2004, 53(6): 1935-1939. doi: 10.7498/aps.53.1935
Metrics
  • Abstract views:  14021
  • PDF Downloads:  461
  • Cited By: 0
Publishing process
  • Received Date:  09 May 2020
  • Accepted Date:  13 July 2020
  • Available Online:  27 November 2020
  • Published Online:  05 December 2020

/

返回文章
返回