搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征

房超 贾晓鹏 陈宁 周振翔 李亚东 李勇 马红安

引用本文:
Citation:

添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征

房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安

Crystal growth and characterization of hydrogen-doped single diamond with Fe(C5H5)2 additive

Fang Chao, Jia Xiao-Peng, Chen Ning, Zhou Zhen-Xiang, Li Ya-Dong, Li Yong, Ma Hong-An
PDF
导出引用
  • 在Ni70Mn25Co5-C体系中添加含氢化合物Fe(C5H5)2作为新型氢源, 利用温度梯度法, 在压力为5.5-6.0 GPa、温度为1280-1400 ℃的条件下, 成功合成出氢掺杂的宝石级金刚石大单晶. 通过傅里叶显微红外光谱发现, 随着Fe(C5H5)2添加量的增加, 合成晶体中与氢相关的对应于sp3杂化C-H键的对称伸缩振动和反对称伸缩振动的红外特征峰2850和2920 cm-1逐渐增强, 而晶体中氮含量却逐渐减少. 通过合成晶体的拉曼光谱分析发现, 金刚石的拉曼峰伴随Fe(C5H5)2的添加向高频偏移, 这表明氢的进入在金刚石内部产生了压应力. 观察扫描电子显微镜图像发现, 在低含量Fe(C5H5)2添加时晶体表面平滑, 而高含量添加时晶体表面缺陷增多, 且呈现出气孔状. 使用新的添加剂Fe(C5H5)2作为氢源, 合成出含氢宝石级金刚石单晶, 丰富了金刚石单晶中对氢的研究内容, 也可为理解天然金刚石的形成机理提供帮助.
    In this paper, a series of high-quality hydrogen-doped diamonds is successfully synthesized in Ni70Mn25Co5-C system by using Fe(C5H5)2 as hydrogen source at pressures ranging from 5.5 GPa to 6.0 GPa and temperatures of 1280-1400 ℃. We find that both pressure and temperature conditions strengthen with adding the Fe(C5H5)2. Scanning electron microscope micrographs show that the obtained diamonds at low levels of Fe(C5H5)2 additive have smooth surfaces. However, many defects are found and some pores appear on the diamond surface with increasing the Fe(C5H5)2 additive in the system. From the obtained Fourier transform infrared (IR) spectrum, we notice that there is no significant change of nitrogen concentration in the synthesized diamond with the Fe(C5H5)2 additive lower than 0.3 wt%, while the nitrogen concentration gradually decreases with the further increase of Fe(C5H5)2 additive. In the system with 0.5 wt% Fe(C5H5)2 additive, the nitrogen concentration in synthesized diamond is only half that of system without Fe(C5H5)2 additive. Meanwhile, the hydrogen associated IR peaks of 2850 cm-1 and 2920 cm-1 are gradually enhanced with the increase of Fe(C5H5)2 additive in the system, indicating that most of the hydrogen atoms in the synthesized diamond are incorporated into the crystal structure as sp3-CH2-symmetric (2850 cm-1) and sp3 CH2-antisymmetric (2920 cm-1) vibrations. From the obtained Raman spectrum, we find the incorporation of hydrogen impurity leads to a significant shift of the Raman peak towards higher frequencies from 1333.90 cm-1 to 1334.42 cm-1 with increasing the concentration of Fe(C5H5)2 additive from 0.1 wt% to 0.5 wt%, thereby giving rise to some compressive stress in the diamond crystal lattice. This is the first time that the gem-grade hydrogen-doped diamond single crystal, with size up to 3.5 mm has been successfully synthesized by using new hydrogen source Fe(C5H5)2 additive. We believe that our work can provide a new method to study the influence of hydrogen impurity on diamond synthesis and it will help us to further understand the genesis of natural diamond in the future.
    • 基金项目: 国家自然科学基金(批准号:51172089)、贵州省教育厅自然科学基金重点项目(批准号:KY[2013]183)、铜仁学院科研项目(批准号:trxyS1415)和吉林大学研究生创新基金项目(批准号:2014007)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Key Program of the Natural Science Foundation of Education Department of Guizhou Province, China (Grant No. KY [2013]183), the Scientific Research Project of Tongren University, China (Grant No. trxyS1415), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2014007).
    [1]

    Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474

    [2]

    Fesq H W, Bibby D M, Erasmus C S, Kable E J, Sellschop J P 1975 Phys. Chem. Earth. 9 817

    [3]

    Palyanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sokol A G 2010 Cryst. Growth. Des. 10 3169

    [4]

    Liu X B, Jia X P, Zhang Z F, Li Y, Hu M H, Zhou Z X, Ma H A 2011 Cryst. Growth. Des. 11 3844

    [5]

    Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W, Guan Q F, Zang C Y 2006 Carbon 44 913

    [6]

    Zhang Y F, Zang C Y, Ma H A, Liang Z Z, Zhou L, Li S S, Jia X P 2008 Diamond Relat. Mater. 17 209

    [7]

    Yu R Z, Ma H A, Liang Z Z, Liu W Q, Zheng Y J, Jia X P 2008 Diamond Relat. Mater. 17 180

    [8]

    Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diamond Relat. Mater. 11 1863

    [9]

    Goss J P 2003 J. Phys. : Condens. Matter 15 551

    [10]

    Tachikawa H 2011 Chem. Phys. Lett. 513 94

    [11]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys.: Condens. Matter 14 11269

    [12]

    Sun S S, Jia X P, Yan B M, Wang F B, Chen N, Li Y D, Ma H A 2014 Cryst. Eng. Commun. 16 2290

    [13]

    Angus J C, Wang Y X, Sunkara M 1991 Annu. Rev. Mater. Sci. 21 221

    [14]

    Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukuanga O 1980 J. Mater. Sci. 15 2743

    [15]

    Dischler B, Wild C, Mller-Sebert W, Koidl P 1993 Physica B 185 217

    [16]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101]

    [17]

    Jia X P, Zhu P W, Wang T D, Zang C Y, Wang X C, Chen L X, Zou G T, Wakastuski W 2003 4th Zhengzhou International Superhard Materials and Related Products Conference Zhengzhou, China, August 29-September 2, 2003 p77

    [18]

    Sung J C, Sung M, Sung E 2006 Thin Solid Films 498 212

    [19]

    Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906

    [20]

    Liu X B, Ma H A, Zhang Z F, Zhao M, Guo W, Li Y, Jia X P 2011 Diamond Relat. Mater. 20 468

    [21]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781

    [22]

    Burnsa R C, Hansena J O, Spitsa R A, Sibandaa M, Welbournb C M, Welcha D L 1999 Diamond Relat. Mater. 8 1433

    [23]

    Liang Z Z, Liang J Q, Jia X P 2009 Chin. Phys. Lett. 26 038104

    [24]

    Kanda H 2000 Braz. J. Phys. 30 482

    [25]

    Kanda H, Sato Y, Setaka N, Ohsawa T, Fukunaga O 1981 Nippon Kagaku Kaishi 9 1349

    [26]

    Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 物理学报 63 248104]

    [27]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [28]

    Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Jia X P 2012 Chin. Phys. B 21 098101

  • [1]

    Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474

    [2]

    Fesq H W, Bibby D M, Erasmus C S, Kable E J, Sellschop J P 1975 Phys. Chem. Earth. 9 817

    [3]

    Palyanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sokol A G 2010 Cryst. Growth. Des. 10 3169

    [4]

    Liu X B, Jia X P, Zhang Z F, Li Y, Hu M H, Zhou Z X, Ma H A 2011 Cryst. Growth. Des. 11 3844

    [5]

    Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W, Guan Q F, Zang C Y 2006 Carbon 44 913

    [6]

    Zhang Y F, Zang C Y, Ma H A, Liang Z Z, Zhou L, Li S S, Jia X P 2008 Diamond Relat. Mater. 17 209

    [7]

    Yu R Z, Ma H A, Liang Z Z, Liu W Q, Zheng Y J, Jia X P 2008 Diamond Relat. Mater. 17 180

    [8]

    Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diamond Relat. Mater. 11 1863

    [9]

    Goss J P 2003 J. Phys. : Condens. Matter 15 551

    [10]

    Tachikawa H 2011 Chem. Phys. Lett. 513 94

    [11]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys.: Condens. Matter 14 11269

    [12]

    Sun S S, Jia X P, Yan B M, Wang F B, Chen N, Li Y D, Ma H A 2014 Cryst. Eng. Commun. 16 2290

    [13]

    Angus J C, Wang Y X, Sunkara M 1991 Annu. Rev. Mater. Sci. 21 221

    [14]

    Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukuanga O 1980 J. Mater. Sci. 15 2743

    [15]

    Dischler B, Wild C, Mller-Sebert W, Koidl P 1993 Physica B 185 217

    [16]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101]

    [17]

    Jia X P, Zhu P W, Wang T D, Zang C Y, Wang X C, Chen L X, Zou G T, Wakastuski W 2003 4th Zhengzhou International Superhard Materials and Related Products Conference Zhengzhou, China, August 29-September 2, 2003 p77

    [18]

    Sung J C, Sung M, Sung E 2006 Thin Solid Films 498 212

    [19]

    Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906

    [20]

    Liu X B, Ma H A, Zhang Z F, Zhao M, Guo W, Li Y, Jia X P 2011 Diamond Relat. Mater. 20 468

    [21]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781

    [22]

    Burnsa R C, Hansena J O, Spitsa R A, Sibandaa M, Welbournb C M, Welcha D L 1999 Diamond Relat. Mater. 8 1433

    [23]

    Liang Z Z, Liang J Q, Jia X P 2009 Chin. Phys. Lett. 26 038104

    [24]

    Kanda H 2000 Braz. J. Phys. 30 482

    [25]

    Kanda H, Sato Y, Setaka N, Ohsawa T, Fukunaga O 1981 Nippon Kagaku Kaishi 9 1349

    [26]

    Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 物理学报 63 248104]

    [27]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [28]

    Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Jia X P 2012 Chin. Phys. B 21 098101

  • [1] 田毅, 杜明浩, 张佳威, 贺端威. 立方大腔体静高压装置中叶腊石的传压及密封性能研究. 物理学报, 2024, 73(1): 019101. doi: 10.7498/aps.73.20231087
    [2] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] 杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威. 巴黎-爱丁堡压机中子衍射高压下温度加载实验. 物理学报, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [4] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展. 物理学报, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [5] 秦玉琨, 肖宏宇, 刘利娜, 孙瑞瑞, 胡秋波, 鲍志刚, 张永胜, 李尚升, 贾晓鹏. 籽晶尺寸对宝石级金刚石单晶生长的影响. 物理学报, 2019, 68(2): 020701. doi: 10.7498/aps.68.20181855
    [6] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [7] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法. 物理学报, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [8] 肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏. 降温工艺对宝石级金刚石单晶品质的影响. 物理学报, 2018, 67(14): 140702. doi: 10.7498/aps.67.20180207
    [9] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长. 物理学报, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [10] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性. 物理学报, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [11] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [12] 肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜. 合成腔体尺寸对Ib型六面体金刚石单晶生长的影响. 物理学报, 2016, 65(7): 070705. doi: 10.7498/aps.65.070705
    [13] 张贺, 李尚升, 宿太超, 胡美华, 周佑默, 樊浩天, 龚春生, 贾晓鹏, 马红安, 肖宏宇. 温度对Ib型和IIa型金刚石大单晶(100)表面特征的影响. 物理学报, 2015, 64(19): 198103. doi: 10.7498/aps.64.198103
    [14] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [15] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能. 物理学报, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [16] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [17] 胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安. 国产六面顶压机多晶种法合成宝石级金刚石单晶. 物理学报, 2013, 62(18): 188103. doi: 10.7498/aps.62.188103
    [18] 肖宏宇, 苏剑峰, 张永胜, 鲍志刚. 温度梯度法宝石级金刚石的合成及表征. 物理学报, 2012, 61(24): 248101. doi: 10.7498/aps.61.248101
    [19] 姜本学, 徐 军, 李红军, 王静雅, 赵广军, 赵志伟. 温度梯度法生长Nd:YAG激光晶体的核心分布. 物理学报, 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [20] 曾雄辉, 赵广军, 徐 军. 温度梯度法生长的Ce: YAlOZr3高温闪烁晶体的光谱分析. 物理学报, 2004, 53(6): 1935-1939. doi: 10.7498/aps.53.1935
计量
  • 文章访问数:  6365
  • PDF下载量:  334
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-24
  • 修回日期:  2015-01-21
  • 刊出日期:  2015-06-05

/

返回文章
返回