搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成腔体尺寸对Ib型六面体金刚石单晶生长的影响

肖宏宇 秦玉琨 隋永明 梁中翥 刘利娜 张永胜

引用本文:
Citation:

合成腔体尺寸对Ib型六面体金刚石单晶生长的影响

肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜

Effects of cavity size on the growth of hexahedral type-Ib gem-diamond single crystals

Xiao Hong-Yu, Qin Yu-Kun, Sui Yong-Ming, Liang Zhong-Zhu, Liu Li-Na, Zhang Yong-Sheng
PDF
导出引用
  • 利用液压缸直径为550 mm的大缸径六面顶压机, 在5.6 GPa, 1200-1400 ℃的高压高温条件下, 分别采用单晶种法和多晶种法, 开展了Ib型六面体宝石级金刚石单晶的生长研究, 系统考察了合成腔体尺寸对Ib型六面体金刚石大单晶生长的影响. 首先, 阐述了合成腔体尺寸对合成设备油压传递效率的影响, 研究得到了设备油压与腔体内实际压力的关系曲线; 其次, 选择尺寸为 14 mm的合成腔体, 分别采用单晶种法和多晶种法(5颗晶种), 进行Ib型六面体金刚石大单晶的生长实验, 研究阐述了 14 mm合成腔体的晶体生长实验规律; 再次, 为了解决液压缸直径与合成腔体尺寸不匹配的问题, 将合成腔体尺寸扩大到26 mm, 并开展了多晶种法六面体金刚石大单晶的生长研究, 最多单次生长出14 颗优质3 mm级Ib型六面体金刚石单晶, 研究得到了 26 mm合成腔体生长3 mm级Ib型六面体金刚石单晶的实验规律, 并就两种腔体合成金刚石单晶的总体生长速度与生长时间的关系进行了讨论; 最后, 借助于拉曼光谱, 将合成的优质六面体金刚石单晶与天然金刚石单晶进行对比测试, 对所合成晶体的结构及品质进行了表征.
    In the paper, using the one-seed method and multiseed method separately, the hexahedral type-Ib diamonds are synthesized in a cubic anvil under high pressure and high temperature. This cubic anvil is of 550 mm hydraulic cylinder with the sample chambers of 14 mm or 26 mm in diameter under 5.6 GPa and 1200-1400 ℃. The FeNiMnCo alloy is chosen as catalyst. The high-quality abrasive diamonds each with a diameter of 0.9 mm are used as seed crystals. High purity-graphite powder (99.99%, purity) is selected as the carbon source. The effects of cavity size on the growth of hexahedral type-Ib Gem-diamond single crystal are studied carefully. The Relationship between oil pressure and synthesis pressure is obtained in our studies. When the pressure is transmitted the same distance, in the catalyst melt, the pressure loss is less than in the pressure transmitting medium. By expanding synthesis cavity size, the pressure transmission efficiency of the oil pressure increases significantly, which can be attributed to the transmission distance shortening in the pressure transmitting medium and transmission distance lengthening in the catalyst melt. Using the 14 mm synthesis cavity, by the one-seed method, the 5 mm grade diamond single crystals of cubo-octahedral shape are synthesized, but the 5 mm grade diamond single crystals of perfectly hexahedral shape could not be synthesized. Choosing the 14 mm synthesis cavity, by the five-seed method, the 3 mm grade diamond single crystals in the center each present a perfectly hexahedral shape, but each outside of the crystals exhibits a cubo-octahedral shape. According to the application requirement for the type-Ib hexahedral diamond single crystal with a size of 3.0-3.5 mm on an industrial diamond single crystal tool, the diamond single crystals of perfect hexahedral shape are synthesized by the multiseed method. Using the 26 mm synthesis cavity, many 3 mm grade diamond single crystals of perfectly hexahedral shape are synthesized in one synthesis cavity. In our studies, up to 14 diamond single crystals of perfect hexahedral shape are synthesized in one synthesis cavity by the multiseed method. We find that the uniformity of temperature field of the 26 mm synthesis cavity is better than that of the 14 mm synthesis cavity, so the 26 mm synthesis cavity is suitable for growing 3 mm grade diamond single crystals of perfect hexahedral shape by the multiseed method. In 35 h growth time, the overall growth rate of the 26 mm synthesis cavity (25.2 mg/h) synthesizing 14 diamonds in one time (9.4 mg/h) is 2.68 times that of the 14 mm synthesis cavity by five-seed method. Moreover, the Raman spectra of the synthesized high-quality hexahedral type-Ib diamond single crystals and natural diamond single crystal indicate that the structure and quality of the synthesized high-quality diamond single crystal is better than that of a natural diamond.
      通信作者: 隋永明, suiym@jlu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51302128, 61007023)、吉林大学超硬材料国家重点实验室开放课题和河南省教育厅项目(批准号: 13A140792, 14A140018)资助的课题.
      Corresponding author: Sui Yong-Ming, suiym@jlu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 51302128, 61007023), the Foundation of the National Lab of Superhard Materials, Jilin University, China, and the Program of the Education Department of Henan Province, China (Grant Nos. 13A140792, 14A140018).
    [1]

    Traore A, Muret P, Fiori A, Eon D, Gheeraert E, Pernot J 2014 Appl. Phys. Lett. 104 052105

    [2]

    Schein J, Campbell K M, Prasad R R, Prasad R R, Binder R, Krishnan M 2002 Rev. Sci. Instrum. 73 18

    [3]

    Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237-239 1281

    [4]

    Kanda H 2001 Radi. Effe. Defe. Solids 156 163

    [5]

    Berman L E, Hastings J B, Siddons D P, Koike M, Stojanoffand V, Hart M 1993 Nucl. Instrum. Meth. 329 555

    [6]

    Freund A K 1995 Opt. Eng. 34 432

    [7]

    Koizumi S, Watanabe K, Hasegawa M, Kanda H 2001 Science 292 1899

    [8]

    Makino T, Tanimoto S, Hayashi Y, Kato H, Tokuda N, Ogura M, Takeuchi D, Oyama K, Ohashi H, Okushi H, Yamasaki S 2009 Appl. Phys. Lett. 94 262101

    [9]

    Naka S, Horii K, Takeda Y, Hanawa T 1976 Nature 259 38

    [10]

    Bundy F P, Bassett W A, Weathers M S, Hemley R J, Mao H U, Goncharov A F 1996 Carbon 34 14

    [11]

    El-Hajj H, Denisenko A, Kaiser A, Balmer R S, Kohn E 2008 Diamond Relat. Mater. 17 1259

    [12]

    Qin J M, Zhang Y, Cao J M, Tian L F 2011 Acta Phys. Sin. 60 058102 (in Chinese) [秦杰明, 张莹, 曹建明, 田立飞 2011 物理学报 60 058102]

    [13]

    Xiao H Y, Li S S, Qin Y K, Liang Z Z, Zhang Y S, Zhang D M, Zhang Y S 2014 Acta Phys. Sin. 63 198101 (in Chinese) [肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺 2014 物理学报 63 198101]

    [14]

    Palyanov Y N, Kupriyanov I N, Borzdova Y M, Bataleva Y V 2015 Cryst. Eng. Commun. 17 7323

    [15]

    Li Y, Jia X P, Ma H A, Zhang J, Wang F B, Chen N, Feng Y G 2014 Cryst. Eng. Commun. 16 7547

    [16]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [17]

    Zheng Y J, Huang G F, Li Z C, Zuo G H 2014 Chin. Phys. B 23 118102

  • [1]

    Traore A, Muret P, Fiori A, Eon D, Gheeraert E, Pernot J 2014 Appl. Phys. Lett. 104 052105

    [2]

    Schein J, Campbell K M, Prasad R R, Prasad R R, Binder R, Krishnan M 2002 Rev. Sci. Instrum. 73 18

    [3]

    Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237-239 1281

    [4]

    Kanda H 2001 Radi. Effe. Defe. Solids 156 163

    [5]

    Berman L E, Hastings J B, Siddons D P, Koike M, Stojanoffand V, Hart M 1993 Nucl. Instrum. Meth. 329 555

    [6]

    Freund A K 1995 Opt. Eng. 34 432

    [7]

    Koizumi S, Watanabe K, Hasegawa M, Kanda H 2001 Science 292 1899

    [8]

    Makino T, Tanimoto S, Hayashi Y, Kato H, Tokuda N, Ogura M, Takeuchi D, Oyama K, Ohashi H, Okushi H, Yamasaki S 2009 Appl. Phys. Lett. 94 262101

    [9]

    Naka S, Horii K, Takeda Y, Hanawa T 1976 Nature 259 38

    [10]

    Bundy F P, Bassett W A, Weathers M S, Hemley R J, Mao H U, Goncharov A F 1996 Carbon 34 14

    [11]

    El-Hajj H, Denisenko A, Kaiser A, Balmer R S, Kohn E 2008 Diamond Relat. Mater. 17 1259

    [12]

    Qin J M, Zhang Y, Cao J M, Tian L F 2011 Acta Phys. Sin. 60 058102 (in Chinese) [秦杰明, 张莹, 曹建明, 田立飞 2011 物理学报 60 058102]

    [13]

    Xiao H Y, Li S S, Qin Y K, Liang Z Z, Zhang Y S, Zhang D M, Zhang Y S 2014 Acta Phys. Sin. 63 198101 (in Chinese) [肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺 2014 物理学报 63 198101]

    [14]

    Palyanov Y N, Kupriyanov I N, Borzdova Y M, Bataleva Y V 2015 Cryst. Eng. Commun. 17 7323

    [15]

    Li Y, Jia X P, Ma H A, Zhang J, Wang F B, Chen N, Feng Y G 2014 Cryst. Eng. Commun. 16 7547

    [16]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [17]

    Zheng Y J, Huang G F, Li Z C, Zuo G H 2014 Chin. Phys. B 23 118102

  • [1] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [2] 杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威. 巴黎-爱丁堡压机中子衍射高压下温度加载实验. 物理学报, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [3] 江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证. 物理学报, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [4] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展. 物理学报, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [5] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [6] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法. 物理学报, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [7] 秦玉琨, 肖宏宇, 刘利娜, 孙瑞瑞, 胡秋波, 鲍志刚, 张永胜, 李尚升, 贾晓鹏. 籽晶尺寸对宝石级金刚石单晶生长的影响. 物理学报, 2019, 68(2): 020701. doi: 10.7498/aps.68.20181855
    [8] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长. 物理学报, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [9] 肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏. 降温工艺对宝石级金刚石单晶品质的影响. 物理学报, 2018, 67(14): 140702. doi: 10.7498/aps.67.20180207
    [10] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性. 物理学报, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [11] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [12] 张贺, 李尚升, 宿太超, 胡美华, 周佑默, 樊浩天, 龚春生, 贾晓鹏, 马红安, 肖宏宇. 温度对Ib型和IIa型金刚石大单晶(100)表面特征的影响. 物理学报, 2015, 64(19): 198103. doi: 10.7498/aps.64.198103
    [13] 房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安. 添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征. 物理学报, 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [14] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [15] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [16] 胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安. 国产六面顶压机多晶种法合成宝石级金刚石单晶. 物理学报, 2013, 62(18): 188103. doi: 10.7498/aps.62.188103
    [17] 肖宏宇, 苏剑峰, 张永胜, 鲍志刚. 温度梯度法宝石级金刚石的合成及表征. 物理学报, 2012, 61(24): 248101. doi: 10.7498/aps.61.248101
    [18] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征. 物理学报, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [19] 姜本学, 徐 军, 李红军, 王静雅, 赵广军, 赵志伟. 温度梯度法生长Nd:YAG激光晶体的核心分布. 物理学报, 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [20] 曾雄辉, 赵广军, 徐 军. 温度梯度法生长的Ce: YAlOZr3高温闪烁晶体的光谱分析. 物理学报, 2004, 53(6): 1935-1939. doi: 10.7498/aps.53.1935
计量
  • 文章访问数:  6870
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-29
  • 修回日期:  2016-01-13
  • 刊出日期:  2016-04-05

/

返回文章
返回