搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国产六面顶压机多晶种法合成宝石级金刚石单晶

胡美华 毕宁 李尚升 宿太超 李小雷 胡强 贾晓鹏 马红安

引用本文:
Citation:

国产六面顶压机多晶种法合成宝石级金刚石单晶

胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安

Synthesis of gem diamond crystals by multiseed method using China-type cubic high-pressure apparatus

Hu Mei-Hua, Bi Ning, Li Shang-Sheng, Su Tai-Chao, Li Xiao-Lei, Hu Qiang, Jia Xiao-Peng, Ma Hong-An
PDF
导出引用
  • 对国产六面顶压机平台下使用多晶种法合成宝石级金刚石单晶进行了系统的研究. 通过合理调整温度梯度法的合成腔体组装, 采用多晶种法, 探索多晶种法金刚石合成的压力和温度区间, 在单个合成腔体内放置3–5颗金刚石晶种, 成功合成出多颗(3–5)优质Ib型宝石级金刚石单晶. 多颗晶种的引入, 单次实验合成的多个金刚石晶体晶形及品质一致; 同时, 晶体的整体生长速度也有明显的增大. 多晶种法金刚石单晶合成的研究, 可以有效地利用腔体空间、提高单次金刚石单晶合成的效率, 解决压机大型化下高温高压资源利用率低的问题; 同时, 为宝石级金刚石单晶商业化生产提供重要的依据.
    In this paper, gem diamond synthesis is systematically studied using the multiseed method in China-type cubic high-pressure apparatus. High-quality Ib diamond crystals are synthesized in a growth cell with 3-5 diamond seeds, by adjusting the growth cell assembly and investigating the pressure and temperature regions of diamond synthesis. Because of several diamond seeds embedded in a growth cell, the synthesized diamond crystals possess the same morphology and quality. At the same time, the whole growth rate increases apparently. Using the multiseed method of diamond synthesis the growth cell volume can be effectively utilized, the efficiency of diamond synthesis can be enhanced, and the problem of low utilization rate is solved. Meanwhile, those also provide an effective support for the gem diamond industrialization synthesis.
    [1]

    Bundy F P, Strong H T, Wentorf R H 1955 Nature 176 51

    [2]

    Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668

    [3]

    Burns R C, Hansen J O, Spits R A, Sibanda M, Melbourn C M, Welch D L 1999 Diamond Relat. Mater. 8 1433

    [4]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [5]

    Tian Y, Jia X P, Zang C Y, Li R, Li S S, Xiao H Y, Zhang Y F, Huang G F, Han Q G, Ma L Q, Li Y, Chen X Z, Zhang C, Ma H A 2009 Chin. Phys. Lett. 26 028104

    [6]

    Demina S E, Kalaev V V, Lysakovskyi V V, Serga M A, Kovalenko T V, Ivahnenko S A 2009 J. Cryst. Growth 311 680

    [7]

    Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Jia X P 2012 Chin. Phys. B 21 098101

    [8]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [9]

    Sumiya H, Harano K 2012 Diamond Relat. Mater. 24 44

    [10]

    Palyanov Y N, Borzdov Y M, Kupriyanov I N, Khokhryakov A F 2012 Cryst. Growth Des. 12 5571

    [11]

    Lin I C, Lin C J, Tuan W H 2011 Diamond Relat. Mater. 20 42

    [12]

    Jia X P, Zhu P W, Wang T D, Zang C Y, Wang X C, Chen L X, Zou G T, Wakastuski W 2003 4th Zhengzhou International Superhard Materials and Related Products Conference Zhengzhou, China, August 29-September 2, 2003 p77

    [13]

    Sung J C, Sung M, Sung E 2006 Thin Solid Films 498 212

    [14]

    Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906

    [15]

    Han Q G, Ma H A, Huang G F, Zhang C, Li Z C, Jia X P 2009 Rev. Sci. Instrum. 80 096107

    [16]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys.: Condens. Matter. 14 11269

  • [1]

    Bundy F P, Strong H T, Wentorf R H 1955 Nature 176 51

    [2]

    Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668

    [3]

    Burns R C, Hansen J O, Spits R A, Sibanda M, Melbourn C M, Welch D L 1999 Diamond Relat. Mater. 8 1433

    [4]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [5]

    Tian Y, Jia X P, Zang C Y, Li R, Li S S, Xiao H Y, Zhang Y F, Huang G F, Han Q G, Ma L Q, Li Y, Chen X Z, Zhang C, Ma H A 2009 Chin. Phys. Lett. 26 028104

    [6]

    Demina S E, Kalaev V V, Lysakovskyi V V, Serga M A, Kovalenko T V, Ivahnenko S A 2009 J. Cryst. Growth 311 680

    [7]

    Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Jia X P 2012 Chin. Phys. B 21 098101

    [8]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [9]

    Sumiya H, Harano K 2012 Diamond Relat. Mater. 24 44

    [10]

    Palyanov Y N, Borzdov Y M, Kupriyanov I N, Khokhryakov A F 2012 Cryst. Growth Des. 12 5571

    [11]

    Lin I C, Lin C J, Tuan W H 2011 Diamond Relat. Mater. 20 42

    [12]

    Jia X P, Zhu P W, Wang T D, Zang C Y, Wang X C, Chen L X, Zou G T, Wakastuski W 2003 4th Zhengzhou International Superhard Materials and Related Products Conference Zhengzhou, China, August 29-September 2, 2003 p77

    [13]

    Sung J C, Sung M, Sung E 2006 Thin Solid Films 498 212

    [14]

    Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906

    [15]

    Han Q G, Ma H A, Huang G F, Zhang C, Li Z C, Jia X P 2009 Rev. Sci. Instrum. 80 096107

    [16]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys.: Condens. Matter. 14 11269

  • [1] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性. 物理学报, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [2] 常帅军, 马海伦, 李浩, 欧树基, 郭建飞, 钟鸣浩, 刘莉. 一种能够改善鲁棒性的新型4H-SiC ESD防护器件. 物理学报, 2022, 71(19): 198501. doi: 10.7498/aps.71.20220879
    [3] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/β-Bi2O3界面电学性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210635
    [4] 李春曦, 程冉, 叶学民. 接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响. 物理学报, 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [5] 徐翔, 朱承, 朱先强. 一种基于离散数据从局部到全局的网络重构算法. 物理学报, 2021, 70(8): 088901. doi: 10.7498/aps.70.20201756
    [6] 刘俊, 姜其立, 帅麒麟, 李融武, 潘秋丽, 程琳, 王荣. 一种点光源的自适应束斑X射线衍射仪的研制. 物理学报, 2021, 70(1): 010701. doi: 10.7498/aps.70.20201228
    [7] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [8] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [9] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [10] 李冀鹏, 洪峰, 白薇, 廖敬仪, 张彦如, 周涛. 评估新型冠状病毒地区防控效果的一种近似方法. 物理学报, 2020, 69(10): 100201. doi: 10.7498/aps.69.20200441
    [11] 周广正, 李颖, 兰天, 代京京, 王聪聪, 王智勇. 垂直腔面发射激光器与异质结双极型晶体管集成结构的设计和模拟. 物理学报, 2019, 68(20): 204203. doi: 10.7498/aps.68.20190529
    [12] 任金莲, 任恒飞, 陆伟刚, 蒋涛. 基于分裂格式有限点集法对孤立波二维非线性问题的模拟. 物理学报, 2019, 68(14): 140203. doi: 10.7498/aps.68.20190340
    [13] 郭成豹, 殷琦琦. 舰船磁场磁单极子阵列法建模技术. 物理学报, 2019, 68(11): 114101. doi: 10.7498/aps.68.20190201
    [14] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
计量
  • 文章访问数:  7550
  • PDF下载量:  669
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-17
  • 修回日期:  2013-05-29
  • 刊出日期:  2013-09-05

/

返回文章
返回