搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对Ib型和IIa型金刚石大单晶(100)表面特征的影响

张贺 李尚升 宿太超 胡美华 周佑默 樊浩天 龚春生 贾晓鹏 马红安 肖宏宇

引用本文:
Citation:

温度对Ib型和IIa型金刚石大单晶(100)表面特征的影响

张贺, 李尚升, 宿太超, 胡美华, 周佑默, 樊浩天, 龚春生, 贾晓鹏, 马红安, 肖宏宇

Effect of temperature on the (100) surface features of type Ib and type IIa large single crystal diamonds

Zhang He, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Zhou You-Mo, Fan Hao-Tian, Gong Chun-Sheng, Jia Xiao-Peng, Ma Hong-An, Xiao Hong-Yu
PDF
导出引用
  • 本文在5.6 GPa, 12501340 ℃的条件下, 利用温度梯度法, 以FeNiMnCo 合金为触媒, 沿籽晶的(100)晶面成功合成了不同晶形的优质Ib型和IIa型金刚石大单晶. 利用激光拉曼附件显微镜, 分别对上述不同温度下合成的两类金刚石样品上表面(100)面的中心区域及棱角区域进行观察分析. 研究发现, Ib型和IIa型金刚石大单晶(100)晶面上从中心到棱角处黑色纹路的分布逐渐变黑变密集; 另外, 随着金刚石合成温度的升高, Ib型金刚石大单晶(100)面上黑色纹路由稀疏逐渐变稠密, 而IIa型金刚石大单晶的黑色纹路较为稀疏; Ib型金刚石大单晶的形貌特征表现为从低温晶体的不规则分布过渡到中温、高温晶体的典型树枝状分布. IIa型金刚石大单晶(100)面特征随温度变化规律与Ib型的类似. 这两类金刚石大单晶表面特征的差异可能是由于IIa 型金刚石具有比Ib型更小的生长速度和更少的氮含量. 最后, 对两类塔状金刚石大单晶进行拉曼光谱测试分析, 结果表明IIa型金刚石大单晶的品质较Ib型金刚石大单晶好.
    In this paper, by choosing FeNiMnCo alloy as a catalyst and the (100) face of a seed crystal as the growth face, high quality type Ib and type IIa large diamond single crystals (diameter about 3-4 mm) can be successfully synthesized using temperature gradient method, at 5.6 GPa pressure and different temperatures between 1250-1340 ℃. To control the diamond crystal morphology, the growth temperature should be adjusted. Then the morphology of the synthesized large diamonds is plate-like at low temperatures, tower-like at medium temperatures, and spire tower-like at high temperatures. For the same crystal morphology, the synthetic temperature of type IIa diamond single crystals is about 30 ℃ higher than that of type Ib. The central and angularity regions of the top (100) surface, for the synthesized samples of type Ib and type IIa large diamond single crystals at different temperatures, are examined by laser Raman microscope respectively. It is found that the black lines of the type Ib and type IIa large diamond single crystals become dimmed and dense on the same top surface from center to the edge. It is indicated that the priority growth mechanism is in the angularity regions, compared with the central regions. Namely the solute of carbon is primarily precipitated in the angularity regions of the (100) surface. With increasing synthesis temperature, the black lines on the top surface (100) of type Ib diamond single crystals become gradually denser, and the characteristics of the lines are transformed from irregular distribution to typical dendritic distribution. The reason of the above results is that the rate of carbon deposition (the growth rate of diamond crystal), which is along the direction of the diamond crystal [100], will gradually rise as the synthesis temperature of the crystal is increased. The characteristics of the lines on the top surfaces (100) of type IIa large diamond single crystals, which are synthesized under different temperatures, are similar to that of type Ib. However, the lines on the top (100) surface of type IIa diamonds are not so obvious and denser than that of type Ib diamonds at different synthesis temperatures. Similar characteristics of lines on the top (100) surface of both types of diamond single crystals can be explained by the axis and radial growth rate variation at different temperatures. These different characteristics of the lines are due to the fact that the growth rate of type IIa diamonds is slower than that of type Ib diamonds, and the nitrogen concentrations in type IIa diamonds are lower than those of type Ib diamonds. Finally, the full width at half maximum (5.554 cm-1) of the tower-like type IIa diamond is narrower than that (5.842 cm-1) of tower-like type Ib diamond from the test of Raman spectra. It is shown that the quality of type IIa diamond single crystals is better than that of type Ib.
      通信作者: 李尚升, lishsh@hpu.edu.cn
    • 基金项目: 吉林大学超硬材料国家重点实验室开放课题(批准号: 201203)、河南省教育厅重点资助(批准号: 12A430010, 13A140792)、 河南省高等学校矿业工程材料重点学科开放实验室开放基金(批准号: KLMEM2014-15)和河南理工大学创新型科研团队支持计划(批准号: T2013-4)资助的课题.
      Corresponding author: Li Shang-Sheng, lishsh@hpu.edu.cn
    • Funds: Project supported by the Open Project of State Key Laboratory of Superhard Materials (Jilin University), China (Grant No. 201203), the Education Department of Henan Province, China (Grant Nos. 12A430010, 13A140792), the Opening Project of Henan Key Discipline Open Laboratory of Mining Engineering Materials, China (Grant No. KLMEM 2014-15), and the Program for Innovative Research Team of Henan Polytechnic University, China (Grant No. T2013-4).
    [1]

    Sumiya H, Toda N, Satoh S 1971 J. Phys. Chem. 75 1838

    [2]

    Strong H M, Chrenko R M 1971 J. Phys. Chem. 75 1838

    [3]

    Sumiya H, Toda N, Satoh S 2002 Journal of Crystal Growth 237-239 1281

    [4]

    Sumiya H, Toda N, Nishibayashi Y, Satoh S 1997 Journal of Crystal Growth 178 485

    [5]

    Li Y, Jia X P, Shi W, Leng S L, Ma H A, Sun S S, Wang F b, Chen N, Long Y 2014 In. Journal of Refractory Metals and Hard Materials 43 147

    [6]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [7]

    Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Jia X P 2012 Chin. Phys. B 21 098101

    [8]

    Li S S, Li X L, Ma H A, Su T C, Xiao H Y, Huang G F, Li Y, Zhang Y S, Jia X P 2011 Chin. Phys. Lett. 28 068101

    [9]

    Qin J M, Zhang Y, Cao J M, Tian L F 2011 Acta Phys. Sin. 60 058102(in Chinese) [秦杰明, 张莹, 曹建明, 田立飞 2011 物理学报 60 058102]

    [10]

    Liang Z Z, Liang J Q, Zheng N, Jia X P, Li G J 2009 Acta Phys. Sin. 58 8039(in Chinese) [梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊 2009 物理学报 58 8039]

    [11]

    Yang Z J, Li H Z, Zhou Y Z, Wang X Y, Luo F 2015 In. Journal of Refractory Metals and Hard Materials 48 61

    [12]

    Hu M H, Bi N, Li S S, Su T C, Hu Q, Jia X P, Ma H A 2015 In. Journal of Refractory Metals and Hard Materials 48 61

    [13]

    Yan B M, Jia X P, Sun S S, Zhou Z X, Chao F, Chen N, Li Y D, Li Y, Ma H A, Wang F b, Chen N, Long Y 2015 In. Journal of Refractory Metals and Hard Materials 48 56

    [14]

    Xiao H Y, Li S S, Qin Y K, Liang Z Z, Zhang Y S, Zhang D M, Zhang Y S 2014 Acta Phys. Sin. 63 198101(in Chinese) [肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张冬梅, 张义顺 2014 物理学报 63 198101]

    [15]

    Kanda H, Ohsawa, T, Fukunaga, O, Sunagawa, I 1989 Journal of Crystal Growth 94 115

    [16]

    Kanda H, Ohsawa T 1996 Diamond and Related Materials 5 8

    [17]

    Zang C Y, Huang G F, Ma H A, Jia X P 2007 Chin. Phys. Lett. 24 2991

    [18]

    Zang C Y, Chen K, Hu Q, Huang G F, Chen X Z, Jia X P 2009 Journal of Synthetic Crystals 38 677(in Chinese) [臧传义, 陈奎, 胡强, 黄国锋, 陈孝洲, 贾晓鹏 2009 人工晶体学报 38 677]

  • [1]

    Sumiya H, Toda N, Satoh S 1971 J. Phys. Chem. 75 1838

    [2]

    Strong H M, Chrenko R M 1971 J. Phys. Chem. 75 1838

    [3]

    Sumiya H, Toda N, Satoh S 2002 Journal of Crystal Growth 237-239 1281

    [4]

    Sumiya H, Toda N, Nishibayashi Y, Satoh S 1997 Journal of Crystal Growth 178 485

    [5]

    Li Y, Jia X P, Shi W, Leng S L, Ma H A, Sun S S, Wang F b, Chen N, Long Y 2014 In. Journal of Refractory Metals and Hard Materials 43 147

    [6]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [7]

    Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Jia X P 2012 Chin. Phys. B 21 098101

    [8]

    Li S S, Li X L, Ma H A, Su T C, Xiao H Y, Huang G F, Li Y, Zhang Y S, Jia X P 2011 Chin. Phys. Lett. 28 068101

    [9]

    Qin J M, Zhang Y, Cao J M, Tian L F 2011 Acta Phys. Sin. 60 058102(in Chinese) [秦杰明, 张莹, 曹建明, 田立飞 2011 物理学报 60 058102]

    [10]

    Liang Z Z, Liang J Q, Zheng N, Jia X P, Li G J 2009 Acta Phys. Sin. 58 8039(in Chinese) [梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊 2009 物理学报 58 8039]

    [11]

    Yang Z J, Li H Z, Zhou Y Z, Wang X Y, Luo F 2015 In. Journal of Refractory Metals and Hard Materials 48 61

    [12]

    Hu M H, Bi N, Li S S, Su T C, Hu Q, Jia X P, Ma H A 2015 In. Journal of Refractory Metals and Hard Materials 48 61

    [13]

    Yan B M, Jia X P, Sun S S, Zhou Z X, Chao F, Chen N, Li Y D, Li Y, Ma H A, Wang F b, Chen N, Long Y 2015 In. Journal of Refractory Metals and Hard Materials 48 56

    [14]

    Xiao H Y, Li S S, Qin Y K, Liang Z Z, Zhang Y S, Zhang D M, Zhang Y S 2014 Acta Phys. Sin. 63 198101(in Chinese) [肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张冬梅, 张义顺 2014 物理学报 63 198101]

    [15]

    Kanda H, Ohsawa, T, Fukunaga, O, Sunagawa, I 1989 Journal of Crystal Growth 94 115

    [16]

    Kanda H, Ohsawa T 1996 Diamond and Related Materials 5 8

    [17]

    Zang C Y, Huang G F, Ma H A, Jia X P 2007 Chin. Phys. Lett. 24 2991

    [18]

    Zang C Y, Chen K, Hu Q, Huang G F, Chen X Z, Jia X P 2009 Journal of Synthetic Crystals 38 677(in Chinese) [臧传义, 陈奎, 胡强, 黄国锋, 陈孝洲, 贾晓鹏 2009 人工晶体学报 38 677]

  • [1] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [2] 李加红, 孙贵花, 张庆礼, 王小飞, 张德明, 刘文鹏, 高进云, 郑丽丽, 韩松, 陈照, 殷绍唐. 退火气氛对GdScO3和Yb:GdScO3晶体的结构和光谱性质的影响. 物理学报, 2022, 71(16): 164206. doi: 10.7498/aps.71.20220196
    [3] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展. 物理学报, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [4] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长. 物理学报, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [5] 肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜. 合成腔体尺寸对Ib型六面体金刚石单晶生长的影响. 物理学报, 2016, 65(7): 070705. doi: 10.7498/aps.65.070705
    [6] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究. 物理学报, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [7] 房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安. 添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征. 物理学报, 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [8] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [9] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算. 物理学报, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [10] 胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安. 国产六面顶压机多晶种法合成宝石级金刚石单晶. 物理学报, 2013, 62(18): 188103. doi: 10.7498/aps.62.188103
    [11] 肖宏宇, 苏剑峰, 张永胜, 鲍志刚. 温度梯度法宝石级金刚石的合成及表征. 物理学报, 2012, 61(24): 248101. doi: 10.7498/aps.61.248101
    [12] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜. 物理学报, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [13] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子. 物理学报, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [14] 周文平, 万松明, 张 霞, 张庆礼, 孙敦陆, 仇怀利, 尤静林, 殷绍唐. PbMoO4晶体生长基元和生长习性的高温拉曼光谱研究. 物理学报, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [15] 姜本学, 徐 军, 李红军, 王静雅, 赵广军, 赵志伟. 温度梯度法生长Nd:YAG激光晶体的核心分布. 物理学报, 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [16] 杨武保, 范松华, 张谷令, 马培宁, 张守忠, 杜 健. 非平衡磁控溅射法类金刚石薄膜的制备及分析. 物理学报, 2005, 54(10): 4944-4948. doi: 10.7498/aps.54.4944
    [17] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [18] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究. 物理学报, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [19] 曾雄辉, 赵广军, 徐 军. 温度梯度法生长的Ce: YAlOZr3高温闪烁晶体的光谱分析. 物理学报, 2004, 53(6): 1935-1939. doi: 10.7498/aps.53.1935
    [20] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
计量
  • 文章访问数:  7213
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-08
  • 修回日期:  2015-06-23
  • 刊出日期:  2015-10-05

/

返回文章
返回