-
In this paper, a series of high-quality hydrogen-doped diamonds is successfully synthesized in Ni70Mn25Co5-C system by using Fe(C5H5)2 as hydrogen source at pressures ranging from 5.5 GPa to 6.0 GPa and temperatures of 1280-1400 ℃. We find that both pressure and temperature conditions strengthen with adding the Fe(C5H5)2. Scanning electron microscope micrographs show that the obtained diamonds at low levels of Fe(C5H5)2 additive have smooth surfaces. However, many defects are found and some pores appear on the diamond surface with increasing the Fe(C5H5)2 additive in the system. From the obtained Fourier transform infrared (IR) spectrum, we notice that there is no significant change of nitrogen concentration in the synthesized diamond with the Fe(C5H5)2 additive lower than 0.3 wt%, while the nitrogen concentration gradually decreases with the further increase of Fe(C5H5)2 additive. In the system with 0.5 wt% Fe(C5H5)2 additive, the nitrogen concentration in synthesized diamond is only half that of system without Fe(C5H5)2 additive. Meanwhile, the hydrogen associated IR peaks of 2850 cm-1 and 2920 cm-1 are gradually enhanced with the increase of Fe(C5H5)2 additive in the system, indicating that most of the hydrogen atoms in the synthesized diamond are incorporated into the crystal structure as sp3-CH2-symmetric (2850 cm-1) and sp3 CH2-antisymmetric (2920 cm-1) vibrations. From the obtained Raman spectrum, we find the incorporation of hydrogen impurity leads to a significant shift of the Raman peak towards higher frequencies from 1333.90 cm-1 to 1334.42 cm-1 with increasing the concentration of Fe(C5H5)2 additive from 0.1 wt% to 0.5 wt%, thereby giving rise to some compressive stress in the diamond crystal lattice. This is the first time that the gem-grade hydrogen-doped diamond single crystal, with size up to 3.5 mm has been successfully synthesized by using new hydrogen source Fe(C5H5)2 additive. We believe that our work can provide a new method to study the influence of hydrogen impurity on diamond synthesis and it will help us to further understand the genesis of natural diamond in the future.
-
Keywords:
- hydrogen-doped diamond single crystal /
- Fe(C5H5)2 additives /
- high pressure high temperature /
- temperature gradient method
[1] Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474
[2] Fesq H W, Bibby D M, Erasmus C S, Kable E J, Sellschop J P 1975 Phys. Chem. Earth. 9 817
[3] Palyanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sokol A G 2010 Cryst. Growth. Des. 10 3169
[4] Liu X B, Jia X P, Zhang Z F, Li Y, Hu M H, Zhou Z X, Ma H A 2011 Cryst. Growth. Des. 11 3844
[5] Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W, Guan Q F, Zang C Y 2006 Carbon 44 913
[6] Zhang Y F, Zang C Y, Ma H A, Liang Z Z, Zhou L, Li S S, Jia X P 2008 Diamond Relat. Mater. 17 209
[7] Yu R Z, Ma H A, Liang Z Z, Liu W Q, Zheng Y J, Jia X P 2008 Diamond Relat. Mater. 17 180
[8] Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diamond Relat. Mater. 11 1863
[9] Goss J P 2003 J. Phys. : Condens. Matter 15 551
[10] Tachikawa H 2011 Chem. Phys. Lett. 513 94
[11] Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys.: Condens. Matter 14 11269
[12] Sun S S, Jia X P, Yan B M, Wang F B, Chen N, Li Y D, Ma H A 2014 Cryst. Eng. Commun. 16 2290
[13] Angus J C, Wang Y X, Sunkara M 1991 Annu. Rev. Mater. Sci. 21 221
[14] Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukuanga O 1980 J. Mater. Sci. 15 2743
[15] Dischler B, Wild C, Mller-Sebert W, Koidl P 1993 Physica B 185 217
[16] Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101]
[17] Jia X P, Zhu P W, Wang T D, Zang C Y, Wang X C, Chen L X, Zou G T, Wakastuski W 2003 4th Zhengzhou International Superhard Materials and Related Products Conference Zhengzhou, China, August 29-September 2, 2003 p77
[18] Sung J C, Sung M, Sung E 2006 Thin Solid Films 498 212
[19] Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906
[20] Liu X B, Ma H A, Zhang Z F, Zhao M, Guo W, Li Y, Jia X P 2011 Diamond Relat. Mater. 20 468
[21] Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781
[22] Burnsa R C, Hansena J O, Spitsa R A, Sibandaa M, Welbournb C M, Welcha D L 1999 Diamond Relat. Mater. 8 1433
[23] Liang Z Z, Liang J Q, Jia X P 2009 Chin. Phys. Lett. 26 038104
[24] Kanda H 2000 Braz. J. Phys. 30 482
[25] Kanda H, Sato Y, Setaka N, Ohsawa T, Fukunaga O 1981 Nippon Kagaku Kaishi 9 1349
[26] Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 物理学报 63 248104]
[27] Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101
[28] Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Jia X P 2012 Chin. Phys. B 21 098101
-
[1] Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474
[2] Fesq H W, Bibby D M, Erasmus C S, Kable E J, Sellschop J P 1975 Phys. Chem. Earth. 9 817
[3] Palyanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sokol A G 2010 Cryst. Growth. Des. 10 3169
[4] Liu X B, Jia X P, Zhang Z F, Li Y, Hu M H, Zhou Z X, Ma H A 2011 Cryst. Growth. Des. 11 3844
[5] Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W, Guan Q F, Zang C Y 2006 Carbon 44 913
[6] Zhang Y F, Zang C Y, Ma H A, Liang Z Z, Zhou L, Li S S, Jia X P 2008 Diamond Relat. Mater. 17 209
[7] Yu R Z, Ma H A, Liang Z Z, Liu W Q, Zheng Y J, Jia X P 2008 Diamond Relat. Mater. 17 180
[8] Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diamond Relat. Mater. 11 1863
[9] Goss J P 2003 J. Phys. : Condens. Matter 15 551
[10] Tachikawa H 2011 Chem. Phys. Lett. 513 94
[11] Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys.: Condens. Matter 14 11269
[12] Sun S S, Jia X P, Yan B M, Wang F B, Chen N, Li Y D, Ma H A 2014 Cryst. Eng. Commun. 16 2290
[13] Angus J C, Wang Y X, Sunkara M 1991 Annu. Rev. Mater. Sci. 21 221
[14] Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukuanga O 1980 J. Mater. Sci. 15 2743
[15] Dischler B, Wild C, Mller-Sebert W, Koidl P 1993 Physica B 185 217
[16] Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101]
[17] Jia X P, Zhu P W, Wang T D, Zang C Y, Wang X C, Chen L X, Zou G T, Wakastuski W 2003 4th Zhengzhou International Superhard Materials and Related Products Conference Zhengzhou, China, August 29-September 2, 2003 p77
[18] Sung J C, Sung M, Sung E 2006 Thin Solid Films 498 212
[19] Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906
[20] Liu X B, Ma H A, Zhang Z F, Zhao M, Guo W, Li Y, Jia X P 2011 Diamond Relat. Mater. 20 468
[21] Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781
[22] Burnsa R C, Hansena J O, Spitsa R A, Sibandaa M, Welbournb C M, Welcha D L 1999 Diamond Relat. Mater. 8 1433
[23] Liang Z Z, Liang J Q, Jia X P 2009 Chin. Phys. Lett. 26 038104
[24] Kanda H 2000 Braz. J. Phys. 30 482
[25] Kanda H, Sato Y, Setaka N, Ohsawa T, Fukunaga O 1981 Nippon Kagaku Kaishi 9 1349
[26] Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 物理学报 63 248104]
[27] Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101
[28] Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Jia X P 2012 Chin. Phys. B 21 098101
Catalog
Metrics
- Abstract views: 6366
- PDF Downloads: 334
- Cited By: 0