Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on pressure transmission and sealing performance of pyrophyllite in a cubic large chamber static high-pressure device

Tian Yi Du Ming-Hao Zhang Jia-Wei He Duan-Wei

Citation:

Research on pressure transmission and sealing performance of pyrophyllite in a cubic large chamber static high-pressure device

Tian Yi, Du Ming-Hao, Zhang Jia-Wei, He Duan-Wei
PDF
HTML
Get Citation
  • Owing to the need for a hydrostatic high-pressure cubic large cavity (hexahedral top) press used in high-pressure research and production of superhard material, two kinds of pyrophyllite powder compacts (A and B) from pyrophyllite mine in South Africa are prepared, and compared with the domestic yellow pyrophyllite powder compacts (Mentougou, Beijing) produced by the same process, to establish experimental methods and physical criteria for evaluating the pressure transmission and sealing performance of pyrophyllite. During the experiment, standard pressure materials such as Bi, Tl, and Ba are used to in-situ calibrate the pressure at the central positions and sealing edges of the pyrophyllite pressure chambers from the three aforementioned compacts under normal pressure conditions. Additionally, the silver melting point method is employed to obtain the corresponding relationship between chamber pressure at high temperature and system loading when using these three types of pyrophyllite as load-transmitting sealing materials. The results show that under the same hydraulic pressure loading, the difference in pressure at the central position between South African pyrophyllite B powder blocks and domestically produced pyrophyllite powder blocks does not exceed 0.1 GPa. Furthermore, in pressurization process and depressurization processe, the differences in pressure between the central position and the sealing edge of the pyrophyllite blocks are notably similar. Compared with South African pyrophyllite A powder blocks, pyrophyllite B powder blocks exhibit a closer resemblance to domestically produced pyrophyllite powder blocks in terms of high-temperature load transmission and sealing performance. Pyrophyllite B powder blocks from South Africa have the potential to serve as a substitute for domestically produced pyrophyllite without changing the existing superhard material synthesis process, making them promising candidates for use as load-transmitting media and sealing materials. These research findings hold significant academic importance in the realms of high-pressure research and superhard material production. They provide valuable insights into the selection of suitable transmission and sealing materials and the optimization of high-pressure experimental conditions. Additionally, this study presents robust method and criteria for experimental procedures and performance assessment.
      Corresponding author: He Duan-Wei, duanweihe@scu.edu.cn
    [1]

    王海阔, 贺端威, 许超, 管俊伟, 王文丹, 寇自力, 彭放 2013 高压物理学报 27 633Google Scholar

    Wang H K, He D W, Xu C, Guan J W, Wang W D, Kou Z L, Peng F 2013 Chin. J. High Pressure Phys. 27 633Google Scholar

    [2]

    彭放, 贺端威 2018 高压物理学报 32 010105Google Scholar

    Peng F, He D W 2018 Chin. J. High Pressure Phys. 32 010105Google Scholar

    [3]

    崔祥仁, 方啸虎, 邢英 2021 超硬材料工程 33 39

    Cui X R, Fang X H, Xing Y 2021 Superhard Mater. Eng. 33 39

    [4]

    He D W, Zhao Y S, Sheng T D, et al. 2003 Rev. Sci. Instrum. 74 3012Google Scholar

    [5]

    Yan X Z, He D W, Xu C, Ren X T, Zhou X L, Liu S Z 2012 High Press. Res. 32 482Google Scholar

    [6]

    Fang L M, He D W, Chen C, Ding L, Luo X J 2007 High Press. Res. 27 367Google Scholar

    [7]

    Liu X, Chen J L, Tang J J, He Q, Li S C, Peng F, He D W, Zhang L F, Fei Y W 2012 High Press. Res. 32 239Google Scholar

    [8]

    Hu Q W, Fang L M, Li Q, et al. 2019 High Press. Res. 39 655Google Scholar

    [9]

    王海阔, 任瑛, 贺端威, 许超 2017 物理学报 66 090702Google Scholar

    Wang H K, Ren Y, He D W, Xu C 2017 Acta Phys. Sin. 66 090702Google Scholar

    [10]

    Wang H K, He D W 2012 High Press. Res. 32 186Google Scholar

    [11]

    Wang Y P, Kou Z L, Zhang J W, Chen S J, Zhang L, Peng B, Zhao M X, Jiang M L, Yin X S, He D W 2020 Rev. Sci. Instrum. 91 035119.Google Scholar

    [12]

    Yan X Z, Ren X T, He D W 2016 Rev. Sci. Instrum. 87 125006Google Scholar

    [13]

    李帅锜, 贺端威, 张佳威 2022 物理 51 228Google Scholar

    Li S Q, He D W, Zhang J W 2022 Physics 51 228Google Scholar

    [14]

    张佳威, 李强, 王俊普, 贺端威 2019 高压物理学报 33 020105Google Scholar

    Zhang J W, Li Q, Wang J P, He D W 2019 Chin. J. High Pressure Phys. 33 020105Google Scholar

    [15]

    王强, 贺端威, 刘进, 刘方明, 丁未, 马迎功, 刘腾, 李媛媛, 吴京军, 张佳威, 寇自力 2017 高压物理学报 31 511Google Scholar

    Wan Q, He D W, Liu J, Liu F M, Ding W, Ma Y G, Liu T, Li Y Y, Wu J J, Zhang J W, Kou Z L 2017 Chin. J. High Pressure Phys. 31 511Google Scholar

    [16]

    王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放 2010 物理学报 59 3107Google Scholar

    Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107Google Scholar

    [17]

    王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张 剑, 寇自力, 彭放 2008 物理学报 57 5429Google Scholar

    Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429Google Scholar

    [18]

    何强, 唐俊杰, 王霏, 刘曦 2014 高压物理学报 28 145

    He Q, Tang J J, Wang F, Liu X 2014 Chin. J. High Pressure Phys. 28 145

    [19]

    管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯 2012 物理学报 61 100701Google Scholar

    Guan J W, He D W, Wang H K, Peng F, Xu C, Wang W D, Wang K X, He K 2012 Acta Phys. Sin. 61 100701Google Scholar

    [20]

    张旺玺, 梁宝岩, 李启泉 2021 超硬材料工程 33 30

    Zhang W X, Liang B Y, Li Q Q 2021 Superhard Mater. Eng. 33 30

    [21]

    王明智 2020 金刚石与磨料磨具工程 40 1

    Wang M Z 2020 Diamond Abrasives Eng. 40 1

    [22]

    谢光灼, 王绍斌, 李波, 吴瑞良, 陈立舫, 徐珊慧 1998 金刚石与磨料磨具工程 3 7

    Xie G Z, Wang S B, Li B, Wu R L, Chen L F, Xu S H 1998 Diamond Abrasives Eng. 3 7

    [23]

    史斌, 刘鑫, 辛蜜蜜, 林元惠, 赵云鹏, 刘钦甫 2017 煤田地质与勘探 45 25Google Scholar

    Shi B, Liu X, Xin M M, Lin Y H, Zhao Y P, Liu Q F 2017 Coal Geol. Explor. 45 25Google Scholar

    [24]

    许饮豪, 赵美玉 1995 广东工学院学报 12 72

    Xu Y H, Zhao M Y 1995 J. Guangdong Univ. Technol. 12 72

    [25]

    Gatta G D, Lotti P, Merlini M, Liermann H P, Lausi A, Valdrè G, Pavese A 2014 Phys. Chem. Miner. 42 309Google Scholar

    [26]

    陈丽英, 刘秀茹, 吴学华, 苏磊, 洪时明 2004 珠宝科技 16 6

    Chen L Y, Liu X R, Wu X H, Su L, Hong S M 2004 Jewelry Science and Technology 16 6

    [27]

    张巍 2017 金属矿山 8 1Google Scholar

    Zhang W 2017 Met. Mine 8 1Google Scholar

    [28]

    郑日升, 王大伟, 方啸虎 2011 有色金属工程 63 219

    Zheng R S, Wang D W, Fang X H 2011 Nonferrous Metals 63 219

    [29]

    贾攀, 刘乾坤, 张凤莲, 胡来运, 吴定雨, 王飞飞, 丁建 2015 超硬材料工程 27 34

    Jia P, Liu Q K, Zhang F L, Hu L Y, Wu D Y, Wang F F, Ding J 2015 Superhard Mater. Eng. 27 34

    [30]

    Wang H K, He D W, Yan X Z, Xu C, Guan J W, Tan N, Wang W D 2011 High Press. Res. 31 581Google Scholar

    [31]

    Li R, Xu B J, Zhang Q C, Gu X, Zheng G L, Ma H A, Jia X P 2016 High Press. Res. 36 575Google Scholar

    [32]

    刘乾坤, 赵鹏, 吴定雨, 昝亚男, 武周军, 王卫康 2019 超硬材料工程 31 16

    Liu Q K, Zhao P, Wu D Y, Zan Y N, Wu Z J, Wang W K 2019 Superhard Mater. Eng. 31 16

    [33]

    Zhang J W, Liu F M, Wu J J, et al. 2018 Rev. Sci. Instrum. 89 075106Google Scholar

    [34]

    魏存弟, 赵峰, 马鸿文, 李金洪, 杨殿范, 三国彰 2005 吉林大学学报(地球科学版) 35 150

    Wei C D, Zhao F, Ma H W, Li J H, Yang D F, San G Z 2005 J. Jilin Univ. , Earth Sci. Ed. 35 150

    [35]

    徐文炘, 李蘅, 郭陀珠, 郭桦 2003 矿产与地质 17 242Google Scholar

    Xu W X, Li H, Guo T Z, Guo H 2003 Mineral Resources and Geology 17 242Google Scholar

    [36]

    Boren M D, Babb S E, Scott G J 1965 Rev. Sci. Instrum. 36 1456Google Scholar

    [37]

    Decker D L, Bassett W A, Merrill L, Hall H T, Barnett J D 1972 J. Phys. Chem. Ref. Data 1 773Google Scholar

    [38]

    Cohen L H, Klement W, Kennedy G C 1966 Phys. Rev. 145 519Google Scholar

    [39]

    张振禹, 汪灵 1998 硅酸盐学报 26 618

    Zhang Z Y, Wang L 1998 J. Chin. Silic. Soc. 26 618

    [40]

    徐跃, 陈晓东, 郝兆印 2007 金刚石与磨料磨具工程 6 76Google Scholar

    Xu Y, Chen X D, Hao Z Y 2007 Diamond Abrasives Eng. 6 76Google Scholar

    [41]

    Chen D M, Jiang Z C, Zhang H F 1991 J. Mineral. Petrol. 2 45 [陈大梅, 姜泽春, 张惠芬 1991 矿物岩石 2 45

    Chen D M, Jiang Z C, Zhang H F 1991 J. Mineral. Petrol. 2 45

    [42]

    Akella J, Kennedy G C 1971 J. Geophys. Res. 76 496Google Scholar

  • 图 1  叶腊石粉压立方块的光学照片、断面SEM图及XRD衍射谱 (a)黄色叶腊石; (b)南非A; (c) 南非B; (d) 3种叶腊石的XRD检测结果

    Figure 1.  Optical photos, cross section SEM and XRD spectrum of pyrophyllite powder pressing block: (a) Yellow pyrophyllite; (b) South Africa pyrophyllite A; (c) South Africa pyrophyllite B; (d) XRD results of three pyrophyllite powder pressing block.

    图 2  常温压力标定实验组装示意图及电路图 (a)内部电路图及实验组装示意图; (b)外部电路图

    Figure 2.  Assembly diagram and circuit diagram of the normal temperature pressure calibration experiment: (a) Internal circuit and schematic diagram of assembly; (b) external circuit.

    图 3  高温压力标定实验组装示意图及标定结果 (a)实验组装; (b) 50 MPa油压加载下黄色叶腊石作密封材料时的压力标定结果

    Figure 3.  Assembly diagram and calibration results of high-temperature pressure calibration experiment: (a) Assembly diagram; (b) pressure calibration results of yellow pyrophyllite as sealing material under 50 MPa oil pressure loading.

    图 4  密封边压力标定实验原理图 (a)外部电路图; (b)实验组装示意图; (c)内部电路图

    Figure 4.  Schematic diagram of sealing edge pressure calibration experiment: (a) External circuit; (b) experimental assembly diagram; (c) internal circuit.

    图 5  叶腊石立方块中心压力与加载油压之间的对应关系(a)室温压力标定结果; (b) 高温压力标定结果

    Figure 5.  Corresponding relationship between central pressure and loading oil pressure of pyrophyllite cube: (a) Pressure calibration results at room temperature; (b) pressure calibration results at high temperature.

    图 6  加压前后叶腊石流变行为的原理示意图 (a) 加压前; (b) 加压后

    Figure 6.  Schematic diagram of the rheological behavior of pyrophyllite before and after compression: (a) Before compression; (b) after compression.

    图 7  黄色叶腊石中心位置的压力(Pc)和密封边处的压力(Pg)与加载油压的对应关系 (a)升压过程; (b) 降压过程

    Figure 7.  Pressure (Pc) at the center and the sealing edge (Pg) of yellow pyrophyllite correspond to the loading oil pressure: (a) Compress; (b) decompression.

    图 8  $ \Delta $P随密封边压力的变化曲线 (a) 升压过程; (b) 降压过程

    Figure 8.  Variation curve of $ \Delta P $ with gasket pressure: (a) Compress; (b) decompression.

  • [1]

    王海阔, 贺端威, 许超, 管俊伟, 王文丹, 寇自力, 彭放 2013 高压物理学报 27 633Google Scholar

    Wang H K, He D W, Xu C, Guan J W, Wang W D, Kou Z L, Peng F 2013 Chin. J. High Pressure Phys. 27 633Google Scholar

    [2]

    彭放, 贺端威 2018 高压物理学报 32 010105Google Scholar

    Peng F, He D W 2018 Chin. J. High Pressure Phys. 32 010105Google Scholar

    [3]

    崔祥仁, 方啸虎, 邢英 2021 超硬材料工程 33 39

    Cui X R, Fang X H, Xing Y 2021 Superhard Mater. Eng. 33 39

    [4]

    He D W, Zhao Y S, Sheng T D, et al. 2003 Rev. Sci. Instrum. 74 3012Google Scholar

    [5]

    Yan X Z, He D W, Xu C, Ren X T, Zhou X L, Liu S Z 2012 High Press. Res. 32 482Google Scholar

    [6]

    Fang L M, He D W, Chen C, Ding L, Luo X J 2007 High Press. Res. 27 367Google Scholar

    [7]

    Liu X, Chen J L, Tang J J, He Q, Li S C, Peng F, He D W, Zhang L F, Fei Y W 2012 High Press. Res. 32 239Google Scholar

    [8]

    Hu Q W, Fang L M, Li Q, et al. 2019 High Press. Res. 39 655Google Scholar

    [9]

    王海阔, 任瑛, 贺端威, 许超 2017 物理学报 66 090702Google Scholar

    Wang H K, Ren Y, He D W, Xu C 2017 Acta Phys. Sin. 66 090702Google Scholar

    [10]

    Wang H K, He D W 2012 High Press. Res. 32 186Google Scholar

    [11]

    Wang Y P, Kou Z L, Zhang J W, Chen S J, Zhang L, Peng B, Zhao M X, Jiang M L, Yin X S, He D W 2020 Rev. Sci. Instrum. 91 035119.Google Scholar

    [12]

    Yan X Z, Ren X T, He D W 2016 Rev. Sci. Instrum. 87 125006Google Scholar

    [13]

    李帅锜, 贺端威, 张佳威 2022 物理 51 228Google Scholar

    Li S Q, He D W, Zhang J W 2022 Physics 51 228Google Scholar

    [14]

    张佳威, 李强, 王俊普, 贺端威 2019 高压物理学报 33 020105Google Scholar

    Zhang J W, Li Q, Wang J P, He D W 2019 Chin. J. High Pressure Phys. 33 020105Google Scholar

    [15]

    王强, 贺端威, 刘进, 刘方明, 丁未, 马迎功, 刘腾, 李媛媛, 吴京军, 张佳威, 寇自力 2017 高压物理学报 31 511Google Scholar

    Wan Q, He D W, Liu J, Liu F M, Ding W, Ma Y G, Liu T, Li Y Y, Wu J J, Zhang J W, Kou Z L 2017 Chin. J. High Pressure Phys. 31 511Google Scholar

    [16]

    王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放 2010 物理学报 59 3107Google Scholar

    Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107Google Scholar

    [17]

    王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张 剑, 寇自力, 彭放 2008 物理学报 57 5429Google Scholar

    Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429Google Scholar

    [18]

    何强, 唐俊杰, 王霏, 刘曦 2014 高压物理学报 28 145

    He Q, Tang J J, Wang F, Liu X 2014 Chin. J. High Pressure Phys. 28 145

    [19]

    管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯 2012 物理学报 61 100701Google Scholar

    Guan J W, He D W, Wang H K, Peng F, Xu C, Wang W D, Wang K X, He K 2012 Acta Phys. Sin. 61 100701Google Scholar

    [20]

    张旺玺, 梁宝岩, 李启泉 2021 超硬材料工程 33 30

    Zhang W X, Liang B Y, Li Q Q 2021 Superhard Mater. Eng. 33 30

    [21]

    王明智 2020 金刚石与磨料磨具工程 40 1

    Wang M Z 2020 Diamond Abrasives Eng. 40 1

    [22]

    谢光灼, 王绍斌, 李波, 吴瑞良, 陈立舫, 徐珊慧 1998 金刚石与磨料磨具工程 3 7

    Xie G Z, Wang S B, Li B, Wu R L, Chen L F, Xu S H 1998 Diamond Abrasives Eng. 3 7

    [23]

    史斌, 刘鑫, 辛蜜蜜, 林元惠, 赵云鹏, 刘钦甫 2017 煤田地质与勘探 45 25Google Scholar

    Shi B, Liu X, Xin M M, Lin Y H, Zhao Y P, Liu Q F 2017 Coal Geol. Explor. 45 25Google Scholar

    [24]

    许饮豪, 赵美玉 1995 广东工学院学报 12 72

    Xu Y H, Zhao M Y 1995 J. Guangdong Univ. Technol. 12 72

    [25]

    Gatta G D, Lotti P, Merlini M, Liermann H P, Lausi A, Valdrè G, Pavese A 2014 Phys. Chem. Miner. 42 309Google Scholar

    [26]

    陈丽英, 刘秀茹, 吴学华, 苏磊, 洪时明 2004 珠宝科技 16 6

    Chen L Y, Liu X R, Wu X H, Su L, Hong S M 2004 Jewelry Science and Technology 16 6

    [27]

    张巍 2017 金属矿山 8 1Google Scholar

    Zhang W 2017 Met. Mine 8 1Google Scholar

    [28]

    郑日升, 王大伟, 方啸虎 2011 有色金属工程 63 219

    Zheng R S, Wang D W, Fang X H 2011 Nonferrous Metals 63 219

    [29]

    贾攀, 刘乾坤, 张凤莲, 胡来运, 吴定雨, 王飞飞, 丁建 2015 超硬材料工程 27 34

    Jia P, Liu Q K, Zhang F L, Hu L Y, Wu D Y, Wang F F, Ding J 2015 Superhard Mater. Eng. 27 34

    [30]

    Wang H K, He D W, Yan X Z, Xu C, Guan J W, Tan N, Wang W D 2011 High Press. Res. 31 581Google Scholar

    [31]

    Li R, Xu B J, Zhang Q C, Gu X, Zheng G L, Ma H A, Jia X P 2016 High Press. Res. 36 575Google Scholar

    [32]

    刘乾坤, 赵鹏, 吴定雨, 昝亚男, 武周军, 王卫康 2019 超硬材料工程 31 16

    Liu Q K, Zhao P, Wu D Y, Zan Y N, Wu Z J, Wang W K 2019 Superhard Mater. Eng. 31 16

    [33]

    Zhang J W, Liu F M, Wu J J, et al. 2018 Rev. Sci. Instrum. 89 075106Google Scholar

    [34]

    魏存弟, 赵峰, 马鸿文, 李金洪, 杨殿范, 三国彰 2005 吉林大学学报(地球科学版) 35 150

    Wei C D, Zhao F, Ma H W, Li J H, Yang D F, San G Z 2005 J. Jilin Univ. , Earth Sci. Ed. 35 150

    [35]

    徐文炘, 李蘅, 郭陀珠, 郭桦 2003 矿产与地质 17 242Google Scholar

    Xu W X, Li H, Guo T Z, Guo H 2003 Mineral Resources and Geology 17 242Google Scholar

    [36]

    Boren M D, Babb S E, Scott G J 1965 Rev. Sci. Instrum. 36 1456Google Scholar

    [37]

    Decker D L, Bassett W A, Merrill L, Hall H T, Barnett J D 1972 J. Phys. Chem. Ref. Data 1 773Google Scholar

    [38]

    Cohen L H, Klement W, Kennedy G C 1966 Phys. Rev. 145 519Google Scholar

    [39]

    张振禹, 汪灵 1998 硅酸盐学报 26 618

    Zhang Z Y, Wang L 1998 J. Chin. Silic. Soc. 26 618

    [40]

    徐跃, 陈晓东, 郝兆印 2007 金刚石与磨料磨具工程 6 76Google Scholar

    Xu Y, Chen X D, Hao Z Y 2007 Diamond Abrasives Eng. 6 76Google Scholar

    [41]

    Chen D M, Jiang Z C, Zhang H F 1991 J. Mineral. Petrol. 2 45 [陈大梅, 姜泽春, 张惠芬 1991 矿物岩石 2 45

    Chen D M, Jiang Z C, Zhang H F 1991 J. Mineral. Petrol. 2 45

    [42]

    Akella J, Kennedy G C 1971 J. Geophys. Res. 76 496Google Scholar

  • [1] Guo Lin-Lin, Zhao Zi-Tong, Sui Ming-Hong, Wang Peng, Liu Bing-Bing. High-pressure high-temperature induced polymerization of nitrogen molecules under restricted condition. Acta Physica Sinica, 2024, 73(8): 086102. doi: 10.7498/aps.73.20240173
    [2] Xiao Hong-Yu, Li Yong, Bao Zhi-Gang, She Yan-Chao, Wang Ying, Li Shang-Sheng. Effect of catalyst composition on growth and crack defects of large diamond single crystal under high temperature and pressure. Acta Physica Sinica, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] Yang Gong-Zhang, Xie Lei, Chen Xi-Ping, He Rui-Qi, Han Tie-Xin, Niu Guo-Liang, Fang Lei-Ming, He Duan-Wei. Experimental study of simultaneous high-temperature and high-pressure assembly of Paris-Edinburgh press for neutron diffraction. Acta Physica Sinica, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [4] Tian Chun-Ling, Liu Hai-Yan, Wang Biao, Liu Fu-Sheng, Gan Yun-Dan. Phase transition and equation of state of dense liquid nitrogen at high temperature and high pressure. Acta Physica Sinica, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [5] Jiang Ming-Quan, Li Xin, Fang Lei-Ming, Xie Lei, Chen Xi-Ping, Hu Qi-Wei, Li Qiang, Li Qing-Ze, Chen Bo, He Duan-Wei. Optimal design and experimental verification of high-temperature and high-pressure assembly of neutron diffraction based on PE-type press. Acta Physica Sinica, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [6] You Yue, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Hu Qiang, Wang Jun-Zhuo, Gao Guang-Jin, Guo Ming-Ming, Nie Yuan. Research progress of large diamond single crystals under high pressure and high temperature. Acta Physica Sinica, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [7] Zhang Bu-Qiang, Xu Zhen-Yu, Liu Jian-Guo, Yao Lu, Ruan Jun, Hu Jia-Yi, Xia Hui-Hui, Nie Wei, Yuan Feng, Kan Rui-Feng. Temperature measurement method of high temperature and high pressure flow field based on wavelength modulation spectroscopy technology. Acta Physica Sinica, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [8] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [9] Liu Yin-Juan, He Duan-Wei, Wang Pei, Tang Ming-Jun, Xu Chao, Wang Wen-Dan, Liu Jin, Liu Guo-Duan, Kou Zi-Li. Syntheses and studies of superhard composites under high pressure. Acta Physica Sinica, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [10] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [11] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [12] Jiang Jian-Jun, Li He-Ping, Dai Li-Dong, Hu Hai-Ying, Zhao Chao-Shuai. Raman spectra based pressure calibration of the non-gauge sapphire anvil cell at high temperature and high pressure. Acta Physica Sinica, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [13] Xiao Hong-Yu, Li Shang-Sheng, Qin Yu-Kun, Liang Zhong-Zhu, Zhang Yong-Sheng, Zhang Dong-Mei, Zhang Yi-Shun. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure. Acta Physica Sinica, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [14] Zhang Song-Bo, Wang Fang-Biao, Li Fa-Ming, Wen Ge-Hui. HPHT synthesis and magnetic property of -Fe2O3@C core-shell nanorods. Acta Physica Sinica, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [15] Lu Zhi-Wen, Zhong Zhi-Guo, Liu Ke-Tao, Song Hai-Zhen, Li Gen-Quan. First-principles calculations of microstructure and thermodynamic properties of the intermetallic compound in Ag-Mg-Zn alloy under high pressure and high temperature. Acta Physica Sinica, 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [16] Li Jun-Jun, Zhao Xue-Ping, Tao Qiang, Huang Xiao-Qing, Zhu Pin-Wen, Cui Tian, Wang Xin. Characterization of TiB2 synthesized at high pressure and high temperature. Acta Physica Sinica, 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [17] Zhao Yan-Hong, Liu Hai-Feng, Zhang Qi-Li. Unlike-pair interactions of detonation products at high pressure and high temperature. Acta Physica Sinica, 2012, 61(23): 230509. doi: 10.7498/aps.61.230509
    [18] Zhao Yan-Hong, Liu Hai-Feng, Zhang Gong-Mu, Zhang Guang-Cai. Pair interactions of detonation products at high pressure and high temperature. Acta Physica Sinica, 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [19] Qin Jie-Ming, Wang Hao, Zeng Fan-Ming, Li Jian-Li, Wan Yu-Chun, Liu Jing-He. Synthesis of MgxZn1-xO under high pressure and high temperature. Acta Physica Sinica, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [20] Sun Xiao-Wei, Chu Yan-Dong, Liu Zi-Jiang, Liu Yu-Xiao, Wang Cheng-Wei, Liu Wei-Min. Molecular dynamics study on the structural and thermodynamic properties of the zinc-blende phase of GaN at high pressures and high temperatures. Acta Physica Sinica, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
Metrics
  • Abstract views:  2509
  • PDF Downloads:  134
  • Cited By: 0
Publishing process
  • Received Date:  03 July 2023
  • Accepted Date:  08 September 2023
  • Available Online:  09 October 2023
  • Published Online:  05 January 2024

/

返回文章
返回