Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculation of positron annihilation lifetime in diamond doped with B, Cr, Mo, Ti, W, Zr

Zhao Yong-Sheng Yan Feng-Yun Liu Xue

Citation:

Calculation of positron annihilation lifetime in diamond doped with B, Cr, Mo, Ti, W, Zr

Zhao Yong-Sheng, Yan Feng-Yun, Liu Xue
PDF
HTML
Get Citation
  • Metal-matrix diamond composites have been extensively used and studied, but vacancies, doping, and other defects caused by the pretreatment of the diamond surface significantly affect the interface property between the metal base and diamond. Although techniques like transmission electron microscopy and spectroscopy analysis have been used to detect defects, they present certain limitations. Calculating the positron annihilation lifetime in diamond provides an accurate assessment of interface defect in the diamond. This study uses first-principles calculation methods and adopts various positron annihilation algorithms and enhancement factors, to compute the positron annihilation lifetimes in ideal diamond crystals, single vacancies, and diamond crystals doped with B, Cr, Mo, Ti, W, and Zr. The results, obtained by using local density functional in combination with Boronski & Nieminen algorithms and random-phase approximation restriction as annihilation enhancement factors, indicate that the computed positron annihilation lifetime of diamond is 119.87 ps, which is consistent closely with the experimental result in the literature. Furthermore, after B, Cr, Mo, Ti, W, and Zr atoms are doped into diamond (doping atomic concentration of 1.6%), the positron annihilation lifetimes change from a single vacancy 119.87 ps to 148.57, 156.82, 119.05, 116.5, 117.62, and 115.74 ps respectively. This implies that the defects due to doped atoms in diamond change their positron annihilation lifetimes, with the influence varying according to the different atoms doped. Based on the calculated electron density in diamond vacancies and doped atom areas, it is discovered that doping atoms do not cause severe distortion in the diamond lattice. However, after B and Cr atoms are doped, the positron annihilation lifetime increases significantly. The primary reason is that the relatively low positron affinity of B and Cr atoms results in an extended positron residence time in the vacancy, thereby increasing the annihilation lifetime. Overall, vacancies and doped atom defects in diamond will cause its positron annihilation lifetime to change. The above conclusions provide crucial theoretical references for detecting and identifying interface defects caused by doping treatment on the diamond surface during the preparation of metal-matrix diamond composites.
      Corresponding author: Yan Feng-Yun, yanfy@lut.edu.cn
    • Funds: Project supported by the Industry Support Program of Educaiton Bureau of Gansu Province, China (Grant No. 2021CYZC-34) and the Higher Education Innovation Fund of Gansu Province, China (Grant No. 2021B-310).
    [1]

    Stachel T, Luth R W 2015 Lithos 220 223 200

    [2]

    Bulanova G P 1995 J. Geochem. Explor. 53 1Google Scholar

    [3]

    Wei L, Kuo P K, Thomas R L, et al. 1993 Phys. Rev. Lett. 70 3764Google Scholar

    [4]

    Chakraborty P, Xiong G, Cao L, et al. 2018 Carbon 139 85Google Scholar

    [5]

    Ciupiński Ł, Kruszewski M J, Grzonka J, et al. 2017 Mater. Des. 120 170Google Scholar

    [6]

    Kidalov S V, Shakhov F M 2009 Materials 2 2467Google Scholar

    [7]

    May P W 2000 Philos. Trans. R. Soc. London, Ser. A 358 473Google Scholar

    [8]

    Liao M 2021 Funct. Diamond 1 29Google Scholar

    [9]

    Gomez H, Groves M N, Neupane M R 2021 Carbon Trends 3 100033Google Scholar

    [10]

    Pan Y, He X, Ren S, et al. 2018 Vacuum 153 74Google Scholar

    [11]

    Soltani H M, Tayebi M 2020 Int. J. Refract. Met. Hard Mater. 87 105172Google Scholar

    [12]

    Pillari L K, Bakshi S R, Chaudhuri P, et al. 2020 Adv. Powder Technol. 31 3657Google Scholar

    [13]

    Zhang X Y, Xu M, Cao S Z, et al. 2020 Diamond Relat. Mater. 104 107755Google Scholar

    [14]

    Jia J, Bai S, Xiong D, et al. 2019 Ceram. Int. 45 10810Google Scholar

    [15]

    Liu Z, Zheng S, Lu Z, et al. 2018 Carbon 127 548Google Scholar

    [16]

    Wu M, Chang L, Zhang L, et al. 2017 Surf. Coat. Technol. 325 490Google Scholar

    [17]

    Contreras Cuevas A, Bedolla Becerril E, Martínez M S, et al. 2018 Metal Matrix Composites (Cham: Springer International Publishing

    [18]

    Bai G, Li N, Wang X, et al. 2018 J. Alloys Compd. 735 1648Google Scholar

    [19]

    Bai G, Wang L, Zhang Y, et al. 2019 Mater. Charact. 152 265Google Scholar

    [20]

    Liu X, Sun F, Wang L, et al. 2020 Appl. Surf. Sci. 515 146046Google Scholar

    [21]

    Kang Q, He X, Ren S, et al. 2013 J. Alloys Compd. 576 380Google Scholar

    [22]

    Che Q L, Chen X K, Ji Y Q, et al. 2015 Mater. Sci. Semicond. Process. 30 104Google Scholar

    [23]

    Li J, Zhang H, Wang L, et al. 2016 Composites Part A 91 189Google Scholar

    [24]

    Abyzov A M, Kidalov S V, Shakhov F M 2012 Appl. Therm. Eng. 48 72

    [25]

    He J, Wang X, Zhang Y, et al. 2015 Composites Part B 68 22Google Scholar

    [26]

    Wang L, Li J, Bai G, et al. 2019 J. Alloys Compd. 781 800Google Scholar

    [27]

    Dannefaer S 2007 Phys. Status Solidi C 4 3605Google Scholar

    [28]

    Avalos V, Dannefaer S 2003 Phys. B: Condens. Matter 340 342 76

    [29]

    Siegel R W 1980 Annu. Rev. Mater. Sci. 10 393Google Scholar

    [30]

    Tuomisto F, Makkonen I 2013 Rev. Mod. Phys. 85 1583Google Scholar

    [31]

    Pu A, Bretagnon T, Kerr D, et al. 2000 Diamond Relat. Mater. 9 1450Google Scholar

    [32]

    Sachdeva A, Sudarshan K, Pujari P, et al. 2004 Diamond Relat. Mater. 13 1719Google Scholar

    [33]

    Hu X J, Ye J S, Liu H J, et al. 2008 Thin Solid Films 516 1699Google Scholar

    [34]

    Jones R 2009 Diamond Relat. Mater. 18 820Google Scholar

    [35]

    Fujii S, Nishibayashi Y, Shikata S, et al. 1995 J. Appl. Phys. 78 1510Google Scholar

    [36]

    Eseev M, Kuziv I, Kostin A, et al. 2022 Materials 16 203Google Scholar

    [37]

    Gonze X, Amadon B, Antonius G, et al. 2020 Comput. Phys. Commun. 248 107042Google Scholar

    [38]

    Romero A H, Allan D C, Amadon B, et al. 2020 J. Chem. Phys. 152 124102Google Scholar

    [39]

    Gonze X, Jollet F, Abreu Araujo F, et al. 2016 Comput. Phys. Commun. 205 106Google Scholar

    [40]

    Gonze X, Amadon B, Anglade P M, et al. 2009 Comput. Phys. Commun. 180 2582Google Scholar

    [41]

    Torrent M, Jollet F, Bottin F, et al. 2008 Comput. Mater. Sci. 42 337Google Scholar

    [42]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [43]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [44]

    Boroński E, Nieminen R M 1986 Phys. Rev. B 34 3820Google Scholar

    [45]

    Arponen J, Pajanne E 1979 Ann. Phys. 121 343Google Scholar

    [46]

    Nieminen R M, Boronski E, Lantto L J 1985 Phys. Rev. B 32 1377Google Scholar

    [47]

    Wiktor J, Jomard G, Torrent M 2015 Phys. Rev. B 92 125113Google Scholar

    [48]

    Hom T, Kiszenik W, Post B 1975 J. Appl. Crystallogr. 8 457Google Scholar

    [49]

    Holloway H, Hass K C, Tamor M A, et al. 1991 Phys. Rev. B 44 7123Google Scholar

    [50]

    Zhao Y, Yan F, An Y 2022 Coatings 12 619Google Scholar

    [51]

    Uedono A, Fujii S, Morishita N, et al. 1999 J. Phys. Condens. Matter 11 4109Google Scholar

    [52]

    Shiryaev A A, Iakoubovskii K, Schut H, et al. 2001 Mater. Sci. Forum 363 365 40

    [53]

    Dannefaer S, Mascher P, Kerr D 1992 Diamond Relat. Mater. 1 407Google Scholar

    [54]

    Kršjak V, Sojak S, Slugeň V, et al. 2011 J. Phys. Conf. Ser. 265 012014Google Scholar

    [55]

    Dannefaer S, Iakoubovskii K 2008 J. Phys. Condens. Matter 20 235225Google Scholar

    [56]

    Puska M J, Lanki P, Nieminen R M 1989 J. Phys. Condens. Matter 1 6081Google Scholar

    [57]

    Maier K, Peo M, Saile B, et al. 1979 Philos. Mag. A 40 701Google Scholar

  • 图 1  金刚石正电子湮灭寿命计算模型 (a) 2×2×2的金刚石超胞; (b) 金刚石空位模型; (c) 金刚石空位和掺杂模型

    Figure 1.  Calculation model for positron annihilation lifetime of diamond: (a) Diamond supercell of 2×2×2; (b) diamond vacancy model; (c) diamond vacancy and doping models.

    图 2  金刚石空位模型及电子密度图 (a) 金刚石空位模型及切面示意图; (b) 金刚石空位切面二维电子密度图; (c) 金刚石正电子模型及切面示意图; (d) 金刚石空位切面二维电子密度图

    Figure 2.  Diamond vacancy model and electron density diagrams: (a) Diamond vacancy model with cross-section; (b) 2D electron density map of the diamond vacancy cross-section; (c) diamond positron model with cross-section; (d) 2D electron density map of the diamond positron cross-section.

    图 3  金刚石空位与各异质原子的交互作用 (a) 未掺杂金刚石; (b) 掺杂B; (c) 掺杂Cr; (d) 掺杂Mo; (e) 掺杂Ti; (f) 掺杂W; (g) 掺杂Zr

    Figure 3.  Interaction of diamond vacancies with various heteroatoms: (a) Pristine diamond; (b) doped with B; (c) doped with Cr; (d) doped with Mo; (e) doped with Ti; (f) doped with W; (g) doped with Zr.

    图 4  金刚石超胞掺杂后的二维电子密度图 (a) 金刚石超胞模型和切面示意; (b) 掺杂B; (c) 掺杂Cr; (d) 掺杂Mo; (e) 未掺杂; (f) 掺杂W; (g) 掺杂Ti; (h) 掺杂Zr

    Figure 4.  2D electron density map of diamond supercell after doping: (a) Diamond supercell model and section illustration; (b) doped with B; (c) doped with Cr; (d) doped with Mo; (e) undoped atoms; (f) doped with W; (g) doped with Ti; (h) doped with Zr.

    图 5  金刚石掺杂后空位的电子局域函数 (a) 金刚石超胞及正电子空位模型; (b) 掺杂B; (c) 掺杂Cr; (d) 掺杂Ti

    Figure 5.  Electron local function of vacancies after diamond doping: (a) Diamond supercell and positron vacancy model; (b) doped with B; (c) doped with Cr; (d) doped with Ti.

    表 1  采用不同正电子–电子交换关联函数和增强因子计算的金刚石正电子湮灭寿命值

    Table 1.  Diamond positron annihilation lifetime values calculated using different positron electron exchange correlation functions and enhancement factors.

    赝势文件 GGA-PBE LDA-PW 文献
    计算方法 Boronski &
    Nieminen
    Sterne &
    Kaiser
    Boronski &
    Nieminen
    Sterne &
    Kaiser
    Puska, Seitsonen,
    and Nieminen
    湮灭增强因子 RPA限制和
    GGA修正
    GGA修正 RPA限制 Sterne &
    Kaiser
    Puska, Seitsonen
    and Nieminen
    完美晶体/ps 106.55 108.86 99.8 102.18 107.59 97—115[31,35,51]
    单位/ps 128.85 130.7 119.87 121.79 109.87 120[53]
    电子-电子自洽/ps 129.54 122.11 122.24
    DownLoad: CSV

    表 2  掺杂B, Cr, Mo, Ti, W和Zr原子后, 金刚石中正电子湮灭寿命值

    Table 2.  Positron annihilation lifetime values in diamond after doping with B, Cr, Mo, Ti, W, and Zr atoms.

    掺杂原子BCrMoWTiZr空位
    GGA/ps146.95156.82118.21116.5116.74115.74128.85
    LDA/ps148.57156.82119.05116.5117.62115.74119.87
    Ref./ps142±3[55]120[53]
    DownLoad: CSV
  • [1]

    Stachel T, Luth R W 2015 Lithos 220 223 200

    [2]

    Bulanova G P 1995 J. Geochem. Explor. 53 1Google Scholar

    [3]

    Wei L, Kuo P K, Thomas R L, et al. 1993 Phys. Rev. Lett. 70 3764Google Scholar

    [4]

    Chakraborty P, Xiong G, Cao L, et al. 2018 Carbon 139 85Google Scholar

    [5]

    Ciupiński Ł, Kruszewski M J, Grzonka J, et al. 2017 Mater. Des. 120 170Google Scholar

    [6]

    Kidalov S V, Shakhov F M 2009 Materials 2 2467Google Scholar

    [7]

    May P W 2000 Philos. Trans. R. Soc. London, Ser. A 358 473Google Scholar

    [8]

    Liao M 2021 Funct. Diamond 1 29Google Scholar

    [9]

    Gomez H, Groves M N, Neupane M R 2021 Carbon Trends 3 100033Google Scholar

    [10]

    Pan Y, He X, Ren S, et al. 2018 Vacuum 153 74Google Scholar

    [11]

    Soltani H M, Tayebi M 2020 Int. J. Refract. Met. Hard Mater. 87 105172Google Scholar

    [12]

    Pillari L K, Bakshi S R, Chaudhuri P, et al. 2020 Adv. Powder Technol. 31 3657Google Scholar

    [13]

    Zhang X Y, Xu M, Cao S Z, et al. 2020 Diamond Relat. Mater. 104 107755Google Scholar

    [14]

    Jia J, Bai S, Xiong D, et al. 2019 Ceram. Int. 45 10810Google Scholar

    [15]

    Liu Z, Zheng S, Lu Z, et al. 2018 Carbon 127 548Google Scholar

    [16]

    Wu M, Chang L, Zhang L, et al. 2017 Surf. Coat. Technol. 325 490Google Scholar

    [17]

    Contreras Cuevas A, Bedolla Becerril E, Martínez M S, et al. 2018 Metal Matrix Composites (Cham: Springer International Publishing

    [18]

    Bai G, Li N, Wang X, et al. 2018 J. Alloys Compd. 735 1648Google Scholar

    [19]

    Bai G, Wang L, Zhang Y, et al. 2019 Mater. Charact. 152 265Google Scholar

    [20]

    Liu X, Sun F, Wang L, et al. 2020 Appl. Surf. Sci. 515 146046Google Scholar

    [21]

    Kang Q, He X, Ren S, et al. 2013 J. Alloys Compd. 576 380Google Scholar

    [22]

    Che Q L, Chen X K, Ji Y Q, et al. 2015 Mater. Sci. Semicond. Process. 30 104Google Scholar

    [23]

    Li J, Zhang H, Wang L, et al. 2016 Composites Part A 91 189Google Scholar

    [24]

    Abyzov A M, Kidalov S V, Shakhov F M 2012 Appl. Therm. Eng. 48 72

    [25]

    He J, Wang X, Zhang Y, et al. 2015 Composites Part B 68 22Google Scholar

    [26]

    Wang L, Li J, Bai G, et al. 2019 J. Alloys Compd. 781 800Google Scholar

    [27]

    Dannefaer S 2007 Phys. Status Solidi C 4 3605Google Scholar

    [28]

    Avalos V, Dannefaer S 2003 Phys. B: Condens. Matter 340 342 76

    [29]

    Siegel R W 1980 Annu. Rev. Mater. Sci. 10 393Google Scholar

    [30]

    Tuomisto F, Makkonen I 2013 Rev. Mod. Phys. 85 1583Google Scholar

    [31]

    Pu A, Bretagnon T, Kerr D, et al. 2000 Diamond Relat. Mater. 9 1450Google Scholar

    [32]

    Sachdeva A, Sudarshan K, Pujari P, et al. 2004 Diamond Relat. Mater. 13 1719Google Scholar

    [33]

    Hu X J, Ye J S, Liu H J, et al. 2008 Thin Solid Films 516 1699Google Scholar

    [34]

    Jones R 2009 Diamond Relat. Mater. 18 820Google Scholar

    [35]

    Fujii S, Nishibayashi Y, Shikata S, et al. 1995 J. Appl. Phys. 78 1510Google Scholar

    [36]

    Eseev M, Kuziv I, Kostin A, et al. 2022 Materials 16 203Google Scholar

    [37]

    Gonze X, Amadon B, Antonius G, et al. 2020 Comput. Phys. Commun. 248 107042Google Scholar

    [38]

    Romero A H, Allan D C, Amadon B, et al. 2020 J. Chem. Phys. 152 124102Google Scholar

    [39]

    Gonze X, Jollet F, Abreu Araujo F, et al. 2016 Comput. Phys. Commun. 205 106Google Scholar

    [40]

    Gonze X, Amadon B, Anglade P M, et al. 2009 Comput. Phys. Commun. 180 2582Google Scholar

    [41]

    Torrent M, Jollet F, Bottin F, et al. 2008 Comput. Mater. Sci. 42 337Google Scholar

    [42]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [43]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [44]

    Boroński E, Nieminen R M 1986 Phys. Rev. B 34 3820Google Scholar

    [45]

    Arponen J, Pajanne E 1979 Ann. Phys. 121 343Google Scholar

    [46]

    Nieminen R M, Boronski E, Lantto L J 1985 Phys. Rev. B 32 1377Google Scholar

    [47]

    Wiktor J, Jomard G, Torrent M 2015 Phys. Rev. B 92 125113Google Scholar

    [48]

    Hom T, Kiszenik W, Post B 1975 J. Appl. Crystallogr. 8 457Google Scholar

    [49]

    Holloway H, Hass K C, Tamor M A, et al. 1991 Phys. Rev. B 44 7123Google Scholar

    [50]

    Zhao Y, Yan F, An Y 2022 Coatings 12 619Google Scholar

    [51]

    Uedono A, Fujii S, Morishita N, et al. 1999 J. Phys. Condens. Matter 11 4109Google Scholar

    [52]

    Shiryaev A A, Iakoubovskii K, Schut H, et al. 2001 Mater. Sci. Forum 363 365 40

    [53]

    Dannefaer S, Mascher P, Kerr D 1992 Diamond Relat. Mater. 1 407Google Scholar

    [54]

    Kršjak V, Sojak S, Slugeň V, et al. 2011 J. Phys. Conf. Ser. 265 012014Google Scholar

    [55]

    Dannefaer S, Iakoubovskii K 2008 J. Phys. Condens. Matter 20 235225Google Scholar

    [56]

    Puska M J, Lanki P, Nieminen R M 1989 J. Phys. Condens. Matter 1 6081Google Scholar

    [57]

    Maier K, Peo M, Saile B, et al. 1979 Philos. Mag. A 40 701Google Scholar

  • [1] Wu Jian-Dong,  Cheng Zhi,  Ye Xiang-Yu,  Li Zhao-Kai,  Wang Peng-Fei,  Tian Chang-Lin,  Cheng Hong-Wei. Coherent electrical control of a single electron spin in diamond nitrogen-vacancy centers. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [2] Wu Jian-Dong, Cheng Zhi, Ye Xiang-Yu, Li Zhao-Kai, Wang Peng-Fei, Tian Chang-Lin, Chen Hong-Wei. Coherent electrical control of single electron spin in diamond nitrogen-vacancy center. Acta Physica Sinica, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [3] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [4] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [5] Wang Ying, Li Yong, Li Zong-Bao. First-principle studies of the electronic structures and optical properties of diamond crystal co-doped with B and N. Acta Physica Sinica, 2016, 65(8): 087101. doi: 10.7498/aps.65.087101
    [6] He Hui-Fang, Chen Zhi-Quan. Positron annihilation studied defects and their influence on thermal conductivity of chemically synthesized Bi2Te3 nanocrystal. Acta Physica Sinica, 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [7] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [8] Yan Bing-Min, Jia Xiao-Peng, Qin Jie-Ming, Sun Shi-Shuai, Zhou Zhen-Xiang, Fang Chao, Ma Hong-An. Characterization of typical infrared characteristic peaks of hydrogen in nitrogen and hydrogen co-doped diamond crystals. Acta Physica Sinica, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [9] Yang Shuang-Bo. Effect of doping concentration and doping thickness on the structure of electronic state of the Si uniformly doped GaAs quantum well. Acta Physica Sinica, 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [10] Tian Yu-Ming, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Chai Yue-Sheng, Zeng Yu-Shun, Wang Qiang. Effect of high-energy electron exposure on the charge states of defects in diamond. Acta Physica Sinica, 2013, 62(18): 188101. doi: 10.7498/aps.62.188101
    [11] Wang Kai-Yue, Zhu Yu-Mei, Li Zhi-Hong, Tian Yu-Ming, Chai Yue-Sheng, Zhao Zhi-Gang, Liu Kai. The defect luminescences of {100} sector in nitrogen-doped diamond. Acta Physica Sinica, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [12] Lin Xue-Ling, Pan Feng-Chun. The magnetism study of N-doped diamond. Acta Physica Sinica, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [13] Wang Kai-Yue, Li Zhi-Hong, Gao Kai, Zhu Yu-Mei. Photoluminescence studies of electron irradiated diamond. Acta Physica Sinica, 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [14] Xu Hong-Xia, Hao Ying-Ping, Han Rong-Dian, Weng Hui-Min, Du Huai-Jiang, Ye Bang-Jiao. Positron annihilation spectroscopy study on the Fe3O4 nanoparticle. Acta Physica Sinica, 2011, 60(6): 067803. doi: 10.7498/aps.60.067803
    [15] Xiong Tao, Zhang Jie, Chen Xiang-Lei, Ye Bang-Jiao, Du Huai-Jiang, Weng Hui-Min. Calculation of positron wave function in the single crystal solid. Acta Physica Sinica, 2010, 59(10): 7374-7377. doi: 10.7498/aps.59.7374
    [16] Xiong Tao, Gao Chuan-Bo, Chen Xiang-Lei, Zhou Xian-Yi, Weng Hui-Min, Cao Fang-Yu, Ye Bang-Jiao, Han Rong-Dian, Du Huai-Jiang. Positron study of carbon-Fe3O4 coaxial nanofibers. Acta Physica Sinica, 2009, 58(10): 6946-6950. doi: 10.7498/aps.58.6946
    [17] Li Rong-Bin. Characterization of homoepitaxial and heteroepitaxial diamond films grown by chemical vapor deposition. Acta Physica Sinica, 2009, 58(2): 1287-1292. doi: 10.7498/aps.58.1287
    [18] Shen Yi-Bin, Zhou Xun, Xu Ming, Ding Ying-Chun, Duan Man-Yi, Linghu Rong-Feng, Zhu Wen-Jun. Electronic structure and optical properties of ZnO doped with transition metals. Acta Physica Sinica, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [19] Li Rong-Bin. Study of the stress in doped CVD diamond films. Acta Physica Sinica, 2007, 56(6): 3428-3434. doi: 10.7498/aps.56.3428
    [20] Hu Xiao-Jun, Li Rong-Bin, Shen He-Sheng, He Xian-Chang, Deng Wen, Luo Li-Xiong. Investigation of defect properties in doped diamond films. Acta Physica Sinica, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
Metrics
  • Abstract views:  3384
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  03 August 2023
  • Accepted Date:  03 October 2023
  • Available Online:  09 October 2023
  • Published Online:  05 January 2024

/

返回文章
返回