Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic-field-induced spin reorientation in TmFeO3 single crystals

Wang Ning Huang Feng Chen Ying Zhu Guo-Feng Su Hao-Bin Guo Cui-Xia Wang Xiang-Feng

Citation:

Magnetic-field-induced spin reorientation in TmFeO3 single crystals

Wang Ning, Huang Feng, Chen Ying, Zhu Guo-Feng, Su Hao-Bin, Guo Cui-Xia, Wang Xiang-Feng
PDF
HTML
Get Citation
  • TmFeO3 exhibits rich physical properties such as magneto-optical effect, multiferroicity, and spin reorientation, making it possess significant research value in condensed matter physics and materials science. In this study, we utilize a time-domain terahertz magneto-optical spectroscopy system to investigate the changes in spin resonance frequency of TmFeO3 single crystal at T = 1.6 K under external magnetic fields in a range of 0–7 T. The TmFeO3 sample is grown in an optical floating zone furnace and its crystallographic orientation is determined by using back-reflection Laue X-ray photography with a tungsten target. The measurement setup is a self-built time-domain terahertz magneto-optical spectroscopy system, with magnetic fields in a range of 0–7 T, temperatures in a range of 1.6–300 K, and a spectral range of 0.2–2.0 THz. A pair of 1 mm-thick ZnTe nonlinear crystals is used to generate and detect terahertz signals through optical rectification and electro-optic sampling technique. The system variable temperature and magnetic field are controlled by a superconducting magnet. In experiments, a linearly polarized terahertz wave is vertically incident on the sample surface, and its magnetic component HTHz is parallel to the sample surface. By rotating the sample, the angle (θ) between macroscopic magnetic moment M and HTHz can be tuned, achieving selective excitations of the two modes, that is, θ = 0 for q-AFM mode and 90° for q-FM mode. Terahertz absorption spectrum results indicate that as the magnetic field increases, the quasi-ferromagnetic resonance (q-FM) of TmFeO3 single crystal shifts towards high frequencies, and quasi-antiferromagnetic resonance (q-AFM) transits to q-FM under low critical magnetic fields (2.2–3.6 T). Through magnetic structure analysis and theoretical fitting, it is confirmed that the magnetic moment of the single crystal undergoes magnetic field induced spin reorientation. This study is helpful in better understanding of the regulation mechanism of the internal magnetic structure of rare earth ferrite under the combined action of external magnetic field and temperature field, and also in developing related spin electronic devices.
      Corresponding author: Huang Feng, huangf@fzu.edu.cn ; Chen Ying, chenying26@fzu.edu.cn ; Wang Xiang-Feng, xfwang@fzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62105068), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2023J05096, 2023J01055), the Key Laboratory of Terahertz Functional Devices and Intelligent Sensing of Fujian Province, China (Grant No. FPKLTFDIS202304), the Engineering Research Center for CAD/CAM of Fujian Universities (Grant No. K202203), the Engineering Research Center of Smart Distribution Grid Equipment, China (Grant No. KFRC202203), the Education and Scientific Research Foundation for Young Teachers in Fujian Province, China (Grant No. JAT220032), and the Scientific Research Start-up Project of Fuzhou University, China (Grant No. XRC-22073).
    [1]

    Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A, Rasing Th 2009 Nat. Phys. 5 727Google Scholar

    [2]

    Afanasiev D, Ivanov B A, Kirilyuk A, Rasing Th, Pisarev R V, Kimel A V 2016 Phys. Rev. Lett. 116 658270

    [3]

    Nova T F, Cartella A, Cantaluppi A, Först M, Bossini D, Mikhaylovskiy R V, Kimel A V, Merlin R, Cavalleri A 2017 Nat. Phys. 13 132Google Scholar

    [4]

    White R L 1969 J. Appl. Phys. 40 1061Google Scholar

    [5]

    Yamaguchi T 1974 J. Phys. Chem. Solids. 35 479Google Scholar

    [6]

    Ma X X, Yuan N, Yang W T, Zhu S, Shi C F, Song H, Sun Z Q, Kang B J, Ren W, Cao S X 2022 Inorg. Chem. 61 14815Google Scholar

    [7]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids. 4 241Google Scholar

    [8]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [9]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [10]

    Song H, Fan W C, Jia R R, Sun Z Q, Ma X X, Yang W T, Zhu S, Kang B J, Feng Z J, Cao S X 2023 Ceram. Int. 49 22038Google Scholar

    [11]

    Guo J J, Cheng L, Ren Z, Zhang W J, Lin X, Jin Z M, Cao S X, Sheng Z G, Ma G H 2020 J. Phys. Condens. Matter 32 185401

    [12]

    Jiang J J, Song G B, Wang D Y, Jin Z M, Tian Z, Lin X, Han J G, Ma G H, Cao S X, Cheng Z X 2016 J. Phys. Condens. Matter 28 116002

    [13]

    Shen H, Cheng Z X, Hong F, Xu J Y, Yuan S J, Cao S X, Wang X L 2013 Appl. Phys. Lett. 103 192404Google Scholar

    [14]

    Nikitin S E, Wu L S, Sefat A S, Shaykhutdinov K A, Lu Z, Meng S, Pomjakushina E V, Conder K, Ehlers G, Lumsden M D, Kolesnikov A I, Barilo S, Guretskii S A, Inosov D S, Podlesnyak A 2018 Phys. Rev. B 98 064424Google Scholar

    [15]

    Slawinski W, Przenioslo R, Sosnowska I, Suard E 2005 J. Phys. Condens. Matter 17 4605

    [16]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing Th 2005 Nature 435 655Google Scholar

    [17]

    Chen L, Li T W, Cao S X, Yuan S J, Hong F, Zhang J C 2012 J. Appl. Phys. 111 103905Google Scholar

    [18]

    Ramu N, Muralidharan R, Meera K, Jeong Y H 2016 RSC Adv. 6 72295Google Scholar

    [19]

    Zhao W Y, Cao S X, Huang R X, Cao Y M, Xu K, Kang B J, Zhang J C, Ren W 2015 Phys. Rev. B 91 104425Google Scholar

    [20]

    Long H, Cao S X, Liu M, Kang Y M, Zhang B J, Jin C 2014 Phys. Rev. B 90 144415Google Scholar

    [21]

    任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高 2020 物理学报 69 207802Google Scholar

    Ren Z, Cheng L, Sergey G, Nadezhda L, Li J T, Shang J M, Sergey B, Wu A H, Aleksandra K, Ma Z W, Zhou C, Sheng Z G 2020 Acta Phys. Sin. 69 207802Google Scholar

    [22]

    Amelin K, Nagel U, Fishman R S, Yoshida Y, Sim H, Park K, Park J G, Rõõm T 2018 Phys. Rev. B 98 174417Google Scholar

    [23]

    Nagel U, Fishman Randy S, Katuwal T, Engelkamp H, Talbayev D, Yi H T, Cheong S W, Rõõm T 2013 Phys. Rev. Lett. 110 257201Google Scholar

    [24]

    Beard M C, Turner G M, Schmuttenmaer C A 2001 J. Appl. Phys. 90 5915Google Scholar

    [25]

    Kim T H, Kang C, Kee C S, Lee J H, Cho B K, Gruenberg P, Tokunaga Y, Tokura Y, Lee J S 2015 J. Appl. Phys. 118 233101Google Scholar

    [26]

    Reid A H M, Rasing Th, Pisarev R V, Duerr H A, Hoffmann M C 2015 Appl. Phys. Lett. 106 082403Google Scholar

    [27]

    Grishunin K, Huisman T, Li G Q, Mishina E, Rasing T, Kimel A V, Zhang K L, Jin Z M, Cao S X, Ma G H, Mikhaylovskiy R V 2018 ACS Photonics 5 1375Google Scholar

    [28]

    Johnson C E, Prelorendjo L A, Thomas M F 1980 J. Magn. Magn. Mater. 15 557

    [29]

    Ju X W, Hu Z Q, Huang F, Wu H B, Wang X F 2021 Opt. Express 29 9261Google Scholar

    [30]

    Tsuyoshi Y, Kunirô T 1973 Phys. Rev. B 8 5187Google Scholar

    [31]

    Li X W, Bamba M, Yuan N, Zhang Q, Zhao Y, Xiang M L, Xu K, Jin Z M, Ren W, Ma G H, Cao S X, Turchinovich D, Kono J 2018 Science 361 794Google Scholar

    [32]

    Balbashov A M, Berezin A G, Gufan Y M, Kolyadko G S, Marchukov P Y, Rudashevskii E G 1987 J. Exp. Theor. Phys. 66 174

    [33]

    Lin X, Jiang J J, Jin Z M, Wang D Y, Tian Z, Han J G, Cheng Z X, Ma G H 2015 Appl. Phys. Lett. 106 092403Google Scholar

    [34]

    Gorodetsky G, Shaft S, Remeika J P 1981 J. Appl. Phys. 52 7353Google Scholar

    [35]

    Herrmann G F 1963 J. Phys. Chem. Solids 24 597Google Scholar

  • 图 1  TmFeO3晶体结构及倾角反铁磁自旋构型示意图 (a)晶体结构示意图; (b)反铁磁亚晶格Fe1-4自旋方向示意图; (c) T < 85 K, Γ2相的自旋磁矩构型示意图, S1S2表示两对合成的Fe3+亚晶格自旋

    Figure 1.  Schematic diagrams of TmFeO3 crystal’s structure and canted-antiferromagnet spin configuration: (a) Crystal’s structure diagram; (b) spin directions for the Fe1-4 sites in the antiferromagnetic sublattice; (c) spin magnetic moment configuration schematic of Γ2 phase at T < 85 K, S1 and S2 stand for two pairs of spins for synthesized Fe3+ sublattices.

    图 2  TmFeO3共振模式激发规律及实验构型 (a) THz波选择性激发q-FM和q-AFM两种共振模式; (b)实验构型图, 通过旋转样品改变宏观磁化矢量M 和THz磁场分量的角度

    Figure 2.  Excitation rule of TmFeO3 resonance modes and experimental geometry: (a) THz wave selectively excites the two resonance modes of q-FM and q-AFM; (b) experimental geometry, the angle between the macroscopic magnetization vector M and the THz magnetic field component is changed by rotating the sample.

    图 3  T = 1.6 K时, 沿晶体c轴施加0—7 T外磁场, TmFeO3在不同磁场下的THz吸收光谱 (a) HTHz//b轴; (b) HTHz//a

    Figure 3.  THz absorption spectra of TmFeO3 at T = 1.6 K under different magnetic fields applied along crystal’s c-axis from 0–7 T: (a) HTHz//b-axis; (b) HTHz//a-axis.

    图 4  1.6 K温度下TmFeO3在沿c轴外加磁场影响下磁结构变化示意图

    Figure 4.  Schematic diagram of magnetic structure change of TmFeO3 under magnetic field applied along the crystal’s c-axis

    图 5  TmFeO3在1.6 K共振频率随磁场变化的理论拟合 (a)图3(a)中q-FM共振频率及其理论拟合曲线; (b)图3(b)中q-AFM和q-FM共振频率及其理论拟合曲线. 图中的插图显示了太赫兹磁分量HTHz方向, 外磁场H方向, 及Γ2相TmFeO3在不同磁场下的简化磁结构变化示意图. 黑色虚线是根据(1)式对q-AFM共振频率的拟合; 黑色实线是根据(6)式对q-FM共振频率的拟合

    Figure 5.  Theoretical fittings of TmFeO3 resonance frequency varying with magnetic field at 1.6 K: (a) The q-FM resonance frequencies in Fig. 3(a) and its theoretical fitting curve; (b) the q-AFM and q-FM resonance frequencies in Fig. 3(b) and their theoretical fitting curves. The illustrations in the figure show the terahertz magnetic component HTHz, the external magnetic field H, and simplified magnetic structure changes of Γ2-phase TmFeO3 under different magnetic fields. The black dashed line is the fitting of q-AFM resonance frequency according to Eq. (1); black solid line is the fitting of q-FM resonance frequency according to Eq. (6).

  • [1]

    Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A, Rasing Th 2009 Nat. Phys. 5 727Google Scholar

    [2]

    Afanasiev D, Ivanov B A, Kirilyuk A, Rasing Th, Pisarev R V, Kimel A V 2016 Phys. Rev. Lett. 116 658270

    [3]

    Nova T F, Cartella A, Cantaluppi A, Först M, Bossini D, Mikhaylovskiy R V, Kimel A V, Merlin R, Cavalleri A 2017 Nat. Phys. 13 132Google Scholar

    [4]

    White R L 1969 J. Appl. Phys. 40 1061Google Scholar

    [5]

    Yamaguchi T 1974 J. Phys. Chem. Solids. 35 479Google Scholar

    [6]

    Ma X X, Yuan N, Yang W T, Zhu S, Shi C F, Song H, Sun Z Q, Kang B J, Ren W, Cao S X 2022 Inorg. Chem. 61 14815Google Scholar

    [7]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids. 4 241Google Scholar

    [8]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [9]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [10]

    Song H, Fan W C, Jia R R, Sun Z Q, Ma X X, Yang W T, Zhu S, Kang B J, Feng Z J, Cao S X 2023 Ceram. Int. 49 22038Google Scholar

    [11]

    Guo J J, Cheng L, Ren Z, Zhang W J, Lin X, Jin Z M, Cao S X, Sheng Z G, Ma G H 2020 J. Phys. Condens. Matter 32 185401

    [12]

    Jiang J J, Song G B, Wang D Y, Jin Z M, Tian Z, Lin X, Han J G, Ma G H, Cao S X, Cheng Z X 2016 J. Phys. Condens. Matter 28 116002

    [13]

    Shen H, Cheng Z X, Hong F, Xu J Y, Yuan S J, Cao S X, Wang X L 2013 Appl. Phys. Lett. 103 192404Google Scholar

    [14]

    Nikitin S E, Wu L S, Sefat A S, Shaykhutdinov K A, Lu Z, Meng S, Pomjakushina E V, Conder K, Ehlers G, Lumsden M D, Kolesnikov A I, Barilo S, Guretskii S A, Inosov D S, Podlesnyak A 2018 Phys. Rev. B 98 064424Google Scholar

    [15]

    Slawinski W, Przenioslo R, Sosnowska I, Suard E 2005 J. Phys. Condens. Matter 17 4605

    [16]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing Th 2005 Nature 435 655Google Scholar

    [17]

    Chen L, Li T W, Cao S X, Yuan S J, Hong F, Zhang J C 2012 J. Appl. Phys. 111 103905Google Scholar

    [18]

    Ramu N, Muralidharan R, Meera K, Jeong Y H 2016 RSC Adv. 6 72295Google Scholar

    [19]

    Zhao W Y, Cao S X, Huang R X, Cao Y M, Xu K, Kang B J, Zhang J C, Ren W 2015 Phys. Rev. B 91 104425Google Scholar

    [20]

    Long H, Cao S X, Liu M, Kang Y M, Zhang B J, Jin C 2014 Phys. Rev. B 90 144415Google Scholar

    [21]

    任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高 2020 物理学报 69 207802Google Scholar

    Ren Z, Cheng L, Sergey G, Nadezhda L, Li J T, Shang J M, Sergey B, Wu A H, Aleksandra K, Ma Z W, Zhou C, Sheng Z G 2020 Acta Phys. Sin. 69 207802Google Scholar

    [22]

    Amelin K, Nagel U, Fishman R S, Yoshida Y, Sim H, Park K, Park J G, Rõõm T 2018 Phys. Rev. B 98 174417Google Scholar

    [23]

    Nagel U, Fishman Randy S, Katuwal T, Engelkamp H, Talbayev D, Yi H T, Cheong S W, Rõõm T 2013 Phys. Rev. Lett. 110 257201Google Scholar

    [24]

    Beard M C, Turner G M, Schmuttenmaer C A 2001 J. Appl. Phys. 90 5915Google Scholar

    [25]

    Kim T H, Kang C, Kee C S, Lee J H, Cho B K, Gruenberg P, Tokunaga Y, Tokura Y, Lee J S 2015 J. Appl. Phys. 118 233101Google Scholar

    [26]

    Reid A H M, Rasing Th, Pisarev R V, Duerr H A, Hoffmann M C 2015 Appl. Phys. Lett. 106 082403Google Scholar

    [27]

    Grishunin K, Huisman T, Li G Q, Mishina E, Rasing T, Kimel A V, Zhang K L, Jin Z M, Cao S X, Ma G H, Mikhaylovskiy R V 2018 ACS Photonics 5 1375Google Scholar

    [28]

    Johnson C E, Prelorendjo L A, Thomas M F 1980 J. Magn. Magn. Mater. 15 557

    [29]

    Ju X W, Hu Z Q, Huang F, Wu H B, Wang X F 2021 Opt. Express 29 9261Google Scholar

    [30]

    Tsuyoshi Y, Kunirô T 1973 Phys. Rev. B 8 5187Google Scholar

    [31]

    Li X W, Bamba M, Yuan N, Zhang Q, Zhao Y, Xiang M L, Xu K, Jin Z M, Ren W, Ma G H, Cao S X, Turchinovich D, Kono J 2018 Science 361 794Google Scholar

    [32]

    Balbashov A M, Berezin A G, Gufan Y M, Kolyadko G S, Marchukov P Y, Rudashevskii E G 1987 J. Exp. Theor. Phys. 66 174

    [33]

    Lin X, Jiang J J, Jin Z M, Wang D Y, Tian Z, Han J G, Cheng Z X, Ma G H 2015 Appl. Phys. Lett. 106 092403Google Scholar

    [34]

    Gorodetsky G, Shaft S, Remeika J P 1981 J. Appl. Phys. 52 7353Google Scholar

    [35]

    Herrmann G F 1963 J. Phys. Chem. Solids 24 597Google Scholar

  • [1] Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei. Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films. Acta Physica Sinica, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [2] Zhu Zhao-Zhao, Feng Zheng, Cai Jian-Wang. Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [3] Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211831
    [4] Zhang Peng, Liu Zheng, Dai Jian-Ming, Yang Zhao-Rong, Su Fu-Hai. Anisotropic resonance absorptions induced by high magnetic field in ZnCr2Se4. Acta Physica Sinica, 2020, 69(20): 207501. doi: 10.7498/aps.69.20201507
    [5] Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo. Terahertz emitters based on ultrafast spin-to-charge conversion. Acta Physica Sinica, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [6] Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei. Spintronic terahertz emitter: Performance, manipulation, and applications. Acta Physica Sinica, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [7] Chen Ya-Bo, Yang Xiao-Kuo, Wei Bo, Wu Tong, Liu Jia-Hao, Zhang Ming-Liang, Cui Huan-Qing, Dong Dan-Na, Cai Li. Ferromagnetic resonance frequency and spin wave mode of asymmetric strip nanomagnet. Acta Physica Sinica, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [8] Ren Zhuang, Cheng Long, Sergei Guretskii, Nadzeya Liubochko, Li Jiang-Tao, Shang Jia-Min, Sergei Barilo, Wu An-Hua, Alexandra Kalashnikova, Ma Zong-Wei, Zhou Chun, Sheng Zhi-Gao. Terahertz spectroscopy study of doping and magnetic field induced effects on spin reorientation in Ho1–xYxFeO3 single crystals. Acta Physica Sinica, 2020, 69(20): 207802. doi: 10.7498/aps.69.20201518
    [9] Han Fang-Bin, Zhang Wen-Xu, Peng Bin, Zhang Wan-Li. Angle dependent inverse spin Hall effect in NiFe/Pt thin film. Acta Physica Sinica, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [10] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [11] Xue Hui, Ma Zong-Min, Shi Yun-Bo, Tang Jun, Xue Chen-Yang, Liu Jun, Li Yan-Jun. Magnetic exchange force microscopy using ferromagnetic resonance. Acta Physica Sinica, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [12] Liu Ming, Cao Shi-Xun, Yuan Shu-Juan, Kang Bao-Juan, Lu Bo, Zhang Jin-Cang. The study of Raman spectrum, distortion of lattice and spin reorientation phase transition on Pr doped DyFeO3 system. Acta Physica Sinica, 2013, 62(14): 147601. doi: 10.7498/aps.62.147601
    [13] Gu Wen-Juan, Pan Jing, Du Wei, Hu Jing-Guo. Measurement of magnetic anisotropyby ferromagnetic resonance. Acta Physica Sinica, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [14] Li Lei, Zhou Qing-Li, Shi Yu-Lei, Zhao Dong-Mei, Zhang Cun-Lin, Zhao Kun, Tian Lu, Zhao Hui, Bao Ri-Ma, Zhao Song-Qing. The influence of different opening shapes of split-ring resonator on its transmittance in terahertz band. Acta Physica Sinica, 2011, 60(1): 019503. doi: 10.7498/aps.60.019503
    [15] Rong Jian-Hong, Yun Guo-Hong. Ferromagnetic resonance in ferromagnetic bilayer films under the stress anisotropy. Acta Physica Sinica, 2007, 56(9): 5483-5488. doi: 10.7498/aps.56.5483
    [16] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang, Li Fa-Shen, Hao Yuan. Magetostriction, spin reorientation and M?ssbauer effect studies of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys. Acta Physica Sinica, 2007, 56(1): 535-540. doi: 10.7498/aps.56.535
    [17] Pan Jing, Zhou Lan, Tao Yong-Chun, Hu Jing-Guo. Spin waves in ferromagnetic/antiferrmagnetic bilayers under the stress field. Acta Physica Sinica, 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [18] Pan Jing, Ma Mei, Zhou Lan, Hu Jing-Guo. Ferromagnetic resonance in ferromagnetic/antiferromagnetic bilayers under the stress field. Acta Physica Sinica, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [19] Yuan Shu-Juan, Zhou Shi-Ming, Lu Mu. Ferromagnetic resonance study of Ni nanowire arrays. Acta Physica Sinica, 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [20] Guo Guang-Hua, Zhang Hai-Bei. Magnetocrystalline anisotropy and spin-reorientation transition of intermetallic compound HoMn6Sn6. Acta Physica Sinica, 2005, 54(12): 5879-5883. doi: 10.7498/aps.54.5879
Metrics
  • Abstract views:  2578
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  14 August 2023
  • Accepted Date:  08 September 2023
  • Available Online:  09 October 2023
  • Published Online:  05 January 2024

/

返回文章
返回