Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz spectroscopy study of doping and magnetic field induced effects on spin reorientation in Ho1–xYxFeO3 single crystals

Ren Zhuang Cheng Long Sergei Guretskii Nadzeya Liubochko Li Jiang-Tao Shang Jia-Min Sergei Barilo Wu An-Hua Alexandra Kalashnikova Ma Zong-Wei Zhou Chun Sheng Zhi-Gao

Citation:

Terahertz spectroscopy study of doping and magnetic field induced effects on spin reorientation in Ho1–xYxFeO3 single crystals

Ren Zhuang, Cheng Long, Sergei Guretskii, Nadzeya Liubochko, Li Jiang-Tao, Shang Jia-Min, Sergei Barilo, Wu An-Hua, Alexandra Kalashnikova, Ma Zong-Wei, Zhou Chun, Sheng Zhi-Gao
PDF
HTML
Get Citation
  • In this paper, the effects of magnetic field and nonmagnetic Y3+ doping on spin state and spin reorientation in HoFeO3 single crystal are systematically studied by the self-developed terahertz time-domain spectroscopy (THz-TDS) under magnetic field. By doping nonmagnetic Y3+, we find that the spin reorientation temperature range decreases. Meanwhile, we also find the type of spin reorientation of HoFeO3 does not change with Y3+ doping, indicating that the Y3+ doping can exchange the interaction energy of Ho3+-Fe3+ without introducing any new magnetic structure. Moreover, the resonance frequency of quasi-ferromagnetic mode (q-FM) decreases with temperature increasing in the low temperature range, while the resonance frequency of quasi-antiferromagnetic mode (q-AFM) increases with temperature increasing in the high temperature range in Ho1–xYxFeO3 single crystals. With the external magnetic field ( H DC) applied along the (110) axis, on the one hand the magnetic field can not only tune the resonant frequency of q-FM but also induce the spin reorientation in Ho1–xYxFeO3 single crystals, and on the other hand this magnetic field induced spin reorientation phenomenon can happen more easily if the temperature approaches to the intrinsic spin reorientation temperature range of the single crystals. Besides, the critical magnetic field induced spin reorientation increases with the doping of Y3+ increasing. Our research shows that THz spectroscopy data can be used to detect the doping concentration of Y3+ ions in HoFeO3; in addition, Y3+ doping can make the spin state in HoFeO3 crystal more stable and not easily affected by external magnetic fields. We anticipate that the role of doping and magnetic field in spin reorientation transition will trigger great interest in understanding the mechanism of the spin exchange interaction and the mechanism of external field tuning effect in the vast family of rare earth orthoferrites.
      Corresponding author: Sheng Zhi-Gao, zhigaosheng@hmfl.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0401803, 2017YFA0303603), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH011), the National Natural Science Foundation of China (Grant Nos. 11574316, 51872309, 61805256, 11904367, U1832106, 52011530018), the Special Exchange Program for Russia-Ukraine-Belarus, Chinese Academy of Sciences, the Shanghai Committee of Science and Technology, China (Grant No. 19520710900), and the Basic Research Funds of Belarus in Frame of Belarus-China Research (Grant No. F20CN-021)
    [1]

    Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V, Rasing T 2004 Nature 429 850Google Scholar

    [2]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655Google Scholar

    [3]

    Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A, Rasing T 2009 Nat. Phys. 5 727Google Scholar

    [4]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [5]

    武安华, 王博, 赵向阳, 满沛文, 谢涛, 徐晓东, 苏良碧 2017 中国科学: 技术科学 47 1177Google Scholar

    Wu A H, Wang B, Zhao X Y, Man P W, Xie T, Xu X D, Su L B 2017 Sci. Sin. Technol. 47 1177Google Scholar

    [6]

    蒋国超, 申慧, 徐家跃, 武安华 2020 人工晶体学报 49 990

    Jiang G C, Shen H, Xu J Y, Wu A H 2020 J. Synth. Cryst. 49 990

    [7]

    覃莹, 陈湘明 2013 物理学进展 33 353

    Qin Y, Chen X M 2013 Prog. Phys. 33 353

    [8]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [9]

    Zhao W Y, Cao S X, Huang R X, Cao Y M, Xu K, Kang B J, Zhang J C, Ren W 2015 Phys. Rev. B 91 104425Google Scholar

    [10]

    Wu H L, Cao S X, Liu M, Cao Y M, Kang B J, Zhang J C, Ren W 2014 Phys. Rev. B 90 144415Google Scholar

    [11]

    Wang B, Zhao X Y, Wu A H, Cao S X, Xu J, Kalashnikova A M, Pisarev R V 2015 J. Magn. Magn. Mater. 379 192Google Scholar

    [12]

    Wu A H, Wang B, Zhao X Y, Xie T, Man P W, Su L B, Kalashnikova A M, Pisarev R V 2017 J. Magn. Magn. Mater. 426 721Google Scholar

    [13]

    Yuan N, Li R B, Yu Y S, Feng Z J, Kang B J, Zhuo S Y, Ge J Y, Zhang J C, Cao S X 2019 Front. Phys. 14 13502Google Scholar

    [14]

    Yamaguchi K, Kurihara T, Minami Y, Nakajima M, Suemoto T 2013 Phys. Rev. Lett. 110 137204Google Scholar

    [15]

    Jiang J J, Jin Z M, Song G B, Lin X, Ma G H, Cao S X 2013 Appl. Phys. Lett. 103 062403Google Scholar

    [16]

    Zeng X X, Fu X J, Wang D Y, Xi X Q, Zhou J, Li B 2015 Opt. Express 23 31956Google Scholar

    [17]

    袁宁, 曹世勋 2019 自然杂志 41 0253

    Yuan N, Cao S X 2019 Chin. J. Nat. 41 0253

    [18]

    White R L 1969 J. Appl. Phys. 40 1061Google Scholar

    [19]

    Suemoto T, Nakamura K, Kurihara T, Watanabe H 2015 Appl. Phys. Lett. 107 042404Google Scholar

    [20]

    Balbashov A M, Kozlov G V, Lebedev S P, Mukhin A A, Pronin A Y, Prokhorov A S 1989 Sov. Phys. JETP 68 629

    [21]

    刘明, 曹世勋, 袁淑娟, 康保娟, 鲁波, 张金仓 2013 物理学报 62 147601Google Scholar

    Liu M, Cao S X, Yuan S J, Kang B J, Lu B, Zhang J C 2013 Acta Phys. Sin. 62 147601Google Scholar

    [22]

    Afanasiev D, Ivanov B A, Kirilyuk A, Rasing T, Pisarev R V, Kimel A V 2016 Phys. Rev. Lett. 116 097401Google Scholar

    [23]

    Amelin K, Nagel U, Fishman R S, Yoshida Y, Sim H, Park K, Park J G, Room T 2018 Phys. Rev. B 98 174417Google Scholar

    [24]

    Liu X M, Jin Z M, Zhang S N, Zhang K L, Zhao W Y, Xu K, Lin X, Cheng Z X, Cao S X, Ma G H 2018 J. Phys. D: Appl. Phys. 51 024001Google Scholar

    [25]

    Li X W, Bamba M, Yuan N, Zhang Q, Zhao Y G, Xiang M L, Xu K, Jin Z M, Ren W, Ma G H, Cao S X, Turchinovich D, Kono J 2018 Science 361 794Google Scholar

    [26]

    Wu A H, Zhao X Y, Man P W, Su L B, Kalashnikova A M, Pisarev R V 2018 J. Cryst. Growth 486 169Google Scholar

    [27]

    Guo J J, Cheng L, Ren Z, Zhang W J, Lin X, Jin Z M, Cao S X, Sheng Z G, Ma G H 2020 J. Phys. Condens. Matter 32 185401Google Scholar

    [28]

    Jiang J J, Song G B, Wang D Y, Jin Z M, Tian Z, Lin X, Han J G, Ma G H, Cao S X, Cheng Z X 2016 J. Phys. Condens. Matter 28 116002Google Scholar

    [29]

    Lin X, Jiang J J, Jin Z M, Wang D Y, Tian Z, Han J G, Cheng Z X, Ma G H 2015 Appl. Phys. Lett. 106 092403Google Scholar

    [30]

    Nikitin S E, Wu L S, Sefat A S, Shaykhutdinov K A, Lu Z, Meng S, Pomjakushina E V, Conder K, Ehlers G, Lumsden M D, Kolesnikov A I, Barilo S, Guretskii S A, Inosov D S, Podlesnyak A 2018 Phys. Rev. B 98 064424Google Scholar

    [31]

    Barilo S N, Ges A P, Guretskii S A, Zhigunov D I, Ignatenko A A, Luginets A M, Shapovalova E F 1991 J. Cryst. Growth 108 309Google Scholar

    [32]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mahrlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nat. Photonics 5 31Google Scholar

    [33]

    Yamaguchi K, Nakajima M, Suemoto T 2010 Phys. Rev. Lett. 105 237201Google Scholar

    [34]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [35]

    Grishunin K, Huisman T, Li G Q, Mishina E, Rasing T, Kimel A V, Zhang K L, Jin Z M, Cao S X, Ren W, Ma G H, Mikhaylovskiy R V 2018 ACS Photonics 5 1375Google Scholar

    [36]

    Afanasiev D, Ivanov B A, Pisarev R V, Kirilyuk A, Rasing T, Kimel A V 2017 J. Phys. Condens. Matter 29 224003Google Scholar

  • 图 1  (a)−(c) 不同温度下(110)取向的HoFeO3, Ho0.8Y0.2FeO3和Ho0.6Y0.4FeO3单晶的THz透射谱, 入射的太赫兹磁场分量(HTHz)平行于晶体的c轴, 图中红色和蓝色虚线分别帮助识别准铁磁模式(q-FM)共振峰和准反铁磁模式(q-AFM)共振峰; (d)−(f) 不同Y3+掺杂浓度单晶中的自旋波共振吸收谱随温度的关系. 图中的红色和蓝色的虚线分别代表低温下q-FM共振峰和高温下q-AFM共振峰随温度的变化

    Figure 1.  (a)−(c) THz transmission spectra of the (110) HoFeO3, Ho0.8Y0.2FeO3, and Ho0.6Y0.4FeO3 single crystals measured at different temperatures, the incident THz magnetic component (HTHz) is aligned along c-axis of the crystal. The dashed red and blue lines are guides to the eye for identifying the quasi-ferromagnetic mode (q-FM) and quasi-antiferromagnetic mode (q-AFM) resonant peaks, respectively; (d)−(f) temperature dependence of THz spin wave resonance absorption spectra of single crystals with different Y3+ doping levels. The red dotted lines in the figures represent q-FM resonant absorption peaks change with temperature at low temperature, and the blue dotted lines represent q-AFM resonant absorption peaks change with temperature at high temperature.

    图 2  Ho1–xYxFeO3中q-AFM和q-FM共振频率随温度的变化关系, 圆圈、三角和正方形标记分别代表Y3+离子掺杂浓度为0, 0.2和0.4的(110)取向的单晶中的共振频率

    Figure 2.  The temperature dependence of q-AFM and q-FM resonant frequencies in Ho1–xYxFeO3. Circle, triangle and square markers show resonant frequencies in single crystals with Y3+ dopant concentration of 0, 0.2 and 0.4.

    图 3  (a)−(l) Ho1–xYxFeO3单晶中在不同温度下随磁场变化的自旋波共振吸收谱, 入射的太赫兹磁场分量(HTHz)平行于晶体的c轴, 外加磁场HDC沿晶体的[110]方向, 蓝色和红色的虚线分别表示q-AFM共振峰和q-FM共振峰随磁场的变化

    Figure 3.  (a)−(l) Magnetic field dependence of THz spin wave resonance absorption spectra of Ho1–xYxFeO3 single crystals measured at different temperatures. The incident THz magnetic component (HTHz) is aligned along c-axis of crystals, and the external magnetic field HDC is applied along [110] axis of crystals. The blue and red dotted lines are q-AFM and q-FM resonant absorption peaks change with the applied magnetic field, respectively.

  • [1]

    Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V, Rasing T 2004 Nature 429 850Google Scholar

    [2]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655Google Scholar

    [3]

    Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A, Rasing T 2009 Nat. Phys. 5 727Google Scholar

    [4]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [5]

    武安华, 王博, 赵向阳, 满沛文, 谢涛, 徐晓东, 苏良碧 2017 中国科学: 技术科学 47 1177Google Scholar

    Wu A H, Wang B, Zhao X Y, Man P W, Xie T, Xu X D, Su L B 2017 Sci. Sin. Technol. 47 1177Google Scholar

    [6]

    蒋国超, 申慧, 徐家跃, 武安华 2020 人工晶体学报 49 990

    Jiang G C, Shen H, Xu J Y, Wu A H 2020 J. Synth. Cryst. 49 990

    [7]

    覃莹, 陈湘明 2013 物理学进展 33 353

    Qin Y, Chen X M 2013 Prog. Phys. 33 353

    [8]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [9]

    Zhao W Y, Cao S X, Huang R X, Cao Y M, Xu K, Kang B J, Zhang J C, Ren W 2015 Phys. Rev. B 91 104425Google Scholar

    [10]

    Wu H L, Cao S X, Liu M, Cao Y M, Kang B J, Zhang J C, Ren W 2014 Phys. Rev. B 90 144415Google Scholar

    [11]

    Wang B, Zhao X Y, Wu A H, Cao S X, Xu J, Kalashnikova A M, Pisarev R V 2015 J. Magn. Magn. Mater. 379 192Google Scholar

    [12]

    Wu A H, Wang B, Zhao X Y, Xie T, Man P W, Su L B, Kalashnikova A M, Pisarev R V 2017 J. Magn. Magn. Mater. 426 721Google Scholar

    [13]

    Yuan N, Li R B, Yu Y S, Feng Z J, Kang B J, Zhuo S Y, Ge J Y, Zhang J C, Cao S X 2019 Front. Phys. 14 13502Google Scholar

    [14]

    Yamaguchi K, Kurihara T, Minami Y, Nakajima M, Suemoto T 2013 Phys. Rev. Lett. 110 137204Google Scholar

    [15]

    Jiang J J, Jin Z M, Song G B, Lin X, Ma G H, Cao S X 2013 Appl. Phys. Lett. 103 062403Google Scholar

    [16]

    Zeng X X, Fu X J, Wang D Y, Xi X Q, Zhou J, Li B 2015 Opt. Express 23 31956Google Scholar

    [17]

    袁宁, 曹世勋 2019 自然杂志 41 0253

    Yuan N, Cao S X 2019 Chin. J. Nat. 41 0253

    [18]

    White R L 1969 J. Appl. Phys. 40 1061Google Scholar

    [19]

    Suemoto T, Nakamura K, Kurihara T, Watanabe H 2015 Appl. Phys. Lett. 107 042404Google Scholar

    [20]

    Balbashov A M, Kozlov G V, Lebedev S P, Mukhin A A, Pronin A Y, Prokhorov A S 1989 Sov. Phys. JETP 68 629

    [21]

    刘明, 曹世勋, 袁淑娟, 康保娟, 鲁波, 张金仓 2013 物理学报 62 147601Google Scholar

    Liu M, Cao S X, Yuan S J, Kang B J, Lu B, Zhang J C 2013 Acta Phys. Sin. 62 147601Google Scholar

    [22]

    Afanasiev D, Ivanov B A, Kirilyuk A, Rasing T, Pisarev R V, Kimel A V 2016 Phys. Rev. Lett. 116 097401Google Scholar

    [23]

    Amelin K, Nagel U, Fishman R S, Yoshida Y, Sim H, Park K, Park J G, Room T 2018 Phys. Rev. B 98 174417Google Scholar

    [24]

    Liu X M, Jin Z M, Zhang S N, Zhang K L, Zhao W Y, Xu K, Lin X, Cheng Z X, Cao S X, Ma G H 2018 J. Phys. D: Appl. Phys. 51 024001Google Scholar

    [25]

    Li X W, Bamba M, Yuan N, Zhang Q, Zhao Y G, Xiang M L, Xu K, Jin Z M, Ren W, Ma G H, Cao S X, Turchinovich D, Kono J 2018 Science 361 794Google Scholar

    [26]

    Wu A H, Zhao X Y, Man P W, Su L B, Kalashnikova A M, Pisarev R V 2018 J. Cryst. Growth 486 169Google Scholar

    [27]

    Guo J J, Cheng L, Ren Z, Zhang W J, Lin X, Jin Z M, Cao S X, Sheng Z G, Ma G H 2020 J. Phys. Condens. Matter 32 185401Google Scholar

    [28]

    Jiang J J, Song G B, Wang D Y, Jin Z M, Tian Z, Lin X, Han J G, Ma G H, Cao S X, Cheng Z X 2016 J. Phys. Condens. Matter 28 116002Google Scholar

    [29]

    Lin X, Jiang J J, Jin Z M, Wang D Y, Tian Z, Han J G, Cheng Z X, Ma G H 2015 Appl. Phys. Lett. 106 092403Google Scholar

    [30]

    Nikitin S E, Wu L S, Sefat A S, Shaykhutdinov K A, Lu Z, Meng S, Pomjakushina E V, Conder K, Ehlers G, Lumsden M D, Kolesnikov A I, Barilo S, Guretskii S A, Inosov D S, Podlesnyak A 2018 Phys. Rev. B 98 064424Google Scholar

    [31]

    Barilo S N, Ges A P, Guretskii S A, Zhigunov D I, Ignatenko A A, Luginets A M, Shapovalova E F 1991 J. Cryst. Growth 108 309Google Scholar

    [32]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mahrlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nat. Photonics 5 31Google Scholar

    [33]

    Yamaguchi K, Nakajima M, Suemoto T 2010 Phys. Rev. Lett. 105 237201Google Scholar

    [34]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [35]

    Grishunin K, Huisman T, Li G Q, Mishina E, Rasing T, Kimel A V, Zhang K L, Jin Z M, Cao S X, Ren W, Ma G H, Mikhaylovskiy R V 2018 ACS Photonics 5 1375Google Scholar

    [36]

    Afanasiev D, Ivanov B A, Pisarev R V, Kirilyuk A, Rasing T, Kimel A V 2017 J. Phys. Condens. Matter 29 224003Google Scholar

  • [1] Zhang Ying, Li Zhuo-Lin, Shen Bao-Gen. Research progress in the magnetic domain wall topology. Acta Physica Sinica, 2024, 73(1): 017504. doi: 10.7498/aps.73.20231612
    [2] Wang Ning, Huang Feng, Chen Ying, Zhu Guo-Feng, Su Hao-Bin, Guo Cui-Xia, Wang Xiang-Feng. Magnetic-field-induced spin reorientation in TmFeO3 single crystals. Acta Physica Sinica, 2024, 73(1): 017801. doi: 10.7498/aps.73.20231322
    [3] Li Gao-Fang, Yin Wen, Huang Jing-Guo, Cui Hao-Yang, Ye Han-Jing, Gao Yan-Qing, Huang Zhi-Ming, Chu Jun-Hao. Conductivity in sulfur doped gallium selenide crystals measured by terahertz time-domain spectroscopy. Acta Physica Sinica, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [4] Fang Yu-Qing, Jin Zuan-Ming, Chen Hai-Yang, Ruan Shun-Yi, Li Ju-Geng, Cao Shi-Xun, Peng Yan, Ma Guo-Hong, Zhu Yi-Ming. Terahertz spectroscopic characterization of spin mode and crystal-field transition in high-throughput grown $ {\bf Sm}_{ x}{\bf Pr}_{ 1– x}{\bf FeO_3} $ crystals. Acta Physica Sinica, 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [5] Jin Zuan-Ming, Ruan Shun-Yi, Li Ju-Geng, Lin Xian, Ren Wei, Cao Shi-Xun, Ma Guo-Hong, Yao Jian-Quan. Research progress of coherent control of terahertz spin waves and strong coupling in rare-earth orthoferrites. Acta Physica Sinica, 2019, 68(16): 167501. doi: 10.7498/aps.68.20190706
    [6] Meng Zeng-Rui, Zhang Wei-Bin, Du Yu, Shang Li-Ping, Deng Hu. Terahertz spectrum and simulation of the phase transformation of FOX-7. Acta Physica Sinica, 2015, 64(7): 073302. doi: 10.7498/aps.64.073302
    [7] Yang Jing-Qi, Li Shao-Xian, Zhao Hong-Wei, Zhang Jian-Bing, Yang Na, Jing Dan-Dan, Wang Chen-Yang, Han Jia-Guang. Terahertz study of L-asparagine and its monohydrate. Acta Physica Sinica, 2014, 63(13): 133203. doi: 10.7498/aps.63.133203
    [8] Liu Ming, Cao Shi-Xun, Yuan Shu-Juan, Kang Bao-Juan, Lu Bo, Zhang Jin-Cang. The study of Raman spectrum, distortion of lattice and spin reorientation phase transition on Pr doped DyFeO3 system. Acta Physica Sinica, 2013, 62(14): 147601. doi: 10.7498/aps.62.147601
    [9] Zhang Cun-Xi, Wang Rui, Kong Ling-Min. Photon-mediated electron transport through a quantum well in an intense terahertz field with spin-orbit coupling. Acta Physica Sinica, 2010, 59(7): 4980-4984. doi: 10.7498/aps.59.4980
    [10] Zheng Xiao-Ping, Zhang Pei-Feng, Li Fa-Shen, Hao Yuan. Magnetism, magetostriction, and M?ssbauer effect studies of Tb0.3Dy0.6Pr0.1(Fe1-xAlx)1.95 alloys. Acta Physica Sinica, 2009, 58(8): 5768-5772. doi: 10.7498/aps.58.5768
    [11] Ma Xiao-Jing, Zhao Hong-Wei, Dai Bin, Liu Gui-Feng. THz spectra of hypoxanthine and inosine. Acta Physica Sinica, 2008, 57(6): 3429-3434. doi: 10.7498/aps.57.3429
    [12] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang, Li Fa-Shen, Hao Yuan. Magetostriction, spin reorientation and M?ssbauer effect studies of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys. Acta Physica Sinica, 2007, 56(1): 535-540. doi: 10.7498/aps.56.535
    [13] Li Hong, Wang Wei-Lu, Gong Pi-Feng. Spin current of a single quantum well. Acta Physica Sinica, 2007, 56(4): 2405-2408. doi: 10.7498/aps.56.2405
    [14] Wang Wen-Quan, Xu Shi-Feng, Xu Qin-Ying, Zhang Wen-Liang, Chen Dong-Feng. Structure and magnetic properties of (Nd1-xGdx)3 Fe27.31Ti1.69 compounds. Acta Physica Sinica, 2006, 55(7): 3531-3535. doi: 10.7498/aps.55.3531
    [15] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang, Li Fa-Shen, Hao Yuan. Structure, spin reorientation and M?ssbauer spectra of Tb0.3Dy0.7(Fe0.9T0.1)1.95 alloys. Acta Physica Sinica, 2006, 55(2): 879-883. doi: 10.7498/aps.55.879
    [16] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang, Li Fa-Shen, Cheng Zhao-Hua, Shen Bao-Gen. Spin reorientation and M?ssbauer effect studies on Tb0.3Dy0.7(Fe1-xAlx)1.95 alloys. Acta Physica Sinica, 2005, 54(2): 944-948. doi: 10.7498/aps.54.944
    [17] Guo Guang-Hua, Zhang Hai-Bei. Magnetocrystalline anisotropy and spin-reorientation transition of intermetallic compound HoMn6Sn6. Acta Physica Sinica, 2005, 54(12): 5879-5883. doi: 10.7498/aps.54.5879
    [18] Wang Wen-Quan, Yan Yu, Wang Xiang-Qun, Wang Xue-Feng, Jin Han-Min. Structural and magnetic properties of (Nd1-xErx)3Fe273Ti17 compounds. Acta Physica Sinica, 2003, 52(3): 641-646. doi: 10.7498/aps.52.641
    [19] Han Zhi-Quan. A Model of Microwave Loss Due to Spin Wave Resonance in Grain-Surface-Layers. Acta Physica Sinica, 1999, 48(13): 291-297. doi: 10.7498/aps.48.291
    [20] TANG KUN-FA, HU JIA-ZHEN. A GENERALIZED MIXED SPIN MODEL: A RENORMALISATION GROUP APPROACH. Acta Physica Sinica, 1986, 35(8): 1048-1054. doi: 10.7498/aps.35.1048
Metrics
  • Abstract views:  6511
  • PDF Downloads:  154
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2020
  • Accepted Date:  24 September 2020
  • Available Online:  14 October 2020
  • Published Online:  20 October 2020

/

返回文章
返回