Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of spin light emitting diode

Liang Shi-Heng Lu Yuan Han Xiu-Feng

Citation:

Research progress of spin light emitting diode

Liang Shi-Heng, Lu Yuan, Han Xiu-Feng
PDF
HTML
Get Citation
  • After more than 20 years of development, semiconductor spintronics has become an important and interdisciplinary research filed of spin-based physics, materials and phenomenon. Spin light emitting diode (spin LED) is one of the fascinating topics in semiconductor spintronic, and it is also one of devices in which the radiative recombination of spin-polarized carriers results in luminescence exhibiting a net circular polarization. The research of spin LED involves the studies of materials, structures, and spin based physics in spin injector and active region. The spin injection, spin transport, and spin detection are key factors for understanding the spin based physics in spin LED. Here in this paper, we comprehensively review the current research status and the latest results. Finally, we also discuss the future research trend.
      Corresponding author: Lu Yuan, yuan.lu@univ-lorraine.fr ; Han Xiu-Feng, xfhan@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0206200), the Key Program of the National Natural Science Foundation of China (Grant No. 51831012), the Key Joint Program of China-France of the National Natural Science Foundation (Grant No. 51620105004), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33000000), the Key Research Program of Frontier Sciences and the International Partnership Program of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH016), the Beijing Natural Science Foundation of China (Grant No. Z201100004220006), and the Joint ANR-NSFC SISTER Project (Grant Nos. ANR-11-IS10-0001, NNSFC61161130527)
    [1]

    Holub M, Bhattacharya P 2007 J. Phys. D: Appl. Phys. 40 R179Google Scholar

    [2]

    Farshchi R, Ramsteiner M, Herfort J, Tahraoui A, Grahn H T 2011 Appl. Phys. Lett. 98 162508Google Scholar

    [3]

    Asshoff P, Merz A, Kalt H, Hetterich M 2011 Appl. Phys. Lett. 98 112106Google Scholar

    [4]

    Kim D Y 2006 J. Korean Phys. Soc. 49 S505

    [5]

    Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, Molenkamp L W 1999 Nature 402 787Google Scholar

    [6]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar

    [7]

    Taniyama T, Wada E, Itoh M, Yamaguchi M 2011 NPG Asia Mater. 3 65Google Scholar

    [8]

    Lu Y, Truong V G, Renucci P, Tran M, Jaffrès H, Deranlot C, George J M, Lemaître A, Zheng Y, Demaille D, Binh P H, Amand T, Marie X 2008 Appl. Phys. Lett. 93 152102Google Scholar

    [9]

    Rashba E I 2000 Phys. Rev. B 62 R16267Google Scholar

    [10]

    Elliott R J 1954 Phys. Rev. 96 266Google Scholar

    [11]

    Zhao F 2010 Ph. D Thesis (France: University of Toulouse)

    [12]

    Soldat H, Li M, Gerhardt N C, Hofmann M R, Ludwig A, Ebbing A, Reuter D, Wieck A D, Stromberg F, Keune W, Wende H 2011 Appl. Phys. Lett. 99 051102Google Scholar

    [13]

    Saikin S, Shen M, Cheng M C 2006 J. Phys. Condens. Matter 18 1535Google Scholar

    [14]

    Young D K, Johnston-Halperin E, Awschalom D D, Ohno Y, Ohno H 2002 Appl. Phys. Lett. 80 1598Google Scholar

    [15]

    Jiang X, Wang R, Shelby R M, Macfarlane R M, Bank S R, Harris J S, Parkin S S P 2005 Phys. Rev. Lett. 94 056601Google Scholar

    [16]

    Zhu H J, Ramsteiner M, Kostial H, Wassermeier M, Schönherr H P, Ploog K H 2001 Phys. Rev. Lett. 87 016601Google Scholar

    [17]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508Google Scholar

    [18]

    Barate P, Liang S, Zhang T T, Frougier J, Vidal M, Renucci P, Devaux X, Xu B, Jaffrès H, George J M, Marie X, Hehn M, Mangin S, Zheng Y, Amand T, Tao B, Han X F, Wang Z, Lu Y 2014 Appl. Phys. Lett. 105 012404Google Scholar

    [19]

    Hanbicki A T, Jonker B T, Itskos G, Kioseoglou G, Petrou A 2002 Appl. Phys. Lett. 80 1240Google Scholar

    [20]

    Motsnyi V F, De Boeck J, Das J, Van Roy W, Borghs G, Goovaerts E, Safarov V I 2002 Appl. Phys. Lett. 81 265Google Scholar

    [21]

    Lombez L, Braun P F, Renucci P, Gallo P, Carrère H, Binh P H, Marie X, Amand T, Gauffier J L, Urbaszek B, Arnoult A, Fontaine C, Deranlot C, Mattana R, Jaffrès H 2007 Phys. Status Solidi C 4 567Google Scholar

    [22]

    Wu H, Zheng H, Liu J, Li G, Xu P, Zhu H, Zhang H, Zhao J 2010 Sci. China Phys. Mech. 53 649Google Scholar

    [23]

    Barate P, Liang S H, Zhang T T, Frougier J, Xu B, Schieffer P, Vidal M, Jaffrès H, Lépine B, Tricot S, Cadiz F, Garandel T, George J M, Amand T, Devaux X, Hehn M, Mangin S, Tao B, Han X F, Wang Z G, Marie X, Lu Y, Renucci P 2017 Phys. Rev. Appl. 8 054027Google Scholar

    [24]

    Gerhardt N C, Hövel S, Brenner C, Hofmann M R, Lo F Y, Reuter D, Wieck A D, Schuster E, Keune W, Westerholt K 2005 Appl. Phys. Lett. 87 032502Google Scholar

    [25]

    Adelmann C, Hilton J L, Schultz B D, McKernan S, Palmstrøm C J, Lou X, Chiang H S, Crowell P A 2006 Appl. Phys. Lett. 89 112511Google Scholar

    [26]

    Hövel S, Gerhardt N C, Hofmann M R, Lo F Y, Ludwig A, Reuter D, Wieck A D, Schuster E, Wende H, Keune W, Petracic O, Westerholt K 2008 Appl. Phys. Lett. 93 021117Google Scholar

    [27]

    Grenet L, Jamet M, Noé P, Calvo V, Hartmann J M, Nistor L E, Rodmacq B, Auffret S, Warin P, Samson Y 2009 Appl. Phys. Lett. 94 032502Google Scholar

    [28]

    Zarpellon J, Jaffrès H, Frougier J, Deranlot C, George J M, Mosca D H, Lemaître A, Freimuth F, Duong Q H, Renucci P, Marie X 2012 Phys. Rev. B 86 205314Google Scholar

    [29]

    Liang S H, Zhang T T, Barate P, Frougier J, Vidal M, Renucci P, Xu B, Jaffrès H, George J M, Devaux X, Hehn M, Marie X, Mangin S, Yang H X, Hallal A, Chshiev M, Amand T, Liu H F, Liu D P, Han X F, Wang Z G, Lu Y 2014 Phys. Rev. B 90 085310Google Scholar

    [30]

    Tao B S, Barate P, Frougier J, Renucci P, Xu B, Djeffal A, Jaffrès H, George J M, Marie X, Petit-Watelot S, Mangin S, Han X F, Wang Z G, Lu Y 2016 Appl. Phys. Lett. 108 152404Google Scholar

    [31]

    Tao B, Barate P, Devaux X, Renucci P, Frougier J, Djeffal A, Liang S, Xu B, Hehn M, Jaffrès H, George J M, Marie X, Mangin S, Han X, Wang Z, Lu Y 2018 Nanoscale 10 10213Google Scholar

    [32]

    Cadiz F, Djeffal A, Lagarde D, Balocchi A, Tao B, Xu B, Liang S, Stoffel M, Devaux X, Jaffres H, George J M, Hehn M, Mangin S, Carrere H, Marie X, Amand T, Han X, Wang Z, Urbaszek B, Lu Y, Renucci P 2018 Nano Lett. 18 2381Google Scholar

    [33]

    Kyrychenko F V, Stanton C J, Abernathy C R, Pearton S J, Ren F, Thaler G, Frazier R, Buyanova I, Bergman J P, Chen W M 2005 AIP Conf. Proc. 772 1319Google Scholar

    [34]

    Beschoten B, Johnston-Halperin E, Young D K, Poggio M, Grimaldi J E, Keller S, DenBaars S P, Mishra U K, Hu E L, Awschalom D D 2001 Phys. Rev. B 63 121202Google Scholar

    [35]

    Krishnamurthy S, van Schilfgaarde M, Newman N 2003 Appl. Phys. Lett. 83 1761Google Scholar

    [36]

    Buyanova I A, Izadifard M, Chen W M, Kim J, Ren F, Thaler G, Abernathy C R, Pearton S J, Pan C C, Chen G T, Chyi J I, Zavada J M 2005 AIP Conf. Proc. 772 1399Google Scholar

    [37]

    Ham M H, Yoon S, Park Y, Bian L, Ramsteiner M, Myoung J M 2006 J. Phys. Condens. Matter 18 7703Google Scholar

    [38]

    Banerjee D, Adari R, Sankaranarayan S, Kumar A, Ganguly S, Aldhaheri R W, Hussain M A, Balamesh A S, Saha D 2013 Appl. Phys. Lett. 103 242408Google Scholar

    [39]

    Chen J Y, Ho C Y, Lu M L, Chu L J, Chen K C, Chu S W, Chen W, Mou C Y, Chen Y F 2014 Nano Lett. 14 3130Google Scholar

    [40]

    Bhattacharya A, Baten Z, Frost T, Bhattacharya P 2017 IEEE Photon. Technol. Lett. 29 338Google Scholar

    [41]

    Bhattacharya A, Baten M Z, Iorsh I, Frost T, Kavokin A, Bhattacharya P 2017 Phys. Rev. Lett. 119 067701Google Scholar

    [42]

    Chen J Y, Wong T M, Chang C W, Dong C Y, Chen Y F 2014 Nat. Nanotechnol. 9 845Google Scholar

    [43]

    Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X, Zhang X 2016 Nat. Nanotechnol. 11 598Google Scholar

    [44]

    Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792Google Scholar

  • 图 1  Spin LED能带结构示意图[7]

    Figure 1.  Schematic of band diagram of spin LED[7]

    图 2  自旋发光二极管的电致发光中偏振光测量系统原理示意图

    Figure 2.  Schematic diagram of electroluminescence measurement system for spin LED

    图 3  Spin LED中时间分辨光致发光系统原理示意图

    Figure 3.  Schematic diagram of time-resolved photoluminescence system

    图 4  (a) EY和(b) DP自旋弛豫机制示意图[11]

    Figure 4.  Spin relaxation by scattering in (a) EY and (b) DP mechanisms[11].

    图 5  圆偏振光极化率随自旋注入层到有源发光区之间长度关系[12]

    Figure 5.  Calculated circular polarization for fully perpendicular magnetization in remanence over injection path length[12].

    图 6  在闪锌矿GaAs直接带隙能带中的光选择定则 (a)体材料及(b)量子阱中的电子空穴复合选择定则. 上边蓝色球代表电子, 下边的红色球代表空穴, 箭头代表自旋方向. 其中CB代表导带, HH代表重空穴带, LH代表轻空穴带, HH是三重简并态, LH是单态. $ {\mathrm{\sigma }}^{-} $$ {\mathrm{\sigma }}^{+} $分别代表左旋光与右旋光. 在量子阱结构中由于晶格应变和结构限制, 电子与LH态空穴的复合几率被大大抑制[1]

    Figure 6.  Electric dipole allowed radiative inter-band transitions and corresponding optical polarization for the cases of (a) bulk material with degenerate heavy- and light-hole bands and (b) a quantum well in which epitaxial strain and quantum confinement have lifted the heavy- and light-hole band degeneracy[1].

    图 7  GaAs量子阱自旋发光二极管中 (a)温度依赖的PC特性和(b)温度依赖的τs, τF因子特性[8]

    Figure 7.  (a) Temperature dependence of PC, (b) temperature dependence of τs, τ, and the F factor in GaAs quantum well spin LED[8].

    图 8  自旋发光二极管的Faraday测试方法示意图[1]

    Figure 8.  Schematic representation of a spin LED under the Faraday geometries[1].

    图 9  Gerhardt等[24]利用具有垂直磁各向异性的FeTb作为自旋注入端的自旋发光二极管 (a)结构示意图; (b)电致发光与磁场的关系, 他们在未加磁场剩余磁态下, 在90 K下得到了0.7%的圆偏振光极化率

    Figure 9.  Schematic Spin LED device structure of the LED with Tb/Fe multilayer (a) reported by Gerhardt et al.[24], Circular polarization as a function of the applied magnetic field at 90 K (b), they observed PC of 0.7%

    图 10  (a) 基于垂直磁各向异性Ta/CoFeB/MgO为自旋注入端的自旋发光二极管结构示意图, 虚线选定区对应的TEM照片, 其中插图为缩小后的TEM照片; (b)温度依赖的圆偏振极化率及注入电子极化率; (c)温度依赖的F因子及载流子寿命$ \tau $、电子自旋弛豫时间$ {\tau }_{\mathrm{s}} $

    Figure 10.  (a) Schematic device structure of Spin LED and HR-TEM image of CoFeB/MgO PMA injector; (b) temperature dependence of PC without magnetic field and with 0.4 T field. Temperature dependence of PE is calculated by PE = PC/F from the data without field; (c) temperature dependence of τS, τ, and F factor deduced from the TRPL measurements

    图 11  退火400 °C后, 具有垂直磁各向异性的Ta/CoFeB/MgO (a)和Mo/CoFeB/MgO (b)自旋注入端中由HR-STEM-EELS测量的空间元素分布[31]

    Figure 11.  Chemical characterization of spin-injectors annealed at 400 °C. Dark field HR-STEM images and corresponding EELS mappings and profiles for (a) Ta and (b) Mo injectors annealed at 400 °C[31].

    图 12  (a), (b)基于垂直各向异性的Ta/CoFeB/MgO作为自旋注入端InGaAs/GaAs量子点spin LED 的TEM及其结构示意图; (c) InGaAs/GaAs量子点AFM图; (d)零磁场下9 K观测到了约35%电致发光圆偏振光极化率[32]

    Figure 12.  Spin LED device with p-doped InAs/GaAs quantum dots and polarization resolved electroluminescence of an ensemble of quantum dots: (a) High resolution-transmission electron microscope image of the injector Ta/CoFeB/MgO/GaAs; (b) schematic structure of the spin LED device. A single layer of InAs QDs is embedded in the intrinsic region of the p-i-n junction of the LED; (c) AFM image of InAs QDs; (d) strongly polarized single dot emission at zero applied field[32].

    图 13  基于(Ga, Mn)As自旋注入端、MoS2/WeS2有源区的自旋发光二极管结构示意图[43]

    Figure 13.  Schematic of the monolayer TMDC/(Ga, Mn)As heterojunction for electrical valley polarization devices. (Ga, Mn)As was used as a spin aligner under an external magnetic field[43].

    表 1  基于面内磁各向异性自旋注入端的自旋发光二极管

    Table 1.  Spin LED based on spin injector with in-plane magnetic anisotropic.

    自旋注入端LED结构PC/T文献时间
    FeInGaAs QW2%/300 KZhu等[16]2001
    Fe/(Al)GaAsGaAs QW32%/4.5 KHanbicki等[19]2002
    CoFe/Al2O3GaAs bulk21%/80 KMotsnyi等.[20]2002
    CoFe/MgOGaAs QW52%/100 KJiang等[15]2005
    Co/Al2O3InAs QD15%/1.7 KLombez等[21]2007
    CoFeB/MgOGaAs QW32%/100 KLu等[8]2008
    Fe/AlOxGaAs QW18%/80 KWu等[22]2010
    CoFeB/MgOGaAs QW25%/25 KBarate等[18]2014
    CoFeB/MgOGaAs QW23%(Sputtering), 18%(MBE)/25 KBarate等[23]2017
    DownLoad: CSV

    表 2  基于垂直磁各向异性的自旋注入端的自旋发光二极管

    Table 2.  Spin LED based on spin injector with out-plane magnetic anisotropic.

    自旋注入端LED结构Pc/T文献时间
    FeTbInGaAs QW0.75%/90 KGerhardt等[24]2005
    MnGaAlGaAs QW~3%/20 KAdelmann等[25]2006
    FeTbAlGaAs QW~3%/300 KHövel等[26]2008
    CoPtSiGe QW~3%/5 KGrenet等[27]2009
    CoPtGaAs QW~2.5%/20 KZarpellon等[28]2012
    Ta/CoFeB/MgOGaAs QW~20%/25 K, ~8%/RTLiang等[29]2014
    MgO/CoFeB/Ta/CoFeB/MgOGaAs QW~10%/10 KTao等[30]2016
    Mo/CoFeB/MgOGaAs QW~9.5%/10 KTao等[31]2018
    Ta/CoFeB/MgOGaAs QD35%/9 KCadiz等[32]2018
    DownLoad: CSV
  • [1]

    Holub M, Bhattacharya P 2007 J. Phys. D: Appl. Phys. 40 R179Google Scholar

    [2]

    Farshchi R, Ramsteiner M, Herfort J, Tahraoui A, Grahn H T 2011 Appl. Phys. Lett. 98 162508Google Scholar

    [3]

    Asshoff P, Merz A, Kalt H, Hetterich M 2011 Appl. Phys. Lett. 98 112106Google Scholar

    [4]

    Kim D Y 2006 J. Korean Phys. Soc. 49 S505

    [5]

    Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, Molenkamp L W 1999 Nature 402 787Google Scholar

    [6]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar

    [7]

    Taniyama T, Wada E, Itoh M, Yamaguchi M 2011 NPG Asia Mater. 3 65Google Scholar

    [8]

    Lu Y, Truong V G, Renucci P, Tran M, Jaffrès H, Deranlot C, George J M, Lemaître A, Zheng Y, Demaille D, Binh P H, Amand T, Marie X 2008 Appl. Phys. Lett. 93 152102Google Scholar

    [9]

    Rashba E I 2000 Phys. Rev. B 62 R16267Google Scholar

    [10]

    Elliott R J 1954 Phys. Rev. 96 266Google Scholar

    [11]

    Zhao F 2010 Ph. D Thesis (France: University of Toulouse)

    [12]

    Soldat H, Li M, Gerhardt N C, Hofmann M R, Ludwig A, Ebbing A, Reuter D, Wieck A D, Stromberg F, Keune W, Wende H 2011 Appl. Phys. Lett. 99 051102Google Scholar

    [13]

    Saikin S, Shen M, Cheng M C 2006 J. Phys. Condens. Matter 18 1535Google Scholar

    [14]

    Young D K, Johnston-Halperin E, Awschalom D D, Ohno Y, Ohno H 2002 Appl. Phys. Lett. 80 1598Google Scholar

    [15]

    Jiang X, Wang R, Shelby R M, Macfarlane R M, Bank S R, Harris J S, Parkin S S P 2005 Phys. Rev. Lett. 94 056601Google Scholar

    [16]

    Zhu H J, Ramsteiner M, Kostial H, Wassermeier M, Schönherr H P, Ploog K H 2001 Phys. Rev. Lett. 87 016601Google Scholar

    [17]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508Google Scholar

    [18]

    Barate P, Liang S, Zhang T T, Frougier J, Vidal M, Renucci P, Devaux X, Xu B, Jaffrès H, George J M, Marie X, Hehn M, Mangin S, Zheng Y, Amand T, Tao B, Han X F, Wang Z, Lu Y 2014 Appl. Phys. Lett. 105 012404Google Scholar

    [19]

    Hanbicki A T, Jonker B T, Itskos G, Kioseoglou G, Petrou A 2002 Appl. Phys. Lett. 80 1240Google Scholar

    [20]

    Motsnyi V F, De Boeck J, Das J, Van Roy W, Borghs G, Goovaerts E, Safarov V I 2002 Appl. Phys. Lett. 81 265Google Scholar

    [21]

    Lombez L, Braun P F, Renucci P, Gallo P, Carrère H, Binh P H, Marie X, Amand T, Gauffier J L, Urbaszek B, Arnoult A, Fontaine C, Deranlot C, Mattana R, Jaffrès H 2007 Phys. Status Solidi C 4 567Google Scholar

    [22]

    Wu H, Zheng H, Liu J, Li G, Xu P, Zhu H, Zhang H, Zhao J 2010 Sci. China Phys. Mech. 53 649Google Scholar

    [23]

    Barate P, Liang S H, Zhang T T, Frougier J, Xu B, Schieffer P, Vidal M, Jaffrès H, Lépine B, Tricot S, Cadiz F, Garandel T, George J M, Amand T, Devaux X, Hehn M, Mangin S, Tao B, Han X F, Wang Z G, Marie X, Lu Y, Renucci P 2017 Phys. Rev. Appl. 8 054027Google Scholar

    [24]

    Gerhardt N C, Hövel S, Brenner C, Hofmann M R, Lo F Y, Reuter D, Wieck A D, Schuster E, Keune W, Westerholt K 2005 Appl. Phys. Lett. 87 032502Google Scholar

    [25]

    Adelmann C, Hilton J L, Schultz B D, McKernan S, Palmstrøm C J, Lou X, Chiang H S, Crowell P A 2006 Appl. Phys. Lett. 89 112511Google Scholar

    [26]

    Hövel S, Gerhardt N C, Hofmann M R, Lo F Y, Ludwig A, Reuter D, Wieck A D, Schuster E, Wende H, Keune W, Petracic O, Westerholt K 2008 Appl. Phys. Lett. 93 021117Google Scholar

    [27]

    Grenet L, Jamet M, Noé P, Calvo V, Hartmann J M, Nistor L E, Rodmacq B, Auffret S, Warin P, Samson Y 2009 Appl. Phys. Lett. 94 032502Google Scholar

    [28]

    Zarpellon J, Jaffrès H, Frougier J, Deranlot C, George J M, Mosca D H, Lemaître A, Freimuth F, Duong Q H, Renucci P, Marie X 2012 Phys. Rev. B 86 205314Google Scholar

    [29]

    Liang S H, Zhang T T, Barate P, Frougier J, Vidal M, Renucci P, Xu B, Jaffrès H, George J M, Devaux X, Hehn M, Marie X, Mangin S, Yang H X, Hallal A, Chshiev M, Amand T, Liu H F, Liu D P, Han X F, Wang Z G, Lu Y 2014 Phys. Rev. B 90 085310Google Scholar

    [30]

    Tao B S, Barate P, Frougier J, Renucci P, Xu B, Djeffal A, Jaffrès H, George J M, Marie X, Petit-Watelot S, Mangin S, Han X F, Wang Z G, Lu Y 2016 Appl. Phys. Lett. 108 152404Google Scholar

    [31]

    Tao B, Barate P, Devaux X, Renucci P, Frougier J, Djeffal A, Liang S, Xu B, Hehn M, Jaffrès H, George J M, Marie X, Mangin S, Han X, Wang Z, Lu Y 2018 Nanoscale 10 10213Google Scholar

    [32]

    Cadiz F, Djeffal A, Lagarde D, Balocchi A, Tao B, Xu B, Liang S, Stoffel M, Devaux X, Jaffres H, George J M, Hehn M, Mangin S, Carrere H, Marie X, Amand T, Han X, Wang Z, Urbaszek B, Lu Y, Renucci P 2018 Nano Lett. 18 2381Google Scholar

    [33]

    Kyrychenko F V, Stanton C J, Abernathy C R, Pearton S J, Ren F, Thaler G, Frazier R, Buyanova I, Bergman J P, Chen W M 2005 AIP Conf. Proc. 772 1319Google Scholar

    [34]

    Beschoten B, Johnston-Halperin E, Young D K, Poggio M, Grimaldi J E, Keller S, DenBaars S P, Mishra U K, Hu E L, Awschalom D D 2001 Phys. Rev. B 63 121202Google Scholar

    [35]

    Krishnamurthy S, van Schilfgaarde M, Newman N 2003 Appl. Phys. Lett. 83 1761Google Scholar

    [36]

    Buyanova I A, Izadifard M, Chen W M, Kim J, Ren F, Thaler G, Abernathy C R, Pearton S J, Pan C C, Chen G T, Chyi J I, Zavada J M 2005 AIP Conf. Proc. 772 1399Google Scholar

    [37]

    Ham M H, Yoon S, Park Y, Bian L, Ramsteiner M, Myoung J M 2006 J. Phys. Condens. Matter 18 7703Google Scholar

    [38]

    Banerjee D, Adari R, Sankaranarayan S, Kumar A, Ganguly S, Aldhaheri R W, Hussain M A, Balamesh A S, Saha D 2013 Appl. Phys. Lett. 103 242408Google Scholar

    [39]

    Chen J Y, Ho C Y, Lu M L, Chu L J, Chen K C, Chu S W, Chen W, Mou C Y, Chen Y F 2014 Nano Lett. 14 3130Google Scholar

    [40]

    Bhattacharya A, Baten Z, Frost T, Bhattacharya P 2017 IEEE Photon. Technol. Lett. 29 338Google Scholar

    [41]

    Bhattacharya A, Baten M Z, Iorsh I, Frost T, Kavokin A, Bhattacharya P 2017 Phys. Rev. Lett. 119 067701Google Scholar

    [42]

    Chen J Y, Wong T M, Chang C W, Dong C Y, Chen Y F 2014 Nat. Nanotechnol. 9 845Google Scholar

    [43]

    Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X, Zhang X 2016 Nat. Nanotechnol. 11 598Google Scholar

    [44]

    Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792Google Scholar

  • [1] Wen Li, Lu Mao-Wang, Chen Jia-Li, Chen Sai-Yan, Cao Xue-Li, Zhang An-Qi. Transmission time and spin polarization for electron in magnetically confined semiconducotr nanostructure modulated by spin-orbit coupling. Acta Physica Sinica, 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [2] Wang He-Yan, Gao Yi-Fan, Liao Jia-Bao, Chen Jun-Cai, Li Yi-Lian, Wu Yi, Xu Guo-Liang, An Yi-Peng. Spin transport characteristics and photoelectric properties of magnetic semiconductor NiBr2 monolayer. Acta Physica Sinica, 2022, 71(9): 097502. doi: 10.7498/aps.71.20212384
    [3] Hou Hai-Yan, Yao Hui, Li Zhi-Jian, Nie Yi-Hang. Valley and spin polarization manipulated by electric field in magnetic silicene superlattice. Acta Physica Sinica, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [4] Jiang En-Hai, Zhu Xing-Feng, Chen Ling-Fu. First-principles study of the electronic structure, magnetism, and spin-polarization in Heusler alloy Co2MnAl(100) surface. Acta Physica Sinica, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [5] Yi Ding, Wu Zhen, Yang Liu, Dai Ying, Xie Shi-Jie. Spin-polarization of organic molecules at the ferromagnetic surface. Acta Physica Sinica, 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [6] Zheng Yuan-Yuan, Ren Gui-Ming, Chen Rui, Wang Xing-Ming, Chen Xiao-Hong, Wang Ling, Yuan Li, Huang Xiao-Feng. Spin polarization and potential energy function of FeH2. Acta Physica Sinica, 2014, 63(21): 213101. doi: 10.7498/aps.63.213101
    [7] Dou Zhao-Tao, Ren Jun-Feng, Wang Yu-Mei, Yuan Xiao-Bo, Hu Gui-Chao. Enlargement of current spin polarization in organic spintronic device. Acta Physica Sinica, 2012, 61(8): 088503. doi: 10.7498/aps.61.088503
    [8] Wang Zhi-Ming. Spin injection in GaAs and giant Hall effect. Acta Physica Sinica, 2011, 60(7): 077203. doi: 10.7498/aps.60.077203
    [9] Li Huan, Guo Wei. Effect of spin polarization on the ground state of Kondo system. Acta Physica Sinica, 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [10] Chen Hua, Du Lei, Zhuang Yi-Qi, Niu Wen-Juan. Relation between charge shot noise and spin polarization governed by Rashba spin orbit interaction. Acta Physica Sinica, 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [11] Chen Xiao-Xue, Teng Li-Hua, Liu Xiao-Dong, Huang Qi-Wen, Wen Jin-Hui, Lin Wei-Zhu, Lai Tian-Shu. Study of injection and relaxation of electron spins in InGaN film by time-resolved absorption spectroscopy. Acta Physica Sinica, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [12] Tang Zhen-Kun, Wang Ling-Ling, Tang Li-Ming, You Kai-Ming, Zou Bing-Suo. Spin polarized transport of two-dimensional electron gas through step-magnetic barrier structure. Acta Physica Sinica, 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [13] Teng Li-Hua, Yu Hua-Liang, Huang Zhi-Ling, Wen Jin-Hui, Lin Wei-Zhu, Lai Tian-Shu. Effect of spin polarization on electron recombination dynamics in bulk intrinsic GaAs. Acta Physica Sinica, 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [14] Ren Jun-Feng, Zhang Yu-Bin, Xie Shi-Jie. Current spin polarization in ferromagnetic/organic semiconductor/ferromagnetic system. Acta Physica Sinica, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [15] Zhang Chang-Wen, Li Hua, Dong Jian-Min, Wang Yong-Juan, Pan Feng-Chun, Gu Yong-Quan, Li Wei. Studies on the electronic structures, exchange coupling and magnetic moments of spin and orbital in the compound SmCo55. Acta Physica Sinica, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [16] Fu Ji-Yong, Ren Jun-Feng, Liu De-Sheng, Xie Shi-Jie. Spin polarization study on one-dimensional ferromagnetic metal/conjugated polymers. Acta Physica Sinica, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [17] Chen Li, Li Hua, Dong Jian-Min, Pan Feng-Chun, Mei Liang-Mo. Study on the spin-polarized electronicstructures and atomic magnetic moments ofcluster La8-xBaxCuO6. Acta Physica Sinica, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [18] Ren Jun-Feng, Fu Ji-Yong, Liu De-Sheng, Xie Shi-Jie. Diffusion theory of spin injection into organic polymers*. Acta Physica Sinica, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] Qin Jian-Hua, Guo Yong, Chen Xin-Yi, Gu Bing-Lin. A study on spin-polarized transport properties in magnetic-electric barrier st ructures. Acta Physica Sinica, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
    [20] GUO YONG, GU BING-LIN, YOSHIYUKI KAWAZOE. TUNNELING TRANSPORT OF TWO-DIMENSIONAL SPIN-ELECTRONS THROUGH MAGNETIC QUANTUM S TRUCTURES. Acta Physica Sinica, 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
Metrics
  • Abstract views:  12767
  • PDF Downloads:  594
  • Cited By: 0
Publishing process
  • Received Date:  07 June 2020
  • Accepted Date:  17 July 2020
  • Available Online:  19 October 2020
  • Published Online:  20 October 2020

/

返回文章
返回