-
As the central element of state-of-the-art quantum measurement devices like atomic clocks, atomic gyroscopes, and atomic magnetometers, the spatial and temporal evolution of atomic spin polarization inside the atomic vapor cell has a major effect on both increasing the magnetometers' bandwidth and improving the precision of magnetic gradient measurements. However, the major factor preventing the further advancement of quantum measurement instruments' performance is the inherent static nature of the conventional intra-vapor cell segmentation imaging technique, which makes it challenging to achieve the real-time capture of the dynamic evolution of atomic spin states. Our research team suggests a dynamic spin imaging method for alkali metal atomic vapor cells with real-time modification of atomic spin polarization states in order to overcome this technological difficulty. In particular, to guarantee that the laser can precisely act on the alkali metal atoms in various regions within the vapor cell, we employ a complex beam array management system to modify the on/off state of the laser beams at various positions in the spatial dimension in real time. In the meantime, we generate laser fields with particular spatial distribution and frequency characteristics by using frequency modulation techniques in the time series to accurately regulate the on-off frequency of each laser beam in the beam array. These laser beams cause dynamic changes in the atomic spin polarization state by interacting with alkali metal atoms at various points within the vapor cell. Through precise adjustment of the laser properties, we have been able to see and study the dynamic evolution of the atomic spin-polarization state in real time. According to the experimental data, the technology outperforms the conventional static spin imaging techniques by achieving an excellent temporal resolution of 355 frames per second and a spatial resolution of 95.9 micrometers. The effective use of this method allows us to monitor and evaluate the dynamic aspects of magnetic field distribution with previously unheard-of precision, in addition to significantly enhancing our understanding of the dynamic properties of atomic spin polarization.
-
[1] Albert M, Cates G, Driehuys B, Happer W, Saam B, Springer Jr, Wishnia A 1994Nature 370 199
[2] Chupp T, Hoare R, Walsworth R, Wu B 1994Phys. Rev. Lett. 72 2363
[3] Navon G, Song Y Q, Room T, Appelt S, Taylor R, Pines A 1996Scienc 271 1848
[4] Ishikawa K, Anraku Y, Takahashi Y, Yabuzaki T 1999J. Opt. Soc. Am. B 16 31
[5] Hao C P 2022Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [郝传鹏2022博士学位论文(合肥:中国科学技术大学)]
[6] Savukov I, Romalis M 2005Phys. Rev. Lett. 94 123001
[7] Xu S J, Yashchuk V, Donaldson M, Rochester S, Budker D, Pines A 2006PNAS 103 12668
[8] Savukov I, Karaulanov T 2014J. Magn. Reson. 249 49
[9] Young A, Appelt S, Baranga A, Erickson C, Happer W 1997Appl. Phys. Lett. 70 3081
[10] Skalla J, Wackerle G, Mehring M 1997Opt. Commun. 143 209
[11] Skalla J, Wackerle G, Mehring M, Pines A 1997Phys. Lett. A 226 69
[12] Baranga A, Appelt S, Erickson C, Young A, Happer W 1998Phys. Rev. A 58 2282
[13] Giel D, Hinz G, Nettels D, Weis A 2000Opt. Express 6 251
[14] Savukov I 2015J. Magn. Reson. 256 9
[15] Ito Y, Sato D, Kamada K, Kobayashi T 2014IEEE Trans. Magn. 50 1
[16] Nishi K, Ito Y, Kobayashi T 2018Opt. Express 26 1988
[17] Johnson C, Schwindt P 2010IEEE International Frequency Control Symposium Newport Beach, CA, June 4-6, 2010 p371
[18] Johnson C, Schwindt P, Weisend M 2010Appl. Phys. Lett. 97 243703
[19] Kominis I, Kornack T, Allred J, Romalis M 2003Nature 422 596
[20] Gusarov A, Levron D, Paperno E, Shuker R, Baranga A 2009IEEE Trans. Magn. 45 4478
[21] Kim K, Begus S, Xia H, Lee S, Jazbinsek V, Trontelj Z, Romalis M 2014NeuroImage. 89 143
[22] Xia H, Baranga A, Hoffman D, Romalis M 2006Appl. Phys. Lett. 89 211104
[23] Mamishin Y, Ito Y, Kobayashi T 2017IEEE Trans. Magn. 534001606
[24] Dolgovskiy V, Fescenko I, Sekiguchi N, Colombo S, Lebedev V, Zhang J, Weis A 2016Appl. Phys. Lett. 109 023505
[25] Weis A, Colombo S, Dolgovskiy V, Grujic Z, Lebedev V, Zhang J 2017J. Phys.: Conf. Ser. 793 012032
[26] Taue S, Toyota Y, Fujimori K, Fukano H 201722nd Microoptics Conference Tokyo, November 19-22, 2017 p212
[27] Cao Y P, Su X Y, Xiang L Q 2002Laser.Journal 23 16(in Chinese) [曹益平,苏显渝,向立群2002激光杂志23 16]
[28] Dong H F, Yin L X, Li A X, Zhao N, Chen J L, Sun M J 2019J. Appl. Phys. 125 023908
[29] Dong H F, Chen J L, Li J M, Liu C, Li A X, Zhao N, Guo F Z 2019J. Appl. Phys. 125 243904
[30] Ding Z C, Yuan J, Long X 2018Sensors 18 1401
[31] Wyllie R, 2012Ph. D. Dissertation (Madison: University of Wisconsin–Madison)
[32] Mitsunaga T, Nayar S 1999 Proceedings. 1999IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Collins, CO, July 6-9, 1999 p374
Metrics
- Abstract views: 83
- PDF Downloads: 2
- Cited By: 0