Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exploration of influencing factors on ion cyclotron resonance isotope separation process

GUO Kai YANG Jiaqi

Citation:

Exploration of influencing factors on ion cyclotron resonance isotope separation process

GUO Kai, YANG Jiaqi
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The ion cyclotron resonance (ICR) isotope separation method is an advanced electromagnetic separation method. The key process of this method is the transport of ions in an axial magnetic field. By injecting microwaves at the target ion cyclotron frequency, only the target ions can be heated so that the energy values of target ions can be distinguished. Due to its high separation coefficient, multiple types of isotopes that can be separated, and high flux, some countries have already built ICR isotope separation devices and conducted various isotope separation experiments since 1980. The main elements of an ICR separation device include three parts: a plasma source, a selective ion heating system, and an ion collector. The electron cyclotron resonance (ECR) ion source is the most popular plasma source, which generates the ions to be separated. The selective ion heating system is the key part of the separation device, mainly composed of a superconducting magnetic coil and a radio frequency (RF) antenna, which are used to provide a stable magnetic field and microwaves at a specific frequency to heat the target isotope ions, respectively. The ion collector is used to collect the separated ions. To clarify the key process of the ICR separation method, the transport process of ions in the electromagnetic field inside the selective ion heating system is simulated, and the influences on the selective heating effects of core parameters, such as parameters of initial plasma beam and electromagnetic field inside the selective ion heating system, are discussed in detail. The numerical simulation model used in this study is the single particle model, in which the interaction between ions and the induced electromagnetic field of the plasma beam is ignored. The simulation results show that the intensity of the alternating electric field in the selective ion heating system, the wavelength of the RF antenna, the size of the ion selective heating system, the initial axial energy of the plasma and its distribution all have a significant influence on the overall heating effect of the plasma beam. The magnetic induction intensity in the ion selective heating system, the wavelength of the RF antenna, and the initial axial energy distribution of the plasma have a direct influence on the selectivity of the heating process. Considering the limitations of the single particle model, a more accurate model will be used for further simulation. The design of the RF antenna and ECR ion source will also be considered in the further research.
  • 图 1  ICR同位素分离装置示意图

    Figure 1.  structure of the ICR isotope separation device.

    图 2  不同磁感应强度下, (a) 加热区出口离子横向能量均值和(b)加热系数 $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $ 分布曲线

    Figure 2.  Distribution of (a) ion average transverse energy in the exit of the heating field and (b) ion heating efficiency $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $ for different magnetic induction intensity.

    图 3  不同电场强度下, (a) 加热区出口离子横向能量均值和(b)加热系数 $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $ 分布曲线

    Figure 3.  Distribution of (a) ion average transverse energy in the exit of the heating field and (b) ion heating efficiency $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $ for different electric field intensity.

    图 4  不同共振区长度下, (a) 加热区出口离子横向能量均值和(b)加热系数 $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $ 分布曲线

    Figure 4.  Distribution of (a) ion average transverse energy in the exit of the heating filed and (b) ion heating efficiency $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $ for different length of the heating field.

    图 5  不同波长下, (a) 加热区出口离子横向能量均值和(b)加热系数 $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $分布曲线

    Figure 5.  Distribution of (a) ion average transverse energy in the exit of the heating field and (b) ion heating efficiency $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $ for different wave length.

    图 6  不同轴向能量下, (a)加热区出口离子横向能量均值和(b)加热系数 $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $分布曲线

    Figure 6.  Distribution of (a) ion average transverse energy in the exit of the heating field and (b) ion heating efficiency $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $ for different axial energy.

    图 7  不同初始横向能量下, (a)加热区出口离子横向能量均值和(b)加热系数 $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $ 分布曲线

    Figure 7.  Distribution of (a) ion average transverse energy in the exit of the heating area and (b) ion heating efficiency $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $ for different initial transverse energy.

    图 8  不同速度分布下, (a)加热区出口离子横向能量均值和(b) 加热系数$ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $分布曲线(速度偏移分布服从(5)式, 均匀分布为能量范围5—15 eV内的均匀分布, 3种分布形式平均能量均为10 eV)

    Figure 8.  Distribution of (a) ion average transverse energy in the exit of the heating area and (b) ion heating efficiency $ \eta (E > {E}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}}) $ for different velocity distribution (the shifted velocity distribution follows equation 5 with the average energy 10 eV, the same as the Maxwell distribution, and uniform distribution is with the energy between 5 eV and 15 eV).

  • [1]

    杜丹 2015 博士学位论文 (衡阳: 南华大学)

    Du D 2015 Ph. D. Dissertation (Hengyang: University of South China

    [2]

    Li J G, Wang B N 2011 Nucl. Fusion. 51 09007

    [3]

    Bering E A, F. R. Chang-Diaz, Squire J P, Brukardt M, Glover T W, Bengtson R D, Jacobson V T, McCaskill G E, Cassady L 2008 Adv. Space Res. 42 192Google Scholar

    [4]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 2208095

    Yang J, Mou H, Gen H, Wu X M 2023 J. Propul. Technol. 44 2208095

    [5]

    Schmitt J P M 1973 Phys. Rev. Lett. 31 982Google Scholar

    [6]

    Dolgolenko D A, Muromkin Y A 2009 Phys. -Usp. 52 345Google Scholar

    [7]

    Tracy J G, Aaron W S 1993 Nucl. Instrum. Methods Phys. Res. Sect. A. 334 45Google Scholar

    [8]

    Stevenson N R, Bigelow T S, Tarallo F J 2003 J. Radioanal. Nucl. Chem. 257 153Google Scholar

    [9]

    Louvet P, Compant A, Larousse B, Patris M 1994 Proceeding of 4th Workshop on Separation Phenomena in Liquids and Gases Beijing, China, August 21-25, 1994 p83

    [10]

    Dolgolenko D A, Muromkin Y A, Pashkovsky VG 2019 Instrum. Exp. Tech. 62 798Google Scholar

    [11]

    Muromkin Y A 2013 J. Energy Power Eng. 7 306

    [12]

    Takao I, Ohmi K, Akira T Ken-ichi T, Tatsuya S, Noriyosu H, Naoto H, Tokushi S 2017 J. Part. Accel. Soc. Jan. 14 15

    [13]

    Egle B, Asgari M, Bigelow T, Duckworth R, Goulding R, Burkhard E https://www.osti.gov/servlets/purl/1647749 [2020-6-30]

    [14]

    Timofeev A V 2007 Plasma Phys. Rep. 33 890Google Scholar

    [15]

    Gueroult R, Rax J M, Fisch N J 2018 J. Cleaner Prod. 182 1060Google Scholar

    [16]

    Potanin E P, Ustinov A V 2013 Plasma Phys. Rep. 39 510Google Scholar

    [17]

    Potanin E P 2022 Instrum. Exp. Tech. 65 766Google Scholar

    [18]

    李定, 陈银华, 马锦秀 杨维纮 2006 等离子体物理学 (北京: 高等教育出版社) 第14-19页

    Li D, Chen Y H, Ma J X, Yang W H 2006 Plasma Physics (Beijing: Higher Education Press) pp14-19

    [19]

    Berger J M, Newcomb W A, Dawson J M, Frieman E A, Kulsurd R M, Lenard A 1958 Phys. Fluids 1 301Google Scholar

    [20]

    Potanin E P 2005 Tech. Phys. 50 698Google Scholar

    [21]

    Ohmi K, Inagaki T, Kichimi H, Takagi A, Tanaka K, Suzuki T, Shibata T, Fujii Y 2013 Jan. J. Appl. Phys. 52 126401Google Scholar

    [22]

    Potanin E P 2006 Tech. Phys. 51 1586Google Scholar

    [23]

    巴朗诺夫 V U著 (王立军译) 2004 同位素性质、制取与应用 (北京: 清华大学出版社) 第215页

    Baranov V U (translated by Wang L J) 2004 Isotopes Property, Preparation and Application (Beijing: Tsinghua University Press) p215

  • [1] Lide Wang, Junyao Zhang, Xiaoyong Lu. The numerical studies of three-step selective photoionization of Neodymium-150 isotope. Acta Physica Sinica, doi: 10.7498/aps.74.20250262
    [2] Li Xin, Zeng Ming, Liu Hui, Ning Zhong-Xi, Yu Da-Ren. Iodine electron cyclotron resonance plasma source for electric propulsion. Acta Physica Sinica, doi: 10.7498/aps.72.20230785
    [3] Sun Yan-Xu, Huang Juan, Gao Wei, Chang Jia-Feng, Zhang Wei, Shi Chang, Li Yun-He. Tomography of fast ion distribution function under neutral beam injection and ion cyclotron resonance heating on EAST. Acta Physica Sinica, doi: 10.7498/aps.72.20230846
    [4] Yuan Hong-Rui, Liu Tao, Zhu Tian-Xin, Liu Yun, Li Xiang, Chen Yang, Duan Chuan-Xi. High-resolution jet-cooled laser absorption spectra of SF6 at 10.6 μm. Acta Physica Sinica, doi: 10.7498/aps.72.20222285
    [5] Li Ye-Jun, Guo Jing, Ma Jun-Ping, Tang Xian, Li Xin, Yan Bing. Concentration of dimers for BCl3 and rare gas atoms in BCl3 isotope separation. Acta Physica Sinica, doi: 10.7498/aps.71.20221517
    [6] Shen Yong, Dong Jia-Qi, Xu Hong-Bing. Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak. Acta Physica Sinica, doi: 10.7498/aps.67.20180703
    [7] Yu Geng-Hua, Yan Hui, Gao Dang-Li, Zhao Peng-Yi, Liu Hong, Zhu Xiao-Ling, Yang Wei. Calculationof isotope shift of Mg+ ion by using the relativistic multi-configuration interaction method. Acta Physica Sinica, doi: 10.7498/aps.67.20171817
    [8] Gao Bi-Rong, Liu Yue. Numerical study on uniformity of electron cyclotron resonance plasma density. Acta Physica Sinica, doi: 10.7498/aps.60.045201
    [9] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, doi: 10.7498/aps.59.8701
    [10] YE CHAO, NING ZHAO-YUAN, CHENG SHAN-HUA. OPTICAL PROPERTIES OF AMORPHOUS FLUORINATED CARBON FILMS PREPARED BY ELECTRON CYCLOTRON RESONANCE PLASMA. Acta Physica Sinica, doi: 10.7498/aps.50.2017
    [11] MA HONG-LIANG, TANG JIA-YONG. MEASUREMENT OF ISOTOPE SHIFTS AMONG 142—146,148,150Nd+ BY USING COLLINEAR FAST-ION-BEAM LASER SPECTROSCOPY. Acta Physica Sinica, doi: 10.7498/aps.50.453
    [12] Liu Ming-Hai, Hu Xi-Wei, Wu Qin-Chong, Yu Guo-Yang. . Acta Physica Sinica, doi: 10.7498/aps.49.497
    [13] DU XIAO-LONG, CHEN GUANG-CHAO, JIANG DE-YI, YAO XIN-ZI, ZHU HE-SUN. PROPERTIES OF ELECTRON CYCLOTRON RESONANCE PLASMAS AND THEIR INFLUENCE ON THE DEPOSITION OF GaN FILMS. Acta Physica Sinica, doi: 10.7498/aps.48.257
    [14] GONG YE, WEN XIAO-JUN, ZHANG PENG-YUN, DENG XIN-LU. NUMERICAL STUDY OF ION TRANSPORT IN ECR MICROWAVE PLASMA WITH A CYLINDER MODEL. Acta Physica Sinica, doi: 10.7498/aps.46.2376
    [15] Shen Xue-Min, Wang Zhao-Zhong, Shao Yu-Gui, Xue Di-Ye, Ding Jia-Yi, Xu De-Zheng, Deng Xu, Wang Jian, Wang Ya-Ming, Li You-Yi. . Acta Physica Sinica, doi: 10.7498/aps.44.1442
    [16] LIU SHENG-XIA. . Acta Physica Sinica, doi: 10.7498/aps.44.152
    [17] DAI CHANG-JIAN, XU CHANG-JIANG. SELECTIVE PHOTOIONIZATION OF ISOTOPIC ATOMS WITH PULSED LASERS. Acta Physica Sinica, doi: 10.7498/aps.43.356
    [18] WU JUN-LING. THE RELATIVISTIC ELECTRON CYCLOTRON WAVE DISPERSION RELATION IN PLASMA. Acta Physica Sinica, doi: 10.7498/aps.42.775
    [19] CHEN YAN-PING, ZHOU YU-MEI. ECRH IN NON-THERMAL EQUILIBRIUM PLASMAS IN WEAKLY RELATIVISTIC REGIME. Acta Physica Sinica, doi: 10.7498/aps.33.1050
    [20] XU ZHI-ZHAN, LI AN-MING, CHEN SHI-SHEN, LIN LI-HUANG, LIANG XIANG-CHUN, OUYANG BIN, BI WU-JI, HOU SHING-FA, YIN GUANG-YU, ZHANG SHU-GAN, PAN CHENG-MING. INVESTIGATION OF LASER HEATING OF PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.30.1077
Metrics
  • Abstract views:  269
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  23 December 2024
  • Accepted Date:  02 March 2025
  • Available Online:  06 March 2025

/

返回文章
返回