Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tomography of fast ion distribution function under neutral beam injection and ion cyclotron resonance heating on EAST

Sun Yan-Xu Huang Juan Gao Wei Chang Jia-Feng Zhang Wei Shi Chang Li Yun-He

Citation:

Tomography of fast ion distribution function under neutral beam injection and ion cyclotron resonance heating on EAST

Sun Yan-Xu, Huang Juan, Gao Wei, Chang Jia-Feng, Zhang Wei, Shi Chang, Li Yun-He
PDF
HTML
Get Citation
  • In magnetic confinement fusion devices, velocity-space tomography of fast-ion velocity distribution function is crucial for investigating fast-ion distribution and transport. In the neutral beam injection (NBI) and ion cyclotron resonance heating (ICRF) synergistic heating experiments in Experimental Advanced Superconducting Tokamak (EAST), high-energy particles with energy exceeding the particle energy in NBI are observed. Simulations of synergistic effect on fast-ion velocity distribution function given by TRANSP also show the existence of particles with energy higher than the particle energy in NBI. To investigate the behaviors of fast ion distribution and calculate the velocity distribution functions under different heating conditions, the first-order Tikhonov regularization tomographic inversion method with higher inversion accuracy is introduced by comparing various regularization techniques. The limitations of the dual-view fast-ion Dα (FIDA) diagnostic measurements in velocity space are addressed by incorporating prior information such as null measurement and the known peaks and effectively mitigate the occurrence of artifacts. This method is first employed in the case of NBI heating. The NBI peak is successfully reconstructed at the expected location in velocity space, which shows significant improvement in the inversion results. In order to further validate the synergistic effect of NBI-ICRF heating and study the mechanism of fast ion distribution under synergistic heating, the combination of FIDA and neutron emission spectrometer (NES) is applied to the first-order Tikhonov regularization tomographic inversion method for enhancing the coverage of velocity space, through which the issue of artifacts in the inversion results is significantly improved, and thus the precision of the obtained fast-ion velocity distribution functions is enhanced. Based on the benefit described above, the method of combining NES diagnosis and FIDA diagnosis is used to obtain fast-ion velocity distribution functions in the NBI and ICRF synergistic heating discharge. The synergistic heating effect is manifested in the fast-ion velocity distribution. The availability of this inversion method in reconstructing fast-ion velocity distribution functions during high-performance operation of NBI-ICRF synergistic heating in the EAST experiment is confirmed. In the next-step EAST research, high performance discharge will demand more efficiency NBI and ICRF synergistic heating, the present work builds the stage for investigating the underlying mechanism of synergistic heating and the intricate behaviors associated with fast ion distribution and transport.
      Corresponding author: Huang Juan, juan.huang@ipp.ac.cn
    • Funds: Project supported by the Special Project for National Magnetic Confinement Fusion Energy Research of China (Grant No. 2019YFE03020004) and the National Natural Science Foundation of China (Grant No. 11975276).
    [1]

    Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V, Nazikian R, Noterdaeme J M, Sharapov S, Shinohara K, Testa D, Tobita K, Todo Y, Vlad G, Zonca F 2007 Nucl. Fusion 47 S264Google Scholar

    [2]

    Heidbrink W W, Luo Y, Burrell K H, Harvey R W, Pinsker R I, Ruskov E 2007 Plasma Phys. Control. Fusion 49 1457Google Scholar

    [3]

    Reisner M, Fable E, Stober J, Bock A, Bañon Navarro A, Di Siena A, Fischer R, Bobkov V, McDermott R 2020 Nucl. Fusion 60 082005Google Scholar

    [4]

    Huynh E A L P, Van Eester D, Bilato C R, Varje J, Johnson T, Sauter O, Villard L, Ferreira J, JET contributors and the EUROfusion-IM Team 2020 AIP Conf. Proc. 2254 060003Google Scholar

    [5]

    Hillairet J, Gallart D, Mantsinen M, Challis C, Frigione D, Graves J, Hobirk J, Belonohy E, Czarnecka A, Eriksson J, Goniche M, Hellesen C, Jacquet P, Joffrin E, Krawczyk N, King D, Lennholm M, Lerche E, Pawelec E, Sips G, Solano E, Tsalas M, Valisa M 2017 EPJ Web Conf. 157 02006Google Scholar

    [6]

    Heidbrink W W 2010 Rev. Sci. Instrum. 81 10D727Google Scholar

    [7]

    Michael C A, Conway N, Crowley B, Jones O, Heidbrink W W, Pinches S, Braeken E, Akers R, Challis C, Turnyanskiy M, Patel A, Muir D, Gaffka R, Bailey S 2013 Plasma Phys. Control. Fusion 55 095007Google Scholar

    [8]

    Nielsen S K, Stejner M, Rasmussen J, Jacobsen A S, Korsholm S B, Leipold F, Maraschek M, Meo F, Michelsen P K, Moseev D, Salewski M, Schubert M, Stober J, Suttrop W, Tardini G, Wagner D 2015 Plasma Phys. Control. Fusion 57 035009Google Scholar

    [9]

    Salewski M, Nocente M, Madsen B, Abramovic I, Fitzgerald M, Gorini G, Hansen P C, Heidbrink W W, Jacobsen A S, Jensen T, Kiptily V G, Klinkby E B, Korsholm S B, Kurki-Suonio T, Larsen A W, Leipold F, Moseev D, Nielsen S K, Pinches S D, Rasmussen J, Rebai M, Schneider M, Shevelev A, Sipila S, Stejner M, Tardocchi M 2018 Nucl. Fusion 58 096019Google Scholar

    [10]

    Nocente M, Källne J, Salewski M, Tardocchi M, Gorini G 2015 Nucl. Fusion 55 123009Google Scholar

    [11]

    Eriksson J, Nocente M, Binda F, Cazzaniga C, Conroy S, Ericsson G, Giacomelli L, Gorini G, Hellesen C, Hellsten T, Hjalmarsson A, Jacobsen A S, Johnson T, Kiptily V, Koskela T, Mantsinen M, Salewski M, Schneider M, Sharapov S, Skiba M, Tardocchi M, Weiszflog M 2015 Nucl. Fusion 55 123026Google Scholar

    [12]

    Jacobsen A S, Salewski M, Eriksson J, Ericsson G, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M 2015 Nucl. Fusion 55 053013Google Scholar

    [13]

    Salewski M, Geiger B, Jacobsen A S, Hansen P C, Heidbrink W W, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Nocente M, Odstrčil T, Rasmussen J, Stagner L, Stejner M, Weiland M 2016 Nucl. Fusion 56 106024Google Scholar

    [14]

    Salewski M, Geiger B, Jacobsen A S, García-Muñoz M, Heidbrink W W, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Rasmussen J, Stejner M, Tardini G, Weiland M 2014 Nucl. Fusion 54 023005Google Scholar

    [15]

    Weiland M, Geiger B, Jacobsen A S, Reich M, Salewski M, Odstrčil T 2016 Plasma Phys. Control. Fusion 58 025012Google Scholar

    [16]

    Geiger B, Weiland M, Jacobsen A S, Rittich D, Dux R, Fischer R, Hopf C, Maraschek M, McDermott R M, Nielsen S K, Odstrcil T, Reich M, Ryter F, Salewski M, Schneider P A, Tardini G 2015 Nucl. Fusion 55 083001Google Scholar

    [17]

    Weiland M, Bilato R, Geiger B, Schneider P A, Tardini G, Garcia-Muñoz M, Ryter F, Salewski M, Zohm H 2017 Nucl. Fusion 57 116058Google Scholar

    [18]

    Madsen B, Salewski M, Heidbrink W W, Stagner L, Podestà M, Lin D, Garcia A V, Hansen P C, Huang J 2020 Nucl. Fusion 60 066024Google Scholar

    [19]

    Madsen B, Salewski M, Huang J, Jacobsen A S, Jones O, McClements K G, MAST Team 2018 Rev. Sci. Instrum. 89 10D125Google Scholar

    [20]

    Jacobsen A S, Salewski M, Geiger B, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M, Weiland M 2016 Plasma Phys. Control. Fusion 58 042002Google Scholar

    [21]

    Salewski M, Gorini G, Jacobsen A S, Kiptily V G, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Rasmussen J, Stejner M, Tardocchi M, JET Contributors 2016 Nucl. Fusion 56 046009Google Scholar

    [22]

    Su J, Wan B, Huang J, Madsen B, Salewski M, Sun Y, Wang J, Fu J, Chang J, Wu C, Liang L, Chen Y, Zhong G, Liu H, Zang Q, Li Y, Lyu B, Qian J, Gong X 2021 Plasma Sci. Technol. 23 095103Google Scholar

    [23]

    Madsen B, Huang J, Salewski M, Järleblad H, Hansen P C, Stagner L, Su J, Chang J F, Fu J, Wang J, Liang L Z, Zhong G, Li Y, Lyu B, Liu H, Zang Q, Luo Z, Nocente M, Moseev D, Fan T, Zhang Y, Yang D, Sun J, Liao L 2020 Plasma Phys. Control. Fusion 62 115019Google Scholar

    [24]

    Zhang X J, Yang H, Qin C M, Yuan S, Zhao Y P, Wang Y S, Liu L N, Mao Y Z, Cheng Y, Gong X Z, Xu G S, Song Y T, Li J G, Wan B N, Zhang K, Zhang B, Ai L, Wang G X, Guo Y Y 2022 Nucl. Fusion 62 086038Google Scholar

    [25]

    Zhang W, Zhu G H, Zhang X J, Zhong G Q, Ai L, Chu Y Q, Fan T S, Fan H C, Guo Y Y, Hao B L, Huang J, Jin Y F, Liu L N, Liao L Y, Li Y H, Liang Q C, Sun Y X, Wang G X, Yang D K, Yang H, Zhang H P 2023 Nucl. Fusion 63 056015Google Scholar

    [26]

    Ge L J, Hu Z M, Zhang Y M, Sun J Q, Yuan X, Peng X Y, Chen Z J, Du T F, Gorini G, Nocente M, Tardocchi M, Hu L Q, Zhong G Q, Lin S Y, Wan B N, Li X Q, Zhang G H, Chen J X, Fan T S 2018 Plasma Phys. Control. Fusion 60 095004Google Scholar

    [27]

    Hou Y M, Wu C R, Huang J, Heidbrink W W, von Hellermann M G, Xu Z, Jin Z, Chang J F, Zhu Y B, Gao W, Chen Y J, Lyu B, Hu R J, Zhang P F, Zhang L, Gao W, Wu Z W, Yu Y, Ye M Y, Team E 2016 Rev. Sci. Instrum. 87 11E552Google Scholar

    [28]

    Jacobsen A S, Stagner L, Salewski M, Geiger B, Heidbrink W W, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M, Thomsen H, Weiland M 2016 Plasma Phys. Control. Fusion 58 045016Google Scholar

    [29]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [30]

    Salewski M, Geiger B, Nielsen S K, Bindslev H, Garcia-Munoz M, Heidbrink W W, Korsholm S B, Leipold F, Meo F, Michelsen P K, Moseev D, Stejner M, Tardini G, Team A U 2012 Nucl. Fusion 52 103008Google Scholar

  • 图 1  EAST托卡马克上四条中性束束线位置、O和B窗口FIDA视图以及NES的布局 (a)俯视图; (b) 极向截面图. 视场中的红线是本文所分析的信号的观测位置

    Figure 1.  Layout of four neutral beams, the O and B-port view of FIDA, the location of the NES on EAST: (a) Top view; (b) poloidal view. The red lines-of-sight are analyzed in this paper for shot #113648.

    图 2  归一化的权重函数总和 (a) NES H窗口; (b) FIDA O窗口; (c) FIDA B窗口

    Figure 2.  Normalized weight function coverage: (a) NES H-port; (b) FIDA O-port; (c) FIDA B-port.

    图 3  #113648放电参数时序演化图 (a) 中子产额; (b) 极向比压; (c) 中性束注入功率; (d) ICRF加热功率

    Figure 3.  Time traces of shot #113648: (a) Neutron yield; (b) poloidal beta; (c) neutral beam injection power; (d) ICRF heating power.

    图 4  单独NBI以及NBI-ICRF协同加热时双视图FIDA测量光谱 (a) 切向FIDA信号; (b)垂直FIDA信号; 误差棒为诊断束打开区间测量光谱的整体标准差

    Figure 4.  Dual view FIDA measurement spectrum of NBI only and NBI-ICRF synergetic heating: (a) Tangential view; (b) vertical view.

    图 5  单独NBI以及NBI-ICRF协同加热时NES能谱

    Figure 5.  NES spectrum of NBI only and NBI-ICRF synergetic heating.

    图 6  TRANSP模拟的快离子分布函数 (a)单独NBI加热; (b) NBI-ICRF协同加热; 黑色虚线为NBI能量, 黑色实线为单独NBI加热时快离子能量上限

    Figure 6.  TRANSP simulation of fast ion distribution function: (a) NBI only heating; (b) NBI-ICRF synergetic heating. Black dashed line is the NBI injection energy, black solid line is the upper limit of fast ion energy for NBI only.

    图 7  沿负俯仰角积分的快离子分布能谱图.

    Figure 7.  Fast ion distribution energy spectrum integrated along the negative pitch angle.

    图 8  单独NBI时基于FIDA诊断测量的快离子分布函数层析反演 (a)零阶Tikhonov正则化; (b) 一阶Tikhonov正则化; (c) 一阶Tikhonov正则化, 空值测量区域; (d) 一阶Tikhonov正则化, 已知峰值位置

    Figure 8.  Reconstructions of the fast ion distribution function based on FIDA diagnostic measurements during NBI only heating: (a) Zero-order Tikhonov regularization; (b) first-order Tikhonov regularization; (c) first-order Tikhonov regularization, null measurement; (d) first-order Tikhonov regularization, known peak.

    图 9  NBI-ICRF协同加热阶段基于TRANSP模拟合成信号的层析反演 (a) 零阶Tikhonov正则化; (b) 一阶Tikhonov正则化; (c) 一阶Tikhonov正则化, 空值测量区域

    Figure 9.  Reconstructions of synthetic signal based on the TRANSP distributions: (a) Zero-order Tikhonov regularization; (b) first-order Tikhonov regularization; (c) first-order Tikhonov regularization, null measurement.

    图 10  基于快离子诊断数据的分布函数层析反演 (a), (b) 不添加先验信息; (c), (d) TRANSP模拟的快离子能量上限作为先验信息; 其中(a), (c)仅使用FIDA测量; (b), (d) FIDA与NES测量结合

    Figure 10.  Reconstructions based on fast ion diagnostic data: (a), (b) Without adding a priori information; (c), (d) fast ion energy upper bounds for TRANSP simulations as prior information. Only FIDA measurement is used in panel (a) and (c); FIDA in combination with NES measurements are used in panel (b) and (d).

  • [1]

    Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V, Nazikian R, Noterdaeme J M, Sharapov S, Shinohara K, Testa D, Tobita K, Todo Y, Vlad G, Zonca F 2007 Nucl. Fusion 47 S264Google Scholar

    [2]

    Heidbrink W W, Luo Y, Burrell K H, Harvey R W, Pinsker R I, Ruskov E 2007 Plasma Phys. Control. Fusion 49 1457Google Scholar

    [3]

    Reisner M, Fable E, Stober J, Bock A, Bañon Navarro A, Di Siena A, Fischer R, Bobkov V, McDermott R 2020 Nucl. Fusion 60 082005Google Scholar

    [4]

    Huynh E A L P, Van Eester D, Bilato C R, Varje J, Johnson T, Sauter O, Villard L, Ferreira J, JET contributors and the EUROfusion-IM Team 2020 AIP Conf. Proc. 2254 060003Google Scholar

    [5]

    Hillairet J, Gallart D, Mantsinen M, Challis C, Frigione D, Graves J, Hobirk J, Belonohy E, Czarnecka A, Eriksson J, Goniche M, Hellesen C, Jacquet P, Joffrin E, Krawczyk N, King D, Lennholm M, Lerche E, Pawelec E, Sips G, Solano E, Tsalas M, Valisa M 2017 EPJ Web Conf. 157 02006Google Scholar

    [6]

    Heidbrink W W 2010 Rev. Sci. Instrum. 81 10D727Google Scholar

    [7]

    Michael C A, Conway N, Crowley B, Jones O, Heidbrink W W, Pinches S, Braeken E, Akers R, Challis C, Turnyanskiy M, Patel A, Muir D, Gaffka R, Bailey S 2013 Plasma Phys. Control. Fusion 55 095007Google Scholar

    [8]

    Nielsen S K, Stejner M, Rasmussen J, Jacobsen A S, Korsholm S B, Leipold F, Maraschek M, Meo F, Michelsen P K, Moseev D, Salewski M, Schubert M, Stober J, Suttrop W, Tardini G, Wagner D 2015 Plasma Phys. Control. Fusion 57 035009Google Scholar

    [9]

    Salewski M, Nocente M, Madsen B, Abramovic I, Fitzgerald M, Gorini G, Hansen P C, Heidbrink W W, Jacobsen A S, Jensen T, Kiptily V G, Klinkby E B, Korsholm S B, Kurki-Suonio T, Larsen A W, Leipold F, Moseev D, Nielsen S K, Pinches S D, Rasmussen J, Rebai M, Schneider M, Shevelev A, Sipila S, Stejner M, Tardocchi M 2018 Nucl. Fusion 58 096019Google Scholar

    [10]

    Nocente M, Källne J, Salewski M, Tardocchi M, Gorini G 2015 Nucl. Fusion 55 123009Google Scholar

    [11]

    Eriksson J, Nocente M, Binda F, Cazzaniga C, Conroy S, Ericsson G, Giacomelli L, Gorini G, Hellesen C, Hellsten T, Hjalmarsson A, Jacobsen A S, Johnson T, Kiptily V, Koskela T, Mantsinen M, Salewski M, Schneider M, Sharapov S, Skiba M, Tardocchi M, Weiszflog M 2015 Nucl. Fusion 55 123026Google Scholar

    [12]

    Jacobsen A S, Salewski M, Eriksson J, Ericsson G, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M 2015 Nucl. Fusion 55 053013Google Scholar

    [13]

    Salewski M, Geiger B, Jacobsen A S, Hansen P C, Heidbrink W W, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Nocente M, Odstrčil T, Rasmussen J, Stagner L, Stejner M, Weiland M 2016 Nucl. Fusion 56 106024Google Scholar

    [14]

    Salewski M, Geiger B, Jacobsen A S, García-Muñoz M, Heidbrink W W, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Rasmussen J, Stejner M, Tardini G, Weiland M 2014 Nucl. Fusion 54 023005Google Scholar

    [15]

    Weiland M, Geiger B, Jacobsen A S, Reich M, Salewski M, Odstrčil T 2016 Plasma Phys. Control. Fusion 58 025012Google Scholar

    [16]

    Geiger B, Weiland M, Jacobsen A S, Rittich D, Dux R, Fischer R, Hopf C, Maraschek M, McDermott R M, Nielsen S K, Odstrcil T, Reich M, Ryter F, Salewski M, Schneider P A, Tardini G 2015 Nucl. Fusion 55 083001Google Scholar

    [17]

    Weiland M, Bilato R, Geiger B, Schneider P A, Tardini G, Garcia-Muñoz M, Ryter F, Salewski M, Zohm H 2017 Nucl. Fusion 57 116058Google Scholar

    [18]

    Madsen B, Salewski M, Heidbrink W W, Stagner L, Podestà M, Lin D, Garcia A V, Hansen P C, Huang J 2020 Nucl. Fusion 60 066024Google Scholar

    [19]

    Madsen B, Salewski M, Huang J, Jacobsen A S, Jones O, McClements K G, MAST Team 2018 Rev. Sci. Instrum. 89 10D125Google Scholar

    [20]

    Jacobsen A S, Salewski M, Geiger B, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M, Weiland M 2016 Plasma Phys. Control. Fusion 58 042002Google Scholar

    [21]

    Salewski M, Gorini G, Jacobsen A S, Kiptily V G, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Rasmussen J, Stejner M, Tardocchi M, JET Contributors 2016 Nucl. Fusion 56 046009Google Scholar

    [22]

    Su J, Wan B, Huang J, Madsen B, Salewski M, Sun Y, Wang J, Fu J, Chang J, Wu C, Liang L, Chen Y, Zhong G, Liu H, Zang Q, Li Y, Lyu B, Qian J, Gong X 2021 Plasma Sci. Technol. 23 095103Google Scholar

    [23]

    Madsen B, Huang J, Salewski M, Järleblad H, Hansen P C, Stagner L, Su J, Chang J F, Fu J, Wang J, Liang L Z, Zhong G, Li Y, Lyu B, Liu H, Zang Q, Luo Z, Nocente M, Moseev D, Fan T, Zhang Y, Yang D, Sun J, Liao L 2020 Plasma Phys. Control. Fusion 62 115019Google Scholar

    [24]

    Zhang X J, Yang H, Qin C M, Yuan S, Zhao Y P, Wang Y S, Liu L N, Mao Y Z, Cheng Y, Gong X Z, Xu G S, Song Y T, Li J G, Wan B N, Zhang K, Zhang B, Ai L, Wang G X, Guo Y Y 2022 Nucl. Fusion 62 086038Google Scholar

    [25]

    Zhang W, Zhu G H, Zhang X J, Zhong G Q, Ai L, Chu Y Q, Fan T S, Fan H C, Guo Y Y, Hao B L, Huang J, Jin Y F, Liu L N, Liao L Y, Li Y H, Liang Q C, Sun Y X, Wang G X, Yang D K, Yang H, Zhang H P 2023 Nucl. Fusion 63 056015Google Scholar

    [26]

    Ge L J, Hu Z M, Zhang Y M, Sun J Q, Yuan X, Peng X Y, Chen Z J, Du T F, Gorini G, Nocente M, Tardocchi M, Hu L Q, Zhong G Q, Lin S Y, Wan B N, Li X Q, Zhang G H, Chen J X, Fan T S 2018 Plasma Phys. Control. Fusion 60 095004Google Scholar

    [27]

    Hou Y M, Wu C R, Huang J, Heidbrink W W, von Hellermann M G, Xu Z, Jin Z, Chang J F, Zhu Y B, Gao W, Chen Y J, Lyu B, Hu R J, Zhang P F, Zhang L, Gao W, Wu Z W, Yu Y, Ye M Y, Team E 2016 Rev. Sci. Instrum. 87 11E552Google Scholar

    [28]

    Jacobsen A S, Stagner L, Salewski M, Geiger B, Heidbrink W W, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M, Thomsen H, Weiland M 2016 Plasma Phys. Control. Fusion 58 045016Google Scholar

    [29]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [30]

    Salewski M, Geiger B, Nielsen S K, Bindslev H, Garcia-Munoz M, Heidbrink W W, Korsholm S B, Leipold F, Meo F, Michelsen P K, Moseev D, Stejner M, Tardini G, Team A U 2012 Nucl. Fusion 52 103008Google Scholar

  • [1] Zhang Wei, Zhang Xin-Jun, Liu Lu-Nan, Zhu Guang-Hui, Yang Hua, Zhang Hua-Peng, Zheng Yi-Feng, He Kai-Yang, Huang Juan. Investigation of ICRF-NBI synergetic heating induced fast ion distribution and transport in EAST tokamak. Acta Physica Sinica, 2023, 72(21): 215201. doi: 10.7498/aps.72.20230482
    [2] Wu Wen-Bin, Peng Shi-Xiang, Zhang Ai-Lin, Zhou Hai-Jing, Ma Teng-Hao, Jiang Yao-Xiang, Li Kai, Cui Bu-Jian, Guo Zhi-Yu, Chen Jia-Er. Global model of miniature electron cyclotron resonance ion source. Acta Physica Sinica, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [3] Jin Yi-Zhou, Yang Juan, Feng Bing-Bing, Luo Li-Tao, Tang Ming-Jie. Ion extraction experiment for electron cyclotron resonance ion source with different magnetic topology. Acta Physica Sinica, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [4] Zhong Wu-Lü, Duan Xu-Ru, Yu De-Liang, Han Xiao-Yu, Yang Li-Mei. Simulation of the neutral beam emission spectroscopy on the HL-2A tokamak. Acta Physica Sinica, 2010, 59(5): 3336-3343. doi: 10.7498/aps.59.3336
    [5] Chen Zhi-Quan, Kawasuso Atsuo. Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [6] Wan Xiong, Yu Sheng-Lin, Wang Chang-Kun, Le Shu-Ping, Li Bing-Ying, He Xing-Dao. Emission spectral tomography algorithm based on multi-objective optimization and its application in plasma diagnosis. Acta Physica Sinica, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [7] Dong Jia-Fu, Tang Nian-Yi, Li Wei, Luo Jun-Lin, Guo Gan-Cheng, Zhong Yun-Ze, Liu Yi, Fu Bing-Zhong, Yao Liang-Ye, Feng Bin-Bin, Qin Yun-Wen. . Acta Physica Sinica, 2002, 51(9): 2074-2079. doi: 10.7498/aps.51.2074
    [8] MA HONG-LIANG, TANG JIA-YONG. MEASUREMENT OF ISOTOPE SHIFTS AMONG 142—146,148,150Nd+ BY USING COLLINEAR FAST-ION-BEAM LASER SPECTROSCOPY. Acta Physica Sinica, 2001, 50(3): 453-456. doi: 10.7498/aps.50.453
    [9] Liu Ming-Hai, Hu Xi-Wei, Wu Qin-Chong, Yu Guo-Yang. . Acta Physica Sinica, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [10] Yang Xiao-hua, Chen Yang-Qin, Cai Pei-pei, Wang Rong-jun, Lu Jing-jing. . Acta Physica Sinica, 2000, 49(3): 421-425. doi: 10.7498/aps.49.421
    [11] ZHU XUE-GUANG, KUANG GUANG-LI, ZHAO YAN-PING, LI YOU-YI, XIE JI-KANG. FAST WAVE MINORITY ION HEATING. Acta Physica Sinica, 1999, 48(9): 1709-1717. doi: 10.7498/aps.48.1709
    [12] YANG YU, XIA GUAN-QUN, ZHAO GUO-QING, WANG XUN. Si+ ION IMPLANTATION INFLUENCE ON PHOTOLUMINESCENCE IN Si1-xGex/Si QUANTUM WELLS GROWN BY MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 1998, 47(6): 978-984. doi: 10.7498/aps.47.978
    [13] ZHU XUE-GUANG, KUANG GUANG-LI, ZHAO YAN-PING, LI YOU-YI, XIE JI-KANG. AN IMPROVED MODEL OF COUPLE CALCULATION OF ION CYCLOTRON WAVE HEATING. Acta Physica Sinica, 1998, 47(7): 1130-1136. doi: 10.7498/aps.47.1130
    [14] WU ZHENG-YUN, HUANG QI-SHENG. THE METHOD OF FOCUSED Ga+ ION BEAM IMPLANTATION TO FABRICATE SEMICONDUCTOR QUANTUM WELL WIRE. Acta Physica Sinica, 1996, 45(3): 486-490. doi: 10.7498/aps.45.486
    [15] LIU SHENG-XIA. ANALYSIS OF CHARGE-EXCHANGE SPECTRA DURING NBI HEATING IN THE HT-6M TOKAMAK. Acta Physica Sinica, 1996, 45(3): 449-454. doi: 10.7498/aps.45.449
    [16] WANG SHAO-JIE, QIU LI-JIAN. D-T FUSION REACTIVITY VARIATION INDUCED BY NBI-PRODUCED NON-MAXWELLIAN DISTRIBUTION. Acta Physica Sinica, 1996, 45(9): 1492-1500. doi: 10.7498/aps.45.1492
    [17] LIU SHENG-XIA. . Acta Physica Sinica, 1995, 44(1): 152-156. doi: 10.7498/aps.44.152
    [18] WANG JIAN-GUO, LI YOU-YI, LI JIAN-GANG. . Acta Physica Sinica, 1995, 44(1): 92-97. doi: 10.7498/aps.44.92
    [19] Shen Xue-Min, Wang Zhao-Zhong, Shao Yu-Gui, Xue Di-Ye, Ding Jia-Yi, Xu De-Zheng, Deng Xu, Wang Jian, Wang Ya-Ming, Li You-Yi. . Acta Physica Sinica, 1995, 44(9): 1442-1448. doi: 10.7498/aps.44.1442
    [20] ZHANG JUN, WANG EN-YAO, GUAN WEI-SHU, CHENG SHI-QING, DUAN SHU-YUN, GU BIAO, SHANG ZHEN-KUI. EXPERIMENTAL STUDY ON ECRH TRAPPED ELECTRON BEAM INJECTED INTO THE SIMPLE MIRROR. Acta Physica Sinica, 1990, 39(8): 115-120. doi: 10.7498/aps.39.115-2
Metrics
  • Abstract views:  3522
  • PDF Downloads:  217
  • Cited By: 0
Publishing process
  • Received Date:  24 May 2023
  • Accepted Date:  30 June 2023
  • Available Online:  18 July 2023
  • Published Online:  05 November 2023

/

返回文章
返回