-
The electron cyclotron resonance (ECR) plasma is characterized by low working pressure and high dissociation rate, which has important applications in the deuterium negative ion D- source technology. In this paper, the Yacora collisional-radiative model is applied to the emission spectrum diagnosis of D- in ECR deuterium plasma. The D- density is estimated by using the Dα/Dβ ratio and the relative intensity of other deuterium molecular lines, which avoids complex calibration procedure of absolute intensity. The spatial structure of D- are studied by the multichannel emission spectroscopy measurements in the source and diffusion regions.
The experiments are conducted on a 2.45 GHz ECR plasma source with a deuterium gas pressure of 1 Pa and microwave power of 660 W. The Balmer series of atomic deuterium (Dα, Dβ, Dγ, Dδ) and the Fulcher band Q-branches of molecular deuterium are measured at the source region and expanding region of the ECR plasma. It is found that the intensity of Dα in the source region is much higher than that of Dβ, and the Dα/Dβ ratio is as high as 23, indicating a selective enhancement of Balmer lines due to the mutual neutralization process of D-. Furthermore, D- density in the source region is estimated to be about 3.6×1015m-3, and the D- density in the expanding region decreases significantly. In ECR plasma source region, the plasma-wall interaction is strong due to the small volume of the cavity. The recombination desorption process produces more vibrationally excited molecules, which further enhances the dissociation attachment reaction and is beneficial to the generation of deuterium negative ions. On the other hand, the axial electric field within the ECR plasma inhibits the axial transport of D-, suggesting that the production and loss of D- is localized. These characteristics of the ECR plasma source contribute to a large gradient of D- density between the source and expanding region. -
[1] Bentounes J, Béchu S, Biggins F, Michau A, Gavilan L, Menu J, Bonny L, Fombaron D, Bès A, Lebedev Y A, Shakhatov V A, Svarnas P, Hassaine T, Lemaire J L, Lacoste A 2018 Plasma Sources Sci. Technol. 27 055015
[2] Fantz U, Heger B 1998 Plasma Phys. Controlled Fusion 40 2023
[3] Averkin S N, Gatsonis N A, Olson L 2015 IEEE Trans. Plasma Sci. 43 1926
[4] Fantz U, Franzen P, Kraus W, Falter H D, Berger M, Christ K S, Froschle M, Gutser R, Heinemann B, Martens C, McNeely P, Riedl R, Speth E, Wunderlich D 2008 Rev Sci Instrum 79 02A511
[5] Marini C, Agnello R, Duval B P, Furno I, Howling A A, Jacquier R, Karpushov A N, Plyushchev G, Verhaegh K, Guittienne P, Fantz U, Wünderlich D, Béchu S, Simonin A 2017 Nucl. Fusion 57 036024
[6] Sharma S, Sahu D, Narayanan R, Kar S, Bandyopadhyay M, Chakraborty A, Singh M J, Tarey R D, Ganguli A 2022 J. Phys. Conf. Ser. 2244 012055
[7] Alton G, Smithe D 1994 Rev. Sci. Instrum. 65 775
[8] Zhao H, Sun L, Guo J, Lu W, Xie D, Hitz D, Zhang X, Yang Y 2017 Phys. Rev. Accel. Beams 20 094801
[9] Ren H T, Peng S X, Xu Y, Zhao J, Lu P N, Chen J, Zhang A L, Zhang T, Guo Z Y, Chen J E 2014 Rev Sci Instrum 85 02A927
[10] Torii H, Matsui S 2024 Journal of Vacuum Science & Technology A 42
[11] Seker Z, Ozdamar H, Esen M, Esen R, Kavak H 2014 Applied surface science 314 46
[12] Ke Y J, Sun X F, Chen X K, Tian L C, Zhang T P, Zheng M F, Jia Y H, Jiang H C 2017 Plasma Sci. Technol 19 095503
[13] Li X, Zeng M, Liu H, Ning Z X, Yu D R 2023Acta Phys. Sin. 72199(李鑫, 曾明, 刘辉, 宁中喜, 于达仁2023 物理学报 72 199)
[14] Kurutz U, Friedl R, Fantz U 2017 Plasma Phys. Controlled Fusion 59 075008
[15] Svarnas P, Breton J, Bacal M, Mosbach T 2006 Rev. Sci. Instrum. 77 532
[16] Aleiferis S, Tarvainen O, Svarnas P, Bacal M, Béchu S 2016 J. Phys. D: Appl. Phys. 49 095203
[17] Hill R N 1977 Phys. Rev. Lett. 38 643
[18] Bacal M, Hamilton G W, Bruneteau A M, Doucet H J, Taillet J 1979 Rev Sci Instrum 50 719
[19] O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544
[20] Lee H, Kim W, Lee J, Park K S, Yoo J J, Atala A, Kim G H, Lee S J 2021 Appl Phys Rev 8 021405
[21] Fantz U, Wünderlich D 2006 New J. Phys. 8 301
[22] Heinemann B, Fantz U, Kraus W, Schiesko L, Wimmer C, Wünderlich D, Bonomo F, Fröschle M, Nocentini R, Riedl R 2017 New J. Phys. 19 015001
[23] Furno I, Agnello R, Guittienne P, Howling A, Jacquier R, Plyushchev G, Stollberg C, Bechu S, Barbisan M, Fadone M 2020 EUROfusion Consortium
[24] Berger M, Fantz U, Christ K S, Team N 2009 Plasma Sources Sci. Technol. 18 025004
[25] Zhu B L, Yi K Y, Yang K, Ke W, Ma J X, Zhu X D 2019 Phys. Plasma 26 082107
[26] Schulz-Von D G V, Dbele H F 1996 Plasma Chem. Plasma Process. 16 461
[27] Zhou H Y, Wang L, Zhu X D, Ke B, Ding F, Wen X H, Wang Y N 2010 Rev Sci Instrum 81 033501
[28] Aleiferis S, Svarnas P, Béchu S, Tarvainen O, Bacal M 2018 Plasma Sources Sci. Technol. 27 075015
[29] Wünderlich D, Dietrich S, Fantz U 2009 J. Quant. Spectrosc. Radiat. Transfer 110 62
[30] Wünderlich D, Fantz U 2016 Atoms 4 26
[31] Hollmann E M, Brezinsek S, Brooks N H, Groth M, McLean A G, Pigarov A Y, Rudakov D L 2006 Plasma Phys. Controlled Fusion 48 1165
[32] Lavrov B P, Pipa A V, Röpcke J 2006 Plasma Sources Sci. Technol. 15 135
[33] Rayar M, Le Quoc H, Lacoste A, Latrasse L, Pelletier J 2009 Plasma Sources Sci. Technol. 18 025013
[34] McNeely P, Wünderlich D 2011 Plasma Sources Sci. Technol. 20 045005
[35] Dang J J, Chung K J, Hwang Y S 2016 Rev Sci Instrum 87 053503
[36] Yoon J S, Kim Y W, Kwon D C, Song M Y, Chang W S, Kim C G, Kumar V, Lee B 2010 Rep. Prog. Phys. 73 116401
[37] Méndez I, Gordillo-Vázquez F J, Herrero V J, Tanarro I 2006 J Phys Chem A 110 6060
[38] Wu H M, Graves D B, Porteous R K 1995 Plasma Sources Sci. Technol. 4 22
[39] Fu S L, Chen J F, Hu S J, Wu X Q, Lee Y, Fan S L 2006 Plasma Sources Sci. Technol. 15 187
[40] Majstorović G L, Šišović N M 2015 Journal of Research in Physics 38-39 11
Metrics
- Abstract views: 30
- PDF Downloads: 0
- Cited By: 0