Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thin film growth and electronic transmission of picene molecules on Cd(0001) surface

YU Tao FU Shirun LU Hongping WANG Junzhong

Citation:

Thin film growth and electronic transmission of picene molecules on Cd(0001) surface

YU Tao, FU Shirun, LU Hongping, WANG Junzhong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The thin films of picene on the Cd(0001) surface are investigated by scanning tunneling microscopy (STM) in this work. Compared with conventional noble metal substrates such as Au, Ag, and Cu, Cd(0001) has low electronegativity and small work function , which can effectively weaken the molecule-substrate interactions, thereby promoting the intermolecular van der Waals attraction. The experiments are conducted by ultrahigh vacuum low-temperature STM combined with a molecular beam epitaxy system. The crystalline Cd(0001) film is grown on a surface of Si(111)- 7×7 by depositing 15-20 monolayers of Cd atoms, followed by being annealed. The picene molecules are deposited on the Cd(0001) surface at 100–120 K, where monolayer (ML) is defined as the critical coverage before second-layer nucleation. All STM measurements are acquired in constant-current mode.It is observed that, in the submonolayer regime, the picene molecules occupy the entire substrate surface and form disordered two-dimensional molecular gas, indicating the existence of electrostatic repulsive interaction among picene molecules. With the coverage increasing, the first layer of molecules undergoes the disorder-order transition, forming the parallel array of molecular stripes of flat-lying molecules. The high-resolution STM images show that the building block of molecular stripes is a picene dimer with the opposite dipole moments. More importantly, under a specific bias voltage, the first layer of molecular stripes exhibits electronic transmission: not only can the underlying Cd substrate atoms be observed, but also the standing waves of scattered electrons can be observed near the defects. When the coverage exceeds 1.0 ML, the second picene layer also forms the stripe array composed of picene dimers of a flat-lying and a side-on molecules, similar to the (110) plane in picene crystals. The above results show that the electrons from the quantum-well states of Cd (0001) thin film have very strong penetration ability, and their vertical tunneling length reaches to the distance of two molecular layers.
  • 图 1  亚单层覆盖度下苉分子的气相和分子带阵列 (a) Cd(0001)薄膜的形貌图(4.0 V, 50 pA), 插图为Cd(0001)薄膜的原子分辨像(3 nm × 3 nm, 0.01 V, 250 pA); (b) 覆盖度为0.4 ML时形成的二维分子气和较短的分子带(2.0 V, 20 pA); (c), (d)为覆盖度为0.8 ML时苉分子形成的大面积分子带及晶格转动(3.0 V, 50 pA)

    Figure 1.  Gas phase and molecular stripe arrays of picene formed at submonolayer: (a) Topographic image of Cd(0001) thin films (4.0 V, 50 pA). Insert is the atomic-resolution image of Cd(0001) thin films (3 nm × 3 nm, 0.01 V, 250 pA); (b) 2D molecular gas and short stripes of picene formed at 0.4 ML (2.0 V, 20 pA); (c), (d) the large-scale of molecular stripe arrays and lattice rotation at 0.8 ML (3.0 V, 50 pA).

    图 2  第1层分子形成的分子带阵列 (a) 低温沉积形成的大面积分子带阵列 (1.0 V, 20 pA); (b) 分子带阵列的放大图(1.0 V, 20 pA), R型和L型分子的排列具有一定的随机性; (c) 退火后的苉分子带阵列 (3.5 V, 20 pA); (d) 苉分子带阵列的结构模型图

    Figure 2.  Molecular stripe array of the first layer: (a) Large-scale of molecular stripe array by LT deposition (1.0 V, 20 pA); (b) close-up view of the picene stripe array (1.0 V, 20 pA), the arrangement of the R-type and L-type molecules exhibiting randomness; (c) picene stripe array after RT annealing (3.5 V, 20 pA); (d) schematic model of the picene stripe array.

    图 3  第1层苉分子层形成的镜像畴 (a) 苉分子带阵列的两个镜像畴(1.0 V, 50 pA), 畴区边界是沿衬底晶格[0$ \bar{1} $10]方向的一条直线; (b) 两个镜像畴的放大图(3.2 V, 50 pA), 畴界两侧分布着未成对的单个苉分子(虚线椭圆内)

    Figure 3.  The mirror domain formed by the first layer of picene molecules: (a) Two mirror domains of the stripe array (1.0 V, 50 pA), domain boundary is a straight line along the [0$ \bar{1} $110] direction; (b) close-up view of the two mirror domains (3.2 V, 50 pA), The unpaired monomers appear at the two sides of domain boundary (marked by dotted ovals).

    图 4  苉分子带的电子透射现象 (a) 缺陷周围的苉分子带的正偏压STM图像 (1.2 V, 20 pA); (b)苉分子带的负偏压图像 (–2.3 V, 20 pA), Cd(0001)衬底原子清晰可见, 缺陷附近隧穿结的高度受到了缺陷分子的影响而产生的亮条纹; (c) 偏压恢复到1.2 V时的苉分子带图像 (1.2 V, 20 pA)

    Figure 4.  Electronic transmission of the picene stripe array: (a) Positive bias image of the picene stripe array around a defect (1.2 V, 20 pA); (b) negative bias image of the picene stripe array (–2.3 V, 20 pA), the atoms of Cd(0001) are visible, and standing waves of scattered electrons formed around the defect; (c) image of the picene stripe array after the bias is recovered to 1.2 V(1.2 V, 20 pA).

    图 5  第2层分子形成的分子带阵列 (a) 覆盖度为1.1 ML时形成的第2层分子岛 (2.0 V, 20 pA); (b) 覆盖度为1.4 ML时形成的第2层和第3层分子岛 (2.0 V, 20 pA); (c) 沿(b)图中白色虚线所做的高度投影图; (d) 覆盖度为2.2 ML时形成的大面积第2层分子带 (1.2 V, 20 pA); (e) 第2层分子带的高分辨STM图像(0.9 V, 20 pA); (f) 第2层分子带与于第1层分子和衬底晶格的结构关系图

    Figure 5.  Picene stripe array of second layer: (a) The second layer island formed at 1.1 ML (2.0 V, 20 pA); (b) islands of the second and third layers formed at 1.4 ML (2.0 V, 20 pA); (c) profile line along the dotted line in (b); (d) large scale of the second layer stripe array formed at 2.2 ML (1.2 V, 20 pA); (e) high-resolution image of the second layer stripe (0.9 V, 20 pA); (f) schematic structural model of the second layer stripe relative to the first picene layer and Cd(0001) substrate.

    图 6  第2层苉分子带的电子透射现象 (a) 第2层分子带的正偏压STM图像(0.5 V, 20 pA); (b) 第2层分子带的负偏压STM图像(–3.0 V, 20 pA), 苉分子的图像和衬底原子的图像叠加在一起

    Figure 6.  Electronic transmission of the second layer stripes: (a) The positive bias image of the second layer stripes (0.5 V, 20 pA); (b) the negative bias image of the second layer stripes (–3.0 V, 20 pA), the protrusions of picene molecules are superposed with those of substrate atoms.

    图 7  Cd(0001)表面苉分子薄膜的扫描隧道谱 (STS) (a) Cd(0001)衬底及第1层苉分子的STS; (b) 第2层苉分子的STS

    Figure 7.  Scanning tunneling spectroscopy (STS) of the picene molecular film on the Cd(0001) surface: (a) STS of the Cd(0001) substrate and the first layer of picene molecules; (b) STS of the second layer of picene molecules.

  • [1]

    Heringdorf F, Reuter M C, Tromp R M 2001 Nature 412 517Google Scholar

    [2]

    Sundar V C, Zaumseil J, Podzorov V, Menard E, Willett R L, Someya T, Gershenson M E, Rogers J A 2004 Science 303 1644Google Scholar

    [3]

    Ueno N, Kera S 2008 Prog. Surf. Sci. 83 490Google Scholar

    [4]

    Shirota Y, Kageyama H 2007 Chem. Rev. 107 953Google Scholar

    [5]

    Coropceanu V, Cornil J, da Silva D A, Olivier Y, Silbey R, Brédas J L 2007 Chem. Rev. 107 926Google Scholar

    [6]

    De A, Ghosh R, Roychowdhury S, Roychowdhury P 1985 Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 41 907Google Scholar

    [7]

    Okamoto H, Kawasaki N, Kaji Y, Kubozono Y, Fujiwara A, Yamaji M 2008 J. Am. Chem. Soc. 130 10470Google Scholar

    [8]

    Nguyen T P, Shim J H, Lee J Y 2015 J. Phys. Chem. C 119 11301Google Scholar

    [9]

    Kawai N, Eguchi R, Goto H, Akaike K, Kaji Y, Kambe T, Fujiwara A, Kubozono Y 2012 J. Phys. Chem. C 116 7983Google Scholar

    [10]

    Teranishi K, He X X, Sakai Y, Izumi M, Goto H, Eguchi R, Takabayashi Y, Kambe T, Kubozono Y 2013 Phys. Rev. B 87 060505Google Scholar

    [11]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76Google Scholar

    [12]

    Zhou C S, Shan H, Li B, Zhao A D, Wang B 2016 Appl. Phys. Lett. 108 171601Google Scholar

    [13]

    Zhang C Y, Tsuboi H, Hasegawa Y, Iwasawa M, Sasaki M, Wakayama Y, Ishii H, Yamada Y 2019 ACS Omega 4 8669Google Scholar

    [14]

    Yano M, Endo M, Hasegawa Y, Okada R, Yamada Y, Sasaki M 2014 J. Chem. Phys. 141 034708Google Scholar

    [15]

    Shao X J, Ma X H, Liu M J, Zhang T, Ma Y P, Xu C Q, Wu X F, Lin T, Wang K D 2020 Chem. Phys. 532 110689Google Scholar

    [16]

    Liu G W, Shao X J, Xu C Q, Wu X F, Wang K D 2020 J. Phys. Chem. C 124 22025Google Scholar

    [17]

    Hasegawa Y, Yamada Y, Hosokai T, Koswattage K R, Yano M, Wakayama Y, Sasaki M 2016 J. Phys. Chem. C 120 21536Google Scholar

    [18]

    Yoshida Y, Yang H H, Huang H S, Guan S Y, Yanagisawa S, Yokosuka T, Lin M T, Su W B, Chang C-S, Hoffmann G, Hasegawa Y 2014 J. Chem. Phys 141 114701Google Scholar

    [19]

    Kelly S J, Sorescu D C, Wang J, Archer K A, Jordan K D, Maksymovych P 2016 Surf. Sci. 652 67Google Scholar

    [20]

    Huempfner T, Hafermann M, Udhardt C, Otto F, Forker R, Fritz T 2016 J. Chem. Phys 145 174706Google Scholar

    [21]

    Wakita T, Okazaki H, Jabuchi T, Hamada H, Muraoka Y, Yokoya T 2017 J. Phys. Condes. Matter 29 064001Google Scholar

    [22]

    Hosokai T, Hinderhofer A, Bussolotti F, Yonezawa K, Lorch C, Vorobiev A, Hasegawa Y, Yamada Y, Kubozoro Y, Gerlach A, Kera S, Schreiber F, Ueno N 2015 J. Phys. Chem. C 119 29027Google Scholar

    [23]

    Peng Z T, Di B, Zhao X W, Lin Y X, Diao M X, Xu Z, Guo W J, Zhou X, Chen Q W, Wang Y F, Wu K 2022 J. Phys. Chem. C 126 17753Google Scholar

    [24]

    Hosokai T, Hinderhofer A, Vorobiev A, Lorch C, Watanabe T, Koganezawa T, Gerlach A, Yoshimoto N, Kubozono Y, Schreiber F 2012 Chem. Phys. Lett. 544 34Google Scholar

  • [1] Peng Lan-Qin, Li Xiao-Yu, Xing Yun, Zhao Han, Deng Yan-Tao, Yu Ying-Hui. Adsorption configuration and assembly structure of vanadyl phthalocyanine molecule on copper oxide layer. Acta Physica Sinica, doi: 10.7498/aps.73.20240043
    [2] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, doi: 10.7498/aps.73.20240560
    [3] Zhang Yu-Feng, Lu Yao-Chen, Bai Meng-Meng, Li Zuo, Shi Ming-Xia, Yang Da-Xiao, Yang Xiao-Tian, Tao Min-Long, Sun Kai, Wang Jun-Zhong. Comparative studies on the thin films of dicyanoanthracene grown on metal and semimetal surfaces. Acta Physica Sinica, doi: 10.7498/aps.72.20222197
    [4] Yao Jie, Zhao Ai-Di. Advances in detection and regulation of surface-supported molecular quantum states. Acta Physica Sinica, doi: 10.7498/aps.71.20212324
    [5] Gao Xiao-Ping, Liang Jing-Rui, Liu Tang-Kun, Li Hong, Liu Ji-Bing. Manipulation of transmission properties of a ladder-four-level Rydberg atomic system. Acta Physica Sinica, doi: 10.7498/aps.70.20202077
    [6] Jin Zhao, Li Rui, Gong Wei-Jiang, Qi Yang, Zhang Shou, Su Shi-Lei. Implementation of the Rydberg double anti-blockade regime and the quantum logic gate based on resonant dipole-dipole interactions. Acta Physica Sinica, doi: 10.7498/aps.70.20210059
    [7] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, doi: 10.7498/aps.68.20191631
    [8] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181818
    [9] Xu Dan, Yin Jun, Sun Hao-Hua, Wang Guan-Yong, Qian Dong, Guan Dan-Dan, Li Yao-Yi, Guo Wan-Lin, Liu Can-Hua, Jia Jin-Feng. Scanning tunneling microscopy study of h-BN thin films grown on Cu foils. Acta Physica Sinica, doi: 10.7498/aps.65.116801
    [10] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, doi: 10.7498/aps.65.226801
    [11] Zhang Xiao-Fei, Zhang Pei, Chen Guang-Ping, Dong Biao, Tan Ren-Bing, Zhang Shou-Gang. Ground state of a two-component dipolar Bose-Einstein condensate confined in a coupled annular potential. Acta Physica Sinica, doi: 10.7498/aps.64.060302
    [12] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, doi: 10.7498/aps.60.037301
    [13] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, doi: 10.7498/aps.60.116803
    [14] Li Ju-Ping, Tan Lei, Zang Xiao-Fei, Yang Ke. Dynamics of dipolar spinor condensates in the external magnetic field. Acta Physica Sinica, doi: 10.7498/aps.57.7467
    [15] Huang Jin-Song, Chen Hai-Feng, Xie Zheng-Wei. Modulational instability of two-component dipolar Bose-Einstein condensates in an optical lattice. Acta Physica Sinica, doi: 10.7498/aps.57.3435
    [16] Wang Qi, Zhao Hua-Bo, Zhang Zhao-Hui. Conductance enhancement phenomenon of graphene ribbons on highly oriented pyrolytic graphite surfaces studied by scanning probe microscopy. Acta Physica Sinica, doi: 10.7498/aps.57.3059
    [17] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. The manipulation of Cu subsurface interstitial atoms with scanning tunneling microscope. Acta Physica Sinica, doi: 10.7498/aps.54.824
    [18] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, doi: 10.7498/aps.54.284
    [19] WANG LEI, TANG JING-CHANG, WANG XUE-SEN. SCANNING TUNNELING MICROSCOPY STUDY OF Si GROWTH ON Si3N4/Si SURFACE. Acta Physica Sinica, doi: 10.7498/aps.50.517
    [20] WANG HAO, ZHAO XUE-YING, YANG WEI-SHENG. ADSORPTION OF ASPARTIC ACID ON Cu(001) STUDIED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, doi: 10.7498/aps.49.1316
Metrics
  • Abstract views:  227
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2025
  • Accepted Date:  03 February 2025
  • Available Online:  21 February 2025

/

返回文章
返回