-
In order to improve the discrepancy between specific on-resistance (Ron,sp) and breakdown voltage (BV) of lateral double-diffused metal oxide semiconductor (LDMOS) and enhance the turn-off characteristic, this paper proposes a novel LDMOS device with dual-drift regions and dual-conduction paths, which achieves an ultra-low Ron,sp. The key feature of the proposed device is the introduction of a dual-drift region structure with alternating P-type and N-type regions, combined with planar and trench gates to control the P-type and N-type drift regions, respectively. This configuration enables the formation of two independent electron conduction paths within the drift region. When a positive voltage is applied to the planar gate, a voltage difference is generated between the surface of the P-type drift region and the body of device’s drift. Therefore, under the influence of the voltage difference, the electrons are pulled to the surface of the P-type drift region to invert and form a high-density electron inversion layer that connects the channel and the N+ drain, significantly increasing the electron density during conduction and reducing the Ron,sp. The introduction of the trench gate provides an additional electron disappearance path, which shortens the device's turn-off time (toff). Furthermore, the introduction of the P-type drift region facilitates the recombination of electrons with holes within the P-type drift region, accelerating the electron disappearance process and further reducing the device's toff. Furthermore, the proposed device exhibits a more uniform electric field distribution and higher voltage capability is due to the P+N-N+P+ structure adopted in the PolySi-top layer. During the off-state, both the P+N- junctions and the N+P+ junctions generate electric field peaks at the interfaces. These peaks modulate the electric field distribution across the surface of the drift region. Simulation results indicate that at a BV of 200V, the proposed LDMOS exhibits an Ron,sp of 3.43 mΩ·cm² and a toff of 9 ns. Compared with traditional LDMOS devices, the proposed LDMOS possesses a 90% reduction in Ron,sp and an 11.6% decrease in toff. The proposed device not only achieves an excellent trade-off between Ron,sp and BV but also shortens the toff, demonstrating that the device achieves superior performance.
-
Keywords:
- dual-drift /
- dual-conduction paths /
- specific on-resistance /
- breakdown voltage
-
表 1 器件仿真中的关键参数
Table 1. Key parameters of devices’ simulation.
参数符号 参数含义 传统 PND-DP NND-DP Tox/μm 氧化层厚度 0.1 0.1 0.1 LD/μm 漂移区长度 20 8.5 8.5 TDP/TDN2 /μm P-drift(N-drift2)的厚度 2 2 2 TDN/TDN1/μm N-drift(N-drift1)的厚度 — 3 3 Tb/μm N-buffer的厚度 — 3.5 3.5 LCH/μm 沟道长度 1.5 1.5 1.5 Tt/μm 槽栅的深度 — 2.1 2.1 NDP/NDN2/cm–3 P-drift(N-drift2)的掺杂浓度 — 1×1015 1×1015 NDN/NDN1/cm–3 N-drift(N-drift1) 的掺杂浓度 7.5×1015 2.5×1015 1.5×1015 Ntop/cm–3 N-top的掺杂浓度 — 1×1015 1×1015 Nsub/cm–3 衬底的掺杂浓度 3×1014 3×1014 3×1014 表 2 PND-DP LDMOS与其他器件的Ron, sp, BV, FOM
Table 2. Ron, sp, BV, and FOM of PND-DP LDMOS compared with other devices.
-
[1] Kong M, Yi B, Zhang B 2019 IEEE T. Electron. Dev. 66 592
Google Scholar
[2] Disney D, Chan W, Lam R, Blattner R, Ma S, Seng W, Chen J W, Cornell M, Williams R 2008 20th International Symposium on Power Semiconductor Devices and IC’s Orlando, FL, USA, May 18–22, 2008 pp24–27
[3] Sun W, Shi L, Sun Z, Yi Y, Li H, Lu S 2006 IEEE T. Electron. Dev. 53 891
Google Scholar
[4] Erlbacher T, Bauer A J, Frey L 2010 IEEE Electron Device Lett. 31 464
Google Scholar
[5] Qiao M, Li Y, Zhou X, Li Z, Zhang B 2014 IEEE Electron Device Lett. 35 774
Google Scholar
[6] Baliga B J 2001 Proc. IEEE 89 822
Google Scholar
[7] Efland T R, Tsai C Y, Pendharkar S 1998 International Electron Devices Meeting 1998 San Francisco, CA, USA, December 6–9, 1998 pp679–682
[8] Li M, Chen D, Jung D S, Shi X 2019 2019 China Semiconductor Technology International Conference Shanghai, China, March 17–18, 2019, pp1–3
[9] Baliga B J 2023 Springer Handbook of Semiconductor Devices (Cham) pp491–523
[10] Baliga B J 2019 Fundamentals of Power Semiconductor Devices (Cham: Springer International Publishing
[11] Appels J A, Vaes H M J 1979 1979 International Electron Devices Meeting December, 1979, pp238–241
[12] Hossain Z 2008 2008 20th International Symposium on Power Semiconductor Devices and IC’s Orlando, FL, USA, May 18–22, 2008 pp133–136
[13] Xiarong H, Bo Z, Xiaorong L, Guoliang Y, Xi C, Zhaoji L 2011 J. Semicond. 32 074006
Google Scholar
[14] Hardikar S, Tadikonda R, Green D W, Vershinin K V, Narayanan E M S 2004 IEEE T. Electron. Dev. 51 2223
Google Scholar
[15] Stengl R, Gosele U 1985 1985 International Electron Devices Washington, DC, USA, December 1–4, 1985 pp154–157
[16] Duan B, Xing L, Wang Y, Yang Y 2022 IEEE T. Electron. Dev. 69 658
Google Scholar
[17] Chen Y, Hu S, Cheng K, Jiang Y, Luo J, Wang J, Tang F, Zhou X, Zhou J, Gan P 2016 Micro. Nanostructures 89 59
[18] Fujihira T 1997 Jpn. J. Appl. Phys. 36 6254
Google Scholar
[19] Chen X B 2000 Chin. J. Electron. 9 6
[20] Baliga B J, Syau T, Venkatraman P 1992 IEEE Electron Device Lett. 13 427
Google Scholar
[21] Wang Y D, Duan B X, Song H T, Yang Y T 2021 IEEE T. Electron. Dev. 68 2414
Google Scholar
[22] Inc. Synopsys 2016 SentaurusTM Device User Guide Verison L-2016.03
[23] Chen W Z, Qin H F, Zhang H S, Han Z S 2022 IEEE T. Electron. Dev. 69 1900
Google Scholar
[24] Zhou K, Luo X R, Li Z J, Zhang B 2015 IEEE T. Electron. Dev. 62 3334
Google Scholar
[25] Cao Z, Sun Q, Zhang H W, Wang Q, Ma C F, Jiao L C 2022 Micromachines 13 843
Google Scholar
[26] Cheng J, Zhang B, Li Z 2008 IEEE Electron Device Lett. 29 645
Google Scholar
[27] Chen Y M, Lee C L, Tsai M H, Lee C T, Wang C C 2018 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs Chicago, IL, USA, May 13–17, 2018 pp331–334
[28] Zhang S, Tuan H C, Wu X J, Shi L, Wu J 2016 Microelectron. Reliab. 61 125
Google Scholar
[29] Chen W, Pjencak J, Agam M, Janssens J, Jerome R, Menon S, Griswold M 2021 2021 33rd International Symposium on Power Semiconductor Devices and ICs Nagoya, Japan, May 30–June 03, 2021 pp287–290
[30] Qiao M, Liu W, Yuan L, Xu P, Ma C, Lin F, Liu K, Guo Y, Lin Z, Zhang S, Zhang B 2022 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs Vancouver, BC, Canada, May 22–25, 2022 pp149–152
[31] Kong M, Yi B, Chen X 2019 2019 IEEE 13th International Conference on Power Electronics and Drive Systems Toulouse, France, July 09–12, 2019 pp1–4
[32] Fan J, Wang Z G, Zhang B, Luo X R 2013 Chin. Phys. B 22 048501
Google Scholar
[33] Honarkhah S, Nassif-Khalil S, Salama C A T 2004 Proceedings of the 30th European Solid-State Circuits Conference Leuven, Belgium, September 23, 2004 pp117–120
[34] Hölke A, Antoniou M, Udrea F 2020 32nd International Symposium on Power Semiconductor Devices and ICs Vienna, Austria, September 13–18, 2020 pp435–438
Metrics
- Abstract views: 205
- PDF Downloads: 4
- Cited By: 0