Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Complete three-dimensional reduced surface field super junction lateral double-diffused metal-oxide-semiconductor field-effect transistor with semi-insulating poly silicon

Cao Zhen Duan Bao-Xing Yuan Xiao-Ning Yang Yin-Tang

Citation:

Complete three-dimensional reduced surface field super junction lateral double-diffused metal-oxide-semiconductor field-effect transistor with semi-insulating poly silicon

Cao Zhen, Duan Bao-Xing, Yuan Xiao-Ning, Yang Yin-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Lateral double-diffused metal-oxide-semiconductor field-effect transistor (LDMOS) is a key device for the power integrated circuit (PIC) and high voltage integrated circuit (HVIC) technologies. In order to break through the limit relation of 2.5 power between breakdown voltage (BV) and specific on-resistance (Ron,sp) for the traditional LDMOS, and improve the driving capability for the PIC by reducing the power consumption, the new SJ-LDMOS with the semi-insulating poly silicon (SIPOS SJ-LDMOS) is proposed in this paper for the first time, to the best of the authors' knowledge. In order to take full advantage of super junction concept, the SIPOS layer is used for SJ-LDMOS to achieve the effect of the complete three-dimensional reduced surface field (3D-RESURF) for the SJ-LDMOS. The substrate assisted depletion is effectively eliminated by the buffer layer under the super junction. The overall performances of the SIPOS SJ-LDMOS are improved by the uniform and high resistance of the SIPOS layer. The surface electric field is modulated to be uniform by the electric field modulation effect due to the SIPOS layer covering the field oxide. The higher BV would be achieved for the more uniform surface electric field because of the increased average lateral electric field. The BV for the unit length of the drift region is improved to 19.4 V/μupm. The SIPOS SJ-LDMOS along the 3D are subjected to the electric field modulation by the SIPOS layer, which achieves the complete 3D-RESURF effect, thus the drift region with the high concentration can be depleted completely to obtain the high BV. Moreover, in the on-state the majority carrier accumulation can be formed in the drift region of the SIPOS SJ-LDMOS due to the SIPOS layer, so that the specific on-resistance decreases further. In virtue of the ISE simulation, by optimizing the SIPOS layer of the proposed SIPOS SJ-LDMOS, the results show that the specific on-resistance of the SIPOS SJ-LDMOS is 20.87 mΩ·cm2 with a breakdown voltage of 388 V, which is less than 31.14 mΩ·cm2 for the N-buffer SJ-LDMOS with a breakdown voltage of 287 V, and far less than 71.82 mΩ·cm2 for the conventional SJ-LDMOS with a breakdown voltage of only 180 V with the same drift length.
      Corresponding author: Duan Bao-Xing, bxduan@163.com
    • Funds: Project supported by the State Key Program of National Natural Science Foundation of China (Grant Nos. 2014CB339900, 2015CB351906), the National Key Basic Research Program of China (Grant Nos. 61234006, 61334002), and the Science and Technology Innovation Project Co-ordination Program of Shaanxi Province, China (Grant No. DF0105142502).
    [1]

    Kyungho L, Haeung J, Byunghee C, Joonhee C, Pang Y S, Jinwoo M, Susanna K 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs, Kanazawa, May 26-30, 2013 p163

    [2]

    Chen X B, Wang X, Johnny K O S 2000 IEEE Trans. Electron Devices 47 1280

    [3]

    Deboy G, Marz M, Stengl J P, Strack H, Tihanyi J, Weber H 1998 Proceedings of the IEEE International Electron Devices Meeting, San Francisco, December 6-9, 1998 p683

    [4]

    Chen X B, Johnny K O S 2001 IEEE Trans. Electron Devices 48 344

    [5]

    Sameh G, Khalil N, Salama C A T 2003 IEEE Trans. Electron Devices 50 1385

    [6]

    Appels J A, Collet M G, Hart P A H, Vase H M J 1980 Philips Journal of Research 35 1

    [7]

    Sameh G, Khalil N, Li Z H, Salama C A T 2004 IEEE TRANSACTIONS ON Electron Devices 51 1185

    [8]

    Zhang B, Chen L, Wu T, Li Z J 2005 Proceedings of the 3th International Conference on Communications, Circuits and Systems, Hong Kong, May 27-30, 2005 p1399

    [9]

    Wei J, Luo X R, Shi X L, Tian R C, Zhang B, Li Z J 2014 Proceedings of the 26th International Power Semiconductor Devices and ICs, Waikoloa, Hawaii, June 15-19, 2014 p127

    [10]

    Duan B X, Cao Z, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 227302(in Chinese) [段宝兴, 曹震, 袁小宁, 杨银堂 2014 物理学报 63 227302]

    [11]

    Duan B X, Cao Z, Yuan S, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 247301(in Chinese) [段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂 2014 物理学报 63 247301]

    [12]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [13]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [14]

    Duan B X, Yang Y T 2011 IEEE Trans. Electron Devices 58 2057

    [15]

    Duan B X, Zhang B, Li Z J 2005 Solid-State Electronics 49 1965

    [16]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [17]

    Matsudai T, Nakagawa A 1992 Proceedings of the 4th International Power Semiconductor Devices and ICs, Toronto, Canada, May 26-28, 1992 p272

    [18]

    Funaki, H,Yamaguchi Y, Hirayama K, Nakagawa A 1998 Proceedings of the 10th International Power Semiconductor Devices and ICs, Digest, Kyoto, June 3-6, 1998 p25

    [19]

    Chung S K, Shin D K 1999 IEEE Trans. Electron Devices 46 1804

    [20]

    Wei D L 2009 Electronics 9 37 [魏敦林 2009 电子与封装 9 37]

    [21]

    Matsushita T, Aoki T, Ohtsu T, Yamoto H, Hayashi H, Okayama M, Kawana Y 1976 IEEE Trans. Electron Devices 23 826

    [22]

    Mimura A, Oohayashi M, Murakami S, Momma N 1985 IEEE Electron Device Letters 6 189

    [23]

    Jaume D, Charitat G, Reynes J M, Rossel P 1991 IEEE Trans. Electron Devices 38 1681

  • [1]

    Kyungho L, Haeung J, Byunghee C, Joonhee C, Pang Y S, Jinwoo M, Susanna K 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs, Kanazawa, May 26-30, 2013 p163

    [2]

    Chen X B, Wang X, Johnny K O S 2000 IEEE Trans. Electron Devices 47 1280

    [3]

    Deboy G, Marz M, Stengl J P, Strack H, Tihanyi J, Weber H 1998 Proceedings of the IEEE International Electron Devices Meeting, San Francisco, December 6-9, 1998 p683

    [4]

    Chen X B, Johnny K O S 2001 IEEE Trans. Electron Devices 48 344

    [5]

    Sameh G, Khalil N, Salama C A T 2003 IEEE Trans. Electron Devices 50 1385

    [6]

    Appels J A, Collet M G, Hart P A H, Vase H M J 1980 Philips Journal of Research 35 1

    [7]

    Sameh G, Khalil N, Li Z H, Salama C A T 2004 IEEE TRANSACTIONS ON Electron Devices 51 1185

    [8]

    Zhang B, Chen L, Wu T, Li Z J 2005 Proceedings of the 3th International Conference on Communications, Circuits and Systems, Hong Kong, May 27-30, 2005 p1399

    [9]

    Wei J, Luo X R, Shi X L, Tian R C, Zhang B, Li Z J 2014 Proceedings of the 26th International Power Semiconductor Devices and ICs, Waikoloa, Hawaii, June 15-19, 2014 p127

    [10]

    Duan B X, Cao Z, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 227302(in Chinese) [段宝兴, 曹震, 袁小宁, 杨银堂 2014 物理学报 63 227302]

    [11]

    Duan B X, Cao Z, Yuan S, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 247301(in Chinese) [段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂 2014 物理学报 63 247301]

    [12]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [13]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [14]

    Duan B X, Yang Y T 2011 IEEE Trans. Electron Devices 58 2057

    [15]

    Duan B X, Zhang B, Li Z J 2005 Solid-State Electronics 49 1965

    [16]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [17]

    Matsudai T, Nakagawa A 1992 Proceedings of the 4th International Power Semiconductor Devices and ICs, Toronto, Canada, May 26-28, 1992 p272

    [18]

    Funaki, H,Yamaguchi Y, Hirayama K, Nakagawa A 1998 Proceedings of the 10th International Power Semiconductor Devices and ICs, Digest, Kyoto, June 3-6, 1998 p25

    [19]

    Chung S K, Shin D K 1999 IEEE Trans. Electron Devices 46 1804

    [20]

    Wei D L 2009 Electronics 9 37 [魏敦林 2009 电子与封装 9 37]

    [21]

    Matsushita T, Aoki T, Ohtsu T, Yamoto H, Hayashi H, Okayama M, Kawana Y 1976 IEEE Trans. Electron Devices 23 826

    [22]

    Mimura A, Oohayashi M, Murakami S, Momma N 1985 IEEE Electron Device Letters 6 189

    [23]

    Jaume D, Charitat G, Reynes J M, Rossel P 1991 IEEE Trans. Electron Devices 38 1681

  • [1] Liu Cheng, Li Ming, Wen Zhang, Gu Zhao-Yuan, Yang Ming-Chao, Liu Wei-Hua, Han Chuan-Yu, Zhang Yong, Geng Li, Hao Yue. Establishment of composite leakage model and design of GaN Schottky barrier diode with stepped field plate. Acta Physica Sinica, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [2] Xu Da-Lin, Wang Yu-Qi, Li Xin-Hua, Shi Tong-Fei. Effect of charge coupling on breakdown voltage of high voltage trench-gate-type super barrier rectifier. Acta Physica Sinica, 2021, 70(6): 067301. doi: 10.7498/aps.70.20201558
    [3] Yang Chu-Ping, Geng Yi-Nan, Wang Jie, Liu Xing-Nan, Shi Zhen-Gang. Breakdown voltage of high pressure helium parallel plates and effect of field emission. Acta Physica Sinica, 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [4] Tang Chun-Ping, Duan Bao-Xing, Song Kun, Wang Yan-Dong, Yang Yin-Tang. Analysis of novel silicon based lateral power devices with floating substrate on insulator. Acta Physica Sinica, 2021, 70(14): 148501. doi: 10.7498/aps.70.20202065
    [5] Yuan Song, Duan Bao-Xing, Yuan Xiao-Ning, Ma Jian-Chong, Li Chun-Lai, Cao Zhen, Guo Hai-Jun, Yang Yin-Tang. Experimental research on the new Al0.25Ga0.75N/GaN HEMTs with a step AlGaN layer. Acta Physica Sinica, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [6] Yue Shan, Liu Xing-Nan, Shi Zhen-Gang. Experimental study on breakdown voltage between parallel plates in high-pressure helium. Acta Physica Sinica, 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [7] Li Chun-Lai, Duan Bao-Xing, Ma Jian-Chong, Yuan Song, Yang Yin-Tang. New super junction lateral double-diffused metal-oxide-semiconductor field-effect transistor with the P covered layer. Acta Physica Sinica, 2015, 64(16): 167304. doi: 10.7498/aps.64.167304
    [8] Duan Bao-Xing, Li Chun-Lai, Ma Jian-Chong, Yuan Song, Yang Yin-Tang. New folding lateral double-diffused metal-oxide-semiconductor field effect transistor with the step oxide layer. Acta Physica Sinica, 2015, 64(6): 067304. doi: 10.7498/aps.64.067304
    [9] Duan Bao-Xing, Yang Yin-Tang. Breakdown voltage analysis for the new Al0.25 Ga0.75N/GaN HEMTs with the step AlGaN layers. Acta Physica Sinica, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [10] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong. A low on-resistance silicon on insulator lateral double diffused metal oxide semiconductor device with a vertical drain field plate. Acta Physica Sinica, 2014, 63(10): 107302. doi: 10.7498/aps.63.107302
    [11] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong, Zhang Wei-Hua, Dai Hong-Li. A dual-trench silicon on insulator high voltage device with an L-shaped source field plate. Acta Physica Sinica, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [12] Duan Bao-Xing, Cao Zhen, Yuan Song, Yuan Xiao-Ning, Yang Yin-Tang. New super junction lateral double-diffused MOSFET with electric field modulation by differently doping the buffered layer. Acta Physica Sinica, 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [13] Duan Bao-Xing, Cao Zhen, Yuan Xiao-Ning, Yang Yin-Tang. New REBULF super junction LDMOS with the N type buffered layer. Acta Physica Sinica, 2014, 63(22): 227302. doi: 10.7498/aps.63.227302
    [14] Wang Xiao-Wei, Luo Xiao-Rong, Yin Chao, Fan Yuan-Hang, Zhou Kun, Fan Ye, Cai Jin-Yong, Luo Yin-Chun, Zhang Bo, Li Zhao-Ji. Mechanism and optimal design of a high-k dielectric conduction enhancement SOI LDMOS. Acta Physica Sinica, 2013, 62(23): 237301. doi: 10.7498/aps.62.237301
    [15] Duan Bao-Xing, Yang Yin-Tang, Kevin J. Chen. Breakdown voltage analysis for new Al0.25Ga0.75N/GaN HEMT with F ion implantation. Acta Physica Sinica, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [16] Yang Yin-Tang, Geng Zhen-Hai, Duan Bao-Xing, Jia Hu-Jun, Yu Cen, Ren Li-Li. Characteristics of a SiC SBD with semi-superjunction structure. Acta Physica Sinica, 2010, 59(1): 566-570. doi: 10.7498/aps.59.566
    [17] Li Qi, Li Zhao-Ji, Zhang Bo. Analytical model for the surface electrical field distribution of double RESURF device with surface implanted P-top region. Acta Physica Sinica, 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [18] Guo Liang-Liang, Feng Qian, Hao Yue, Yang Yan. Study of high breakdown-voltage AlGaN/GaN FP-HEMT. Acta Physica Sinica, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [19] Zhao Yi, Wan Xing-Gong. Substrate and process dependence of gate oxide reliability of 0.18μm dual gate CMOS process. Acta Physica Sinica, 2006, 55(6): 3003-3006. doi: 10.7498/aps.55.3003
    [20] Fang Jian, Qiao Ming, Li Zhao-Ji. Electric field distribution in charge imbalance super junction. Acta Physica Sinica, 2006, 55(7): 3656-3663. doi: 10.7498/aps.55.3656
Metrics
  • Abstract views:  6305
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  11 December 2014
  • Accepted Date:  19 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回