-
Studies of single quantum state measurement and the relevant physics are very important for the fields of quantum information and quantum coupution. In recent years, quantum dots as information carrier have become a hotpoint of research. The study on quantum dot properties has atracted a lot of attetion and made a series of progress.#br#In this paper, we formulate a theoretical method that can be used to investigate polaron properties in low-dimensional structures in finite depth potential well. We assume that an electron in a quantum disk which is in other medium is in parabolic potential field, but the effect of the medium on the electron in quantum disk is equivalent to a potential barrier with height V1 and width d. By expanding the finite height potential barrier as plane waves and Lee-Low-Pines unitary transformation for Hamiltonian, as well as variation for expectation value of Hamiltonian where trial wave functions are obtained by solving the energy eigen-value equation, the ground state energy, the first excited state energy, and excitation energy of polaron are drived.#br#Numerical calculation by using polaron unit, numerical results indicate that the first excited state energy and excitation energy of polaron increase with increasing the width or height of the potential barrier, because the probability of electron penetrating potential barrier will decrease as the width or height of potential barrier increases, so that electronic energy, the first excited state energy and excitation energy of polaron all increase. Numerical results also show that energies mentioned earlier decrease with increasing radius of quantum disk, which illustrates that the quantum disk has obvious quantum size effect.#br#It is also found from numerical results that the first excited state energy of polaron decreases with increasing effective confine length, it falls quickly when effective confine length is less than 0.3 and is a little change when effective confine length is more than 0.3. The longer the effective confine length, the more weakly the electron is bounded and the smaller the potential energy is, so that the first excited state energy of polaron decreases. Oppositely, the excitation energy of polaron increases with increasing effective confine length, because the first excited state energy decreases more slowly than the ground state energy.
-
Keywords:
- polaron /
- quantum disk /
- finite depth potential well /
- excited state
[1] Wang H Y, Dou X M, Ni H Q, Niu Z C, Sun B Q 2014 Acta Phys. Sin. 63 027801(in Chinese) [王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权 2014 物理学报 63 027801]
[2] Wang H P, Wang G L, Ni H Q, Xu Y Q, Niu Z C, Gao F Q 2013 Acta Phys. Sin. 62 207303(in Chinese) [王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐 2013 物理学报 62 207303]
[3] Zhou Q C, Di Z Y 2013 Acta Phys. Sin. 62 134206(in Chinese) [周青春, 狄尊燕 2013 物理学报 62 134206]
[4] Li S S, Xia J B 2001 J. Appl. Phys. 89 3434
[5] Chen C Y, Lin D L, Jin P W, Zhang S Q, Chen R 1994 Phys. Rev. B 49 13680
[6] Thilagam A, Lohe M A 2005 Physica E 25 625
[7] Li Y L, Xiao J L 2005 Chin. J. Lumin. 26 436 (in Chinese) [李亚利, 肖景林 2005 发光学报 26 436]
[8] Jian R H, Zhao C L 2008 Chin. J. Lumin. 29 215 [简荣华, 赵翠兰 2008 发光学报 29 215]
[9] Filikhin I, Deyneka E, Vlahovic B 2004 Modelling Simul. Mater. Sci. Eng. 12 1121
[10] Filikhin I, Suslov V M, Vlahovic B 2006 Physica E 33 349
[11] Chang K, Xia J B 1998 Phys. Rev. B 57 9780
[12] Chang K, Lou W K 2011 Phys. Rev. Lett. 106 206802
[13] Fang D F, Ding X, Dai R C, Zhao Z, Wang Z P, Zhang Z M 2014 Chin. Phys. B 23 127804
[14] Bagheri Tagani M, Rahimpour Soleimani H 2014 Chin. Phys. B 23 057302
[15] Kruchinin S Y, Rukhlenko I D, Baimuratov A S, Leonov M Y, Turkov V K, Gun’ko Y K, Baranov A V, Fedorov A V 2015 J. Appl. Phys. 117 014306
[16] Liu Y Y, Petersson K D, Stehlik J, Taylor J M, Petta J R 2014 Phys. Rev. Lett. 113 036801
[17] Samavatia A, Othamana Z, Ghoshalb S K, Mustafac M K 2015 Chin. Phys. B 24 028103
[18] Sarengaowa 2009 M. S. Thesis (Tongliao: Inner Mongolia University for Nationalities) (in Chinese) [萨仁高娃 2009 硕士学位论文(通辽: 内蒙古民族大学)]
-
[1] Wang H Y, Dou X M, Ni H Q, Niu Z C, Sun B Q 2014 Acta Phys. Sin. 63 027801(in Chinese) [王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权 2014 物理学报 63 027801]
[2] Wang H P, Wang G L, Ni H Q, Xu Y Q, Niu Z C, Gao F Q 2013 Acta Phys. Sin. 62 207303(in Chinese) [王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐 2013 物理学报 62 207303]
[3] Zhou Q C, Di Z Y 2013 Acta Phys. Sin. 62 134206(in Chinese) [周青春, 狄尊燕 2013 物理学报 62 134206]
[4] Li S S, Xia J B 2001 J. Appl. Phys. 89 3434
[5] Chen C Y, Lin D L, Jin P W, Zhang S Q, Chen R 1994 Phys. Rev. B 49 13680
[6] Thilagam A, Lohe M A 2005 Physica E 25 625
[7] Li Y L, Xiao J L 2005 Chin. J. Lumin. 26 436 (in Chinese) [李亚利, 肖景林 2005 发光学报 26 436]
[8] Jian R H, Zhao C L 2008 Chin. J. Lumin. 29 215 [简荣华, 赵翠兰 2008 发光学报 29 215]
[9] Filikhin I, Deyneka E, Vlahovic B 2004 Modelling Simul. Mater. Sci. Eng. 12 1121
[10] Filikhin I, Suslov V M, Vlahovic B 2006 Physica E 33 349
[11] Chang K, Xia J B 1998 Phys. Rev. B 57 9780
[12] Chang K, Lou W K 2011 Phys. Rev. Lett. 106 206802
[13] Fang D F, Ding X, Dai R C, Zhao Z, Wang Z P, Zhang Z M 2014 Chin. Phys. B 23 127804
[14] Bagheri Tagani M, Rahimpour Soleimani H 2014 Chin. Phys. B 23 057302
[15] Kruchinin S Y, Rukhlenko I D, Baimuratov A S, Leonov M Y, Turkov V K, Gun’ko Y K, Baranov A V, Fedorov A V 2015 J. Appl. Phys. 117 014306
[16] Liu Y Y, Petersson K D, Stehlik J, Taylor J M, Petta J R 2014 Phys. Rev. Lett. 113 036801
[17] Samavatia A, Othamana Z, Ghoshalb S K, Mustafac M K 2015 Chin. Phys. B 24 028103
[18] Sarengaowa 2009 M. S. Thesis (Tongliao: Inner Mongolia University for Nationalities) (in Chinese) [萨仁高娃 2009 硕士学位论文(通辽: 内蒙古民族大学)]
Catalog
Metrics
- Abstract views: 6288
- PDF Downloads: 152
- Cited By: 0