Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental research on the new Al0.25Ga0.75N/GaN HEMTs with a step AlGaN layer

Yuan Song Duan Bao-Xing Yuan Xiao-Ning Ma Jian-Chong Li Chun-Lai Cao Zhen Guo Hai-Jun Yang Yin-Tang

Citation:

Experimental research on the new Al0.25Ga0.75N/GaN HEMTs with a step AlGaN layer

Yuan Song, Duan Bao-Xing, Yuan Xiao-Ning, Ma Jian-Chong, Li Chun-Lai, Cao Zhen, Guo Hai-Jun, Yang Yin-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, experimental results are reported about the new Al0.25Ga0.75N/GaN high electron mobility transistor (HEMT) with a step AlGaN layer. The rule of 2DEG concentration variation with the thickness of AlGaN epitaxial layer has been applied to the new AlGaN/GaN HEMTs: The step AlGaN layer is formed at the gate edge by inductively coupled plasma etching, the 2DEG concentration in the etched region is much lower than the other parts of the device. A new electric field peak appears at the corner of the step AlGaN layer. The high electric field at the gate edge is decreased effectively due to the emergence of the new electric field peak, and this optimizes the surface electric field of the new AlGaN/GaN HEMTs. The new devices have the same threshold voltage and transconductance as the conventional structure, -1.5 V and 150 mS/mm. That means, the step AlGaN layer does not affect the forward characteristics of the AlGaN/GaN HEMTs. As the more uniform surface electric field distribution usually leads to a higher breakdown voltage (BV), with the same gate to drain length LGD=4 m, the BV can be improved by 58% for the proposed Al0.25Ga0.75N/GaN HEMTs as compared with the conventional structure. At VGS=1 V, the saturation currents (Isat) is 230 mA/mm for the conventional Al0.25Ga0.75N/GaN HEMT and 220 mA/mm for the partially etched Al0.25Ga0.75N/GaN HEMT (LEtch=4 m, LGD=4 m). The decrease of Isat is at most 10 mA/mm. However, as the BV has a significant enhancement of almost 40 V, these drawbacks are small enough to be acceptable. During the pulse I-V test, the current collapse quantity of the conventional structure is almost 40% of the maximum IDS(DC), but this quantity in the new devices is only about 10%, thus the current collapse effect in Al0.25Ga0.75N/GaN HEMTs has a significant remission for a step AlGaN layer. And as the high electric field peak at the gate edge is decreased, the effect of the gate electrode on electron injection caused by this electric field peak is also included. The injected electrons may increase the leakage current during the off-state, and these injected electrons would form the surface trapped charge as to decrease the 2DEG density at the gate. As a result, the output current and the transconductance would decrease due to the decreased electron density during the on-state. That means, with the region partially etched, the electron injection effect of the gate electrode would be remissed and the stability of Schottky gate electrode would be improved. In addition, due to the decrease of the high electric field at the gate edge, the degradation of the device, which is caused by the high electric field converse piezoelectric effect, will be restrained. The stability of the partially etched AlGaN/GaN HEMT will become better.
      Corresponding author: Duan Bao-Xing, bxduan@163.com
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2015CB351906, 2014CB339900), and the National Natural Science Foundation of China (Grant Nos. 61234006, 61234006).
    [1]

    Kamath A, Patil T, Adari R, Bhattacharya I, Ganguly S, Aldhaheri R W, Hussain M A, Dipankar S 2012 IEEE Electron Device Lett. 33 1690

    [2]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyaoshi T, Daisuke U 2008 IEEE Transactions on Electron Devices 29 1087

    [3]

    Johnson J. W., Zhang A. P., Luo W B, Fan R, Pearton S. J., Park S. S., Park Y. J., Chyi J I 2003 IEEE Electron. Device Lett. 24 32

    [4]

    Huang T D, Zhu X L, Wong K M, Lau K M 2012 IEEE Electron Device Lett. 33 212

    [5]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal Appl. Phy.130 093529

    [6]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087

    [7]

    Zhou C H, Jiang Q M, Huang S, Chen K J 2012 IEEE Electron Device Lett. 33 1132

    [8]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal of Appl. Phys.130 093529

    [9]

    Lee J H, Yoo J K, Kang H S, Lee J H 2012 IEEE Electron Device Lett. 33 1171

    [10]

    Lee H S, Daniel P, Sun M, Gao X, Guo S P, Tomas P 2012 IEEE Electron Device Lett. 33 982

    [11]

    Duan B X, Yang Y T 2012 Sci. China Inf. Sci. 55 473

    [12]

    Duan B X, Yang Y T 2012 Micro & Nano Letter 7 9

    [13]

    Subramaniam A, Takashi E, Lawrence S, Hiroyasu I 2006 Japanese Journal of Applied Physics 45 L220

    [14]

    Ando Y., Okamoto Y., Miyamoto H., Nakayama T., Inoue T., Kuzuhara M 2003 IEEE Electron Device Lett. 24 289

    [15]

    Benbakhti B, Rousseau M, De Jaeger J C 2007 Microelectronics Journal 38 7

    [16]

    Jin D, Joh J, Krishnan S, Tipirneni N, Pendharkar S, del Alamo J A 2013 IEEE International Electron Devices Meeting Washington DC. USA Dec. 9-11, 2013, p 6.2.16.2.4

    [17]

    Injun H, Jongseob K, Soogine C, Hyun-Sik C, Sun-Kyu H, Jaejoon O, Jai Kwang S, U-In C 2013 IEEE Electron Device Lett. 34 12 1494

    [18]

    Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films. 515 4517

    [19]

    Chen X B, Johnny K O S 2001 IEEE Transactions on Electron Devices 48 344

    [20]

    Duan B X, Zhang B, Li Z J 2006 IEEE Electron Device Lett. 27 377

    [21]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [22]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [23]

    Duan B X, Yang Y T 2011 IEEE Transactions on Electron Devices 58 2057

    [24]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [25]

    Duan B X, Yang Y T, Chen K J 2012 Acta Phys. Sin. 61 247302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 247302]

    [26]

    Duan B X, Yang Y T, Kevin J. Chen 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 227302]

    [27]

    Di S, Jie L, Zhiqun C, Wilson C. W. T, Kei May L, Kevin J. Chen. 2007 IEEE Electron Device Lett. 28 189

    [28]

    Udrea F, Popescu A, Milne W I 1998 Electronics Letters 34 808

    [29]

    Smorchkova I P, Elsass C R, Ibbetson J P, Heying B, Fini P, Den Baars S P, Speck J S, Mishra U K 1999 Journal of Applied Physics 86 4520

    [30]

    Yifei Z, Smorchkova I P, Elsass C R, Stacia K, Ibbetson J P, Jasprit S 2000 Appl. Phys. Lett.87 7981

    [31]

    Ibbetson J P, Fini P T, Ness K D, DenBaars S P, SpeckJ S, Mishra U K 2000 Appl. Phys. Lett. 77 250

    [32]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302

    [33]

    DESSIS, ISE TCAD Manuals Release 10., Integrated Systems Engineering, Zurich, Switzerland, 2004

  • [1]

    Kamath A, Patil T, Adari R, Bhattacharya I, Ganguly S, Aldhaheri R W, Hussain M A, Dipankar S 2012 IEEE Electron Device Lett. 33 1690

    [2]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyaoshi T, Daisuke U 2008 IEEE Transactions on Electron Devices 29 1087

    [3]

    Johnson J. W., Zhang A. P., Luo W B, Fan R, Pearton S. J., Park S. S., Park Y. J., Chyi J I 2003 IEEE Electron. Device Lett. 24 32

    [4]

    Huang T D, Zhu X L, Wong K M, Lau K M 2012 IEEE Electron Device Lett. 33 212

    [5]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal Appl. Phy.130 093529

    [6]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087

    [7]

    Zhou C H, Jiang Q M, Huang S, Chen K J 2012 IEEE Electron Device Lett. 33 1132

    [8]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal of Appl. Phys.130 093529

    [9]

    Lee J H, Yoo J K, Kang H S, Lee J H 2012 IEEE Electron Device Lett. 33 1171

    [10]

    Lee H S, Daniel P, Sun M, Gao X, Guo S P, Tomas P 2012 IEEE Electron Device Lett. 33 982

    [11]

    Duan B X, Yang Y T 2012 Sci. China Inf. Sci. 55 473

    [12]

    Duan B X, Yang Y T 2012 Micro & Nano Letter 7 9

    [13]

    Subramaniam A, Takashi E, Lawrence S, Hiroyasu I 2006 Japanese Journal of Applied Physics 45 L220

    [14]

    Ando Y., Okamoto Y., Miyamoto H., Nakayama T., Inoue T., Kuzuhara M 2003 IEEE Electron Device Lett. 24 289

    [15]

    Benbakhti B, Rousseau M, De Jaeger J C 2007 Microelectronics Journal 38 7

    [16]

    Jin D, Joh J, Krishnan S, Tipirneni N, Pendharkar S, del Alamo J A 2013 IEEE International Electron Devices Meeting Washington DC. USA Dec. 9-11, 2013, p 6.2.16.2.4

    [17]

    Injun H, Jongseob K, Soogine C, Hyun-Sik C, Sun-Kyu H, Jaejoon O, Jai Kwang S, U-In C 2013 IEEE Electron Device Lett. 34 12 1494

    [18]

    Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films. 515 4517

    [19]

    Chen X B, Johnny K O S 2001 IEEE Transactions on Electron Devices 48 344

    [20]

    Duan B X, Zhang B, Li Z J 2006 IEEE Electron Device Lett. 27 377

    [21]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [22]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [23]

    Duan B X, Yang Y T 2011 IEEE Transactions on Electron Devices 58 2057

    [24]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [25]

    Duan B X, Yang Y T, Chen K J 2012 Acta Phys. Sin. 61 247302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 247302]

    [26]

    Duan B X, Yang Y T, Kevin J. Chen 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 227302]

    [27]

    Di S, Jie L, Zhiqun C, Wilson C. W. T, Kei May L, Kevin J. Chen. 2007 IEEE Electron Device Lett. 28 189

    [28]

    Udrea F, Popescu A, Milne W I 1998 Electronics Letters 34 808

    [29]

    Smorchkova I P, Elsass C R, Ibbetson J P, Heying B, Fini P, Den Baars S P, Speck J S, Mishra U K 1999 Journal of Applied Physics 86 4520

    [30]

    Yifei Z, Smorchkova I P, Elsass C R, Stacia K, Ibbetson J P, Jasprit S 2000 Appl. Phys. Lett.87 7981

    [31]

    Ibbetson J P, Fini P T, Ness K D, DenBaars S P, SpeckJ S, Mishra U K 2000 Appl. Phys. Lett. 77 250

    [32]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302

    [33]

    DESSIS, ISE TCAD Manuals Release 10., Integrated Systems Engineering, Zurich, Switzerland, 2004

  • [1] Wu Peng, Li Ruo-Han, Zhang Tao, Zhang Jin-Cheng, Hao Yue. Interface-state suppression of AlGaN/GaN Schottky barrier diodes with post-anode-annealing treatment. Acta Physica Sinica, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [2] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [3] Liu Jing, Wang Lin-Qian, Huang Zhong-Xiao. Current collapse suppression in AlGaN/GaN high electron mobility transistor with groove structure. Acta Physica Sinica, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [4] Duan Bao-Xing, Cao Zhen, Yuan Xiao-Ning, Yang Yin-Tang. New REBULF super junction LDMOS with the N type buffered layer. Acta Physica Sinica, 2014, 63(22): 227302. doi: 10.7498/aps.63.227302
    [5] Duan Bao-Xing, Yang Yin-Tang. Breakdown voltage analysis for the new Al0.25 Ga0.75N/GaN HEMTs with the step AlGaN layers. Acta Physica Sinica, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [6] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [7] Duan Bao-Xing, Yang Yin-Tang, Kevin J. Chen. Breakdown vovtage analysis of new AlGaN/GaN high electron mobility transistor with the partial fixed charge in Si3N4 layer. Acta Physica Sinica, 2012, 61(24): 247302. doi: 10.7498/aps.61.247302
    [8] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [9] Duan Bao-Xing, Yang Yin-Tang, Kevin J. Chen. Breakdown voltage analysis for new Al0.25Ga0.75N/GaN HEMT with F ion implantation. Acta Physica Sinica, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [10] Zhang Jin-Cheng, Mao Wei, Liu Hong-Xia, Wang Chong, Zhang Jin-Feng, Hao Yue, Yang Lin-An, Xu Sheng-Rui, Bi Zhi-Wei, Zhou Zhou, Yang Ling, Wang Hao, Yang Cui, Ma Xiao-Hua. Study on the suppression mechanism of current collapse with field-plates in GaN high-electron mobility transistors. Acta Physica Sinica, 2011, 60(1): 017205. doi: 10.7498/aps.60.017205
    [11] Zhang Jin-Cheng, Zheng Peng-Tian, Dong Zuo-Dian, Duan Huan-Tao, Ni Jin-Yu, Zhang Jin-Feng, Hao Yue. The effect of back-barrier layer on the carrier distribution in the AlGaN/GaN double-heterostructure. Acta Physica Sinica, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [12] Liu Lin-Jie, Yue Yuan-Zheng, Zhang Jin-Cheng, Ma Xiao-Hua, Dong Zuo-Dian, Hao Yue. Temperature characteristics of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric. Acta Physica Sinica, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [13] Li Ruo-Fan, Yang Rui-Xia, Wu Yi-Bin, Zhang Zhi-Guo, Xu Na-Ying, Ma Yong-Qiang. Research on the current collapse in AlGaN/GaN high-electron-mobility transistors through the inverse piezoelectric polarization model. Acta Physica Sinica, 2008, 57(4): 2450-2455. doi: 10.7498/aps.57.2450
    [14] Wei Wei, Lin Ruo-Bing, Feng Qian, Hao Yue. Current collapse mechanism of field-plated AlGaN/GaN HEMTs. Acta Physica Sinica, 2008, 57(1): 467-471. doi: 10.7498/aps.57.467
    [15] Xi Guang-Yi, Ren Fan, Hao Zhi-Biao, Wang Lai, Li Hong-Tao, Jiang Yang, Zhao Wei, Han Yan-Jun, Luo Yi. Influence of pit defects on AlGaN surface and dislocation defects in GaN buffer layer on current collapse of AlGaN/GaN HEMTs. Acta Physica Sinica, 2008, 57(11): 7238-7243. doi: 10.7498/aps.57.7238
    [16] Wei Wei, Hao Yue, Feng Qian, Zhang Jin-Cheng, Zhang Jin-Feng. Geometrical optimization of AlGaN/GaN field-plate high electron mobility transistor. Acta Physica Sinica, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [17] Li Qi, Li Zhao-Ji, Zhang Bo. Analytical model for the surface electrical field distribution of double RESURF device with surface implanted P-top region. Acta Physica Sinica, 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [18] Guo Liang-Liang, Feng Qian, Hao Yue, Yang Yan. Study of high breakdown-voltage AlGaN/GaN FP-HEMT. Acta Physica Sinica, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [19] Hao Yue, Han Xin-Wei, Zhang Jin-Cheng, Zhang Jin-Feng. Current slump mechanism and its physical model of AlGaN/GaN HEMTs under DC bias. Acta Physica Sinica, 2006, 55(7): 3622-3628. doi: 10.7498/aps.55.3622
    [20] Wang Chong, Feng Qian, Hao Yue, Wan Hui. Effect of pre-metallization processing and annealing on Ni/Au Schottky contacts in AlGaN/GaN heterostructures. Acta Physica Sinica, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
Metrics
  • Abstract views:  5859
  • PDF Downloads:  265
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2015
  • Accepted Date:  05 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回