Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of novel silicon based lateral power devices with floating substrate on insulator

Tang Chun-Ping Duan Bao-Xing Song Kun Wang Yan-Dong Yang Yin-Tang

Citation:

Analysis of novel silicon based lateral power devices with floating substrate on insulator

Tang Chun-Ping, Duan Bao-Xing, Song Kun, Wang Yan-Dong, Yang Yin-Tang
PDF
HTML
Get Citation
  • With the rapid development of the traditional inorganic semiconductor industry, the improvement of its electrical performance is gradually approaching to the limit. It is difficult to continue to improve the performance, lessen the size, and reduce the cost. Therefore, organic semiconductor materials and devices with simple process and low cost have been found and gradually become a new research hotspot. Although organic semiconductor materials and devices are developing rapidly, their electrical properties, such as carrier mobility, are considerably inferior to those of inorganic semiconductors, and their research direction and application prospect are relatively fixed and single. They are developed only in display, sensing, photoelectric conversion and other fields, but the researches on switching power devices, integrated circuits and other fields are still relatively blank. At the same time, power devices are used only in the field of inorganic semiconductors. Therefore, in order to expand the research direction of organic semiconductors and power devices at the same time, a novelsilicon on insulator lateral double-diffused metal oxide semiconductor (SOI LDMOS)power device is reported in this paper. Unlike the SOI LDMOS power devices in traditional inorganic semiconductors, this novel device can be used in the field of organic semiconductors by combining with insulated flexible substrates, which provides a new possibility for the research direction of organic semiconductors. In this paper, both simulation and experiment verify that specific on-resistance (RON,sp) and threshold voltage (VTH) do not change significantly when the conventional SOI LDMOS lacks the substrate electrode, but the breakdown voltage decreases by about 15% due to the absence of the substrate electrode or the longitudinal electric field. In response to this phenomenon, in this paper proposed is a novel SOI LDMOS power device that possesses surface substrate electrodes and drift zone oxide trenches. This novel device can provide electrodes for the substrate again, optimize the horizontal and vertical electric field, and significantly change neither of the RON,sp and the VTH. At the same time, the breakdown voltage (BV) of conventional SOI LDMOS is increased by 57.54%, which alleviates the adverse effects caused by the application in the field of organic semiconductors. This novel SOI LDMOS power device provides the possibility of applying traditional power semiconductors to the research of organic semiconductors, and has innovative significance for expanding the organic semiconductor research.
      Corresponding author: Duan Bao-Xing, bxduan@163.com
    • Funds: Project supported by the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2018JC-017) and the 111 Project, China (Grant No. B12026)
    [1]

    李琦, 李肇基, 张波 2007 物理学报 56 6660Google Scholar

    Li Q, Li Z J, Zhang B 2007 Acta Phys. Sin. 56 6660Google Scholar

    [2]

    Lei J M, Hu S D, Wang S, Lin Z 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC) Hsinchu, China, October 18−20, 2017 p1

    [3]

    Okawa T, Eguchi H, Taki M, Hamada K 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Prague, Czech Republic, June 12−16, 2016 p435

    [4]

    Cheng J J, Wu S Y, Chen W Z, Huang H M, Yi B 2019 IEEE J. Electron Devices Soc. 7 682Google Scholar

    [5]

    Xia C, Cheng X H, Wang Z J, Xu D W, Cao D, Zheng L, Shen L Y, Yu Y H, Shen D S 2014 IEEE Trans. Electron Devices 61 3477Google Scholar

    [6]

    Fang Z Q, Xu Z Z, Qian W S 2019 China Semiconductor Technology International Conference (CSTIC) Shanghai, China, March 18−19, 2019 p1

    [7]

    Tang P P, Wang Y, Bao M T, Luo X, Cao F, Yu C H 2019 Micro & Nano Letters 14 420

    [8]

    Dong Z M, Duan B X, Fu C, Guo H J, Cao Z, Yang Y T 2018 IEEE Electron Device Lett. 39 1358Google Scholar

    [9]

    Wang Y D, Duan B X, Song H T, Yang Y T 2020 IEEE Electron Device Lett. 41 1681Google Scholar

    [10]

    Duan B X, Cao Z, Yuan X N, Yuan S, Yang Y T 2015 IEEE Electron Device Lett. 36 47Google Scholar

    [11]

    Xu Q, Guo Y F, Zhang Y, Liu L L, Yao J F, Sheu G 2012 Procedia Eng. 29 668Google Scholar

    [12]

    段宝兴, 曹震, 袁小宁, 杨银堂 2014 物理学报 63 227302Google Scholar

    Duan B X, Cao Z, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 227302Google Scholar

    [13]

    Zhang B, Cheng J B, Qiao M, Li Z J 2008 9th International Conference on Solid-State and Integrated-Circuit Technology Beijing, China, October 20−23, 2008 p164

    [14]

    Cao Z, Duan B X, Shi T T, Dong Z M, Guo H J, Yang Y T 2018 IEEE Trans. Electron Devices 65 2565Google Scholar

    [15]

    Cao Z, Duan B X, Yuan S, Guo H J, Lv J M, Shi T T, Yang Y T 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD) Sapporo, Japan, May 28–June 1, 2017 p283

    [16]

    Cao Z, Duan B X, Shi T T, Yuan S, Yang Y T 2018 IETE Tech. Rev. 35 402Google Scholar

    [17]

    段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂 2015 物理学报 64 067304Google Scholar

    Duan B X, Li C L, Ma J C, Yuan S, Yang Y T 2015 Acta Phys. Sin. 64 067304Google Scholar

    [18]

    Wu L J, Zhang W T, Shi Q, Cai P F, He H C 2014 Electron. Lett. 50 1982Google Scholar

    [19]

    Duan B X, Li M Z, Dong Z M, Wang Y D, Yang Y T 2019 IEEE Trans. Electron Devices 66 4836Google Scholar

    [20]

    Wu L J, Wu Y Q, Lei B, Zhang Y Y, Huang Y, Zhu L 2019 Micro & Nano Letters 14 600Google Scholar

    [21]

    Cao Z, Duan B X, Song H T, Xie F Y, Yang Y T 2019 IEEE Trans. Electron Devices 66 2327Google Scholar

    [22]

    Tsai C C 2011 16th Opto-Electronics and Communications Conference Kaohsiung, China, July 4−8, 2011 p370

    [23]

    Zhang J 2018 International Flexible Electronics Technology Conference (IFETC) Ottawa, Canada, August 7−9, 2018 p1

    [24]

    Kadija I 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC) Pisa, Italy, September 16−19 2019 p1

    [25]

    Guo S N, Cheng J J, Chen X B 2019 IEEE 13th International Conference on Power Electronics and Drive Systems (PEDS) Toulouse, France, July 9−12, 2019 p1

    [26]

    Cao Z, Jiao L C 2020 IEEE J. Electron Devices Soci. 8 890Google Scholar

  • 图 1  两种器件结构示意图 (a) 常规SOI LDMOS结构; (b) 带有表面衬底电极和漂移区氧化槽的新型SOI LDMOS结构

    Figure 1.  The schematic diagrams of the two devices are as follows: (a) Conventional SOI LDMOS structure; (b) a novel SOI LDMOS structure with a surface electrode and a drift oxidation groove.

    图 2  实验结果 (a) 8 in晶片; 电子扫描显微镜下的SOI LDMOS结构截面图(b)和俯视图(c)

    Figure 2.  Experimental results: (a) 8-inch wafer; (b) sectional view and (c) vertical view of SOI LDMOS under an electron scanning microscope.

    图 3  衬底厚度Tsub = 15 μm, 漂移区长度LD = 4 μm的SOI LDMOS电场分布图 (a) 表面电场分布图; (b) 纵向电场分布图

    Figure 3.  Electric field distribution graph for SOI LDMOS with substrate thickness of 15 μm (Tsub = 15 μm) and drift zone length of 4 μm (LD = 4 μm): (a) Surface electric field distribution graph; (b) longitudinal electric field distribution graph.

    图 4  衬底厚度Tsub = 15 μm, 漂移区长度LD = 4 μm的SOI LDMOS仿真和实验结果对比 (a) VGS = 5 V时的输出特性曲线; (b) VDS = 10 V时的转移特性曲线

    Figure 4.  Comparison of simulation and experimental results for SOI LDMOS with substrate thickness of 15 μm (Tsub = 15 μm) and drift zone length of 4 μm (LD = 4 μm): (a) Output characteristic curve when VGS = 5 V; (b) transfer characteristic curve when VDS = 10 V.

    图 5  SOI LDMOS击穿特性的仿真和实验结果对比图

    Figure 5.  SOI LDMOS comparison of simulation and experimental results of breakdown characteristics.

    图 6  漂移区掺杂浓度对SOI LDMOS两种结构对应的击穿电压的影响

    Figure 6.  Effect of doping concentration in drift region on breakdown voltage of two SOI LDMOS structures.

    图 7  几种SOI LDMOS的电场分布图 (a) 表面电场分布图; (b) 纵向电场分布图

    Figure 7.  Electric field distribution of several SOI LDMOS: (a) Surface electric field distribution; (b) longitudinal electric field distribution diagram.

    图 8  几种SOI LDMOS的击穿特性图

    Figure 8.  Breakdown characteristics of several SOI LDMOS.

    图 9  几种SOI LDMOS的仿真结果 (a) 输出特性曲线; (b) 转移特性曲线

    Figure 9.  Simulation results of several SOI LDMOS: (a) Output characteristic curve; (b) transfer characteristic curve.

    图 10  新型SOI LDMOS的几种参数对BV和RON, sp的影响 (a) ND的影响曲线; (b) DOX的影响曲线; (c) TOX的影响曲线

    Figure 10.  Influence of several parameters of new SOI LDMOS on BV, RON,sp: (a) Influence curve of ND; (b) influence curve of DOX; (c) influence curve of TOX.

    表 1  常规SOI LDMOS与衬底浮空SOI LDMOS器件仿真最优参数

    Table 1.  Simulation optimal parameters of conventional SOI LDMOS/ substrate floating SOI LDMOS devices.

    器件最优参数(仿真)常规SOI LDMOS/衬底
    浮空SOI LDMOS
    漂移区厚度Td/μm2
    埋氧层厚度TOX/μm2
    衬底厚度Tsub/μm15
    漂移区N型掺杂浓度, Nd/cm–31.5 × 1016
    衬底P型掺杂浓度Psub/cm–32 × 1014
    阱区P型掺杂浓度Pwell/cm–31.5 × 1016
    DownLoad: CSV

    表 2  新型SOI LDMOS器件仿真最优参数

    Table 2.  Simulation optimal parameters for novel SOI LDMOS devices.

    器件最优参数(仿真)新型SOI LDMOS
    漂移区厚度TD/μm2
    埋氧层厚度TOX/μm2
    衬底厚度Tsub/μm15
    氧化槽宽度WT/μm3
    氧化槽深度DT/μm0.6
    漂移区N型掺杂浓度ND/(1014 cm–3)5
    衬底P型掺杂浓度Psub/(1014 cm–3)4
    阱区P型掺杂浓度Pwell/(1016 cm–3)6
    DownLoad: CSV
  • [1]

    李琦, 李肇基, 张波 2007 物理学报 56 6660Google Scholar

    Li Q, Li Z J, Zhang B 2007 Acta Phys. Sin. 56 6660Google Scholar

    [2]

    Lei J M, Hu S D, Wang S, Lin Z 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC) Hsinchu, China, October 18−20, 2017 p1

    [3]

    Okawa T, Eguchi H, Taki M, Hamada K 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Prague, Czech Republic, June 12−16, 2016 p435

    [4]

    Cheng J J, Wu S Y, Chen W Z, Huang H M, Yi B 2019 IEEE J. Electron Devices Soc. 7 682Google Scholar

    [5]

    Xia C, Cheng X H, Wang Z J, Xu D W, Cao D, Zheng L, Shen L Y, Yu Y H, Shen D S 2014 IEEE Trans. Electron Devices 61 3477Google Scholar

    [6]

    Fang Z Q, Xu Z Z, Qian W S 2019 China Semiconductor Technology International Conference (CSTIC) Shanghai, China, March 18−19, 2019 p1

    [7]

    Tang P P, Wang Y, Bao M T, Luo X, Cao F, Yu C H 2019 Micro & Nano Letters 14 420

    [8]

    Dong Z M, Duan B X, Fu C, Guo H J, Cao Z, Yang Y T 2018 IEEE Electron Device Lett. 39 1358Google Scholar

    [9]

    Wang Y D, Duan B X, Song H T, Yang Y T 2020 IEEE Electron Device Lett. 41 1681Google Scholar

    [10]

    Duan B X, Cao Z, Yuan X N, Yuan S, Yang Y T 2015 IEEE Electron Device Lett. 36 47Google Scholar

    [11]

    Xu Q, Guo Y F, Zhang Y, Liu L L, Yao J F, Sheu G 2012 Procedia Eng. 29 668Google Scholar

    [12]

    段宝兴, 曹震, 袁小宁, 杨银堂 2014 物理学报 63 227302Google Scholar

    Duan B X, Cao Z, Yuan X N, Yang Y T 2014 Acta Phys. Sin. 63 227302Google Scholar

    [13]

    Zhang B, Cheng J B, Qiao M, Li Z J 2008 9th International Conference on Solid-State and Integrated-Circuit Technology Beijing, China, October 20−23, 2008 p164

    [14]

    Cao Z, Duan B X, Shi T T, Dong Z M, Guo H J, Yang Y T 2018 IEEE Trans. Electron Devices 65 2565Google Scholar

    [15]

    Cao Z, Duan B X, Yuan S, Guo H J, Lv J M, Shi T T, Yang Y T 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD) Sapporo, Japan, May 28–June 1, 2017 p283

    [16]

    Cao Z, Duan B X, Shi T T, Yuan S, Yang Y T 2018 IETE Tech. Rev. 35 402Google Scholar

    [17]

    段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂 2015 物理学报 64 067304Google Scholar

    Duan B X, Li C L, Ma J C, Yuan S, Yang Y T 2015 Acta Phys. Sin. 64 067304Google Scholar

    [18]

    Wu L J, Zhang W T, Shi Q, Cai P F, He H C 2014 Electron. Lett. 50 1982Google Scholar

    [19]

    Duan B X, Li M Z, Dong Z M, Wang Y D, Yang Y T 2019 IEEE Trans. Electron Devices 66 4836Google Scholar

    [20]

    Wu L J, Wu Y Q, Lei B, Zhang Y Y, Huang Y, Zhu L 2019 Micro & Nano Letters 14 600Google Scholar

    [21]

    Cao Z, Duan B X, Song H T, Xie F Y, Yang Y T 2019 IEEE Trans. Electron Devices 66 2327Google Scholar

    [22]

    Tsai C C 2011 16th Opto-Electronics and Communications Conference Kaohsiung, China, July 4−8, 2011 p370

    [23]

    Zhang J 2018 International Flexible Electronics Technology Conference (IFETC) Ottawa, Canada, August 7−9, 2018 p1

    [24]

    Kadija I 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC) Pisa, Italy, September 16−19 2019 p1

    [25]

    Guo S N, Cheng J J, Chen X B 2019 IEEE 13th International Conference on Power Electronics and Drive Systems (PEDS) Toulouse, France, July 9−12, 2019 p1

    [26]

    Cao Z, Jiao L C 2020 IEEE J. Electron Devices Soci. 8 890Google Scholar

  • [1] Liu Cheng, Li Ming, Wen Zhang, Gu Zhao-Yuan, Yang Ming-Chao, Liu Wei-Hua, Han Chuan-Yu, Zhang Yong, Geng Li, Hao Yue. Establishment of composite leakage model and design of GaN Schottky barrier diode with stepped field plate. Acta Physica Sinica, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [2] Xu Da-Lin, Wang Yu-Qi, Li Xin-Hua, Shi Tong-Fei. Effect of charge coupling on breakdown voltage of high voltage trench-gate-type super barrier rectifier. Acta Physica Sinica, 2021, 70(6): 067301. doi: 10.7498/aps.70.20201558
    [3] Yang Chu-Ping, Geng Yi-Nan, Wang Jie, Liu Xing-Nan, Shi Zhen-Gang. Breakdown voltage of high pressure helium parallel plates and effect of field emission. Acta Physica Sinica, 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [4] Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang. Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer. Acta Physica Sinica, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [5] Zhao Yi-Han, Duan Bao-Xing, Yuan Song, Lü Jian-Mei, Mei Yang. Novel lateral double-diffused MOSFET with vertical assisted deplete-substrate layer. Acta Physica Sinica, 2017, 66(7): 077302. doi: 10.7498/aps.66.077302
    [6] Yuan Song, Duan Bao-Xing, Yuan Xiao-Ning, Ma Jian-Chong, Li Chun-Lai, Cao Zhen, Guo Hai-Jun, Yang Yin-Tang. Experimental research on the new Al0.25Ga0.75N/GaN HEMTs with a step AlGaN layer. Acta Physica Sinica, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [7] Cao Zhen, Duan Bao-Xing, Yuan Xiao-Ning, Yang Yin-Tang. Complete three-dimensional reduced surface field super junction lateral double-diffused metal-oxide-semiconductor field-effect transistor with semi-insulating poly silicon. Acta Physica Sinica, 2015, 64(18): 187303. doi: 10.7498/aps.64.187303
    [8] Yue Shan, Liu Xing-Nan, Shi Zhen-Gang. Experimental study on breakdown voltage between parallel plates in high-pressure helium. Acta Physica Sinica, 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [9] Duan Bao-Xing, Li Chun-Lai, Ma Jian-Chong, Yuan Song, Yang Yin-Tang. New folding lateral double-diffused metal-oxide-semiconductor field effect transistor with the step oxide layer. Acta Physica Sinica, 2015, 64(6): 067304. doi: 10.7498/aps.64.067304
    [10] Duan Bao-Xing, Cao Zhen, Yuan Xiao-Ning, Yang Yin-Tang. New REBULF super junction LDMOS with the N type buffered layer. Acta Physica Sinica, 2014, 63(22): 227302. doi: 10.7498/aps.63.227302
    [11] Duan Bao-Xing, Cao Zhen, Yuan Song, Yuan Xiao-Ning, Yang Yin-Tang. New super junction lateral double-diffused MOSFET with electric field modulation by differently doping the buffered layer. Acta Physica Sinica, 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [12] Duan Bao-Xing, Yang Yin-Tang. Breakdown voltage analysis for the new Al0.25 Ga0.75N/GaN HEMTs with the step AlGaN layers. Acta Physica Sinica, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [13] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong. A low on-resistance silicon on insulator lateral double diffused metal oxide semiconductor device with a vertical drain field plate. Acta Physica Sinica, 2014, 63(10): 107302. doi: 10.7498/aps.63.107302
    [14] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong, Zhang Wei-Hua, Dai Hong-Li. A dual-trench silicon on insulator high voltage device with an L-shaped source field plate. Acta Physica Sinica, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [15] Wang Xiao-Wei, Luo Xiao-Rong, Yin Chao, Fan Yuan-Hang, Zhou Kun, Fan Ye, Cai Jin-Yong, Luo Yin-Chun, Zhang Bo, Li Zhao-Ji. Mechanism and optimal design of a high-k dielectric conduction enhancement SOI LDMOS. Acta Physica Sinica, 2013, 62(23): 237301. doi: 10.7498/aps.62.237301
    [16] Duan Bao-Xing, Yang Yin-Tang, Kevin J. Chen. Breakdown voltage analysis for new Al0.25Ga0.75N/GaN HEMT with F ion implantation. Acta Physica Sinica, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [17] Yang Yin-Tang, Geng Zhen-Hai, Duan Bao-Xing, Jia Hu-Jun, Yu Cen, Ren Li-Li. Characteristics of a SiC SBD with semi-superjunction structure. Acta Physica Sinica, 2010, 59(1): 566-570. doi: 10.7498/aps.59.566
    [18] Li Qi, Li Zhao-Ji, Zhang Bo. Analytical model for the surface electrical field distribution of double RESURF device with surface implanted P-top region. Acta Physica Sinica, 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [19] Guo Liang-Liang, Feng Qian, Hao Yue, Yang Yan. Study of high breakdown-voltage AlGaN/GaN FP-HEMT. Acta Physica Sinica, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [20] Zhao Yi, Wan Xing-Gong. Substrate and process dependence of gate oxide reliability of 0.18μm dual gate CMOS process. Acta Physica Sinica, 2006, 55(6): 3003-3006. doi: 10.7498/aps.55.3003
Metrics
  • Abstract views:  4525
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  06 December 2020
  • Accepted Date:  03 March 2021
  • Available Online:  09 July 2021
  • Published Online:  20 July 2021

/

返回文章
返回