Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband nonreciprocal transmission tuned by pump-induced magnon modes

CHEN Zhijian ZHAO Kaixin WANG Chenxiao WEI Chunke YAO Bimu

Citation:

Broadband nonreciprocal transmission tuned by pump-induced magnon modes

CHEN Zhijian, ZHAO Kaixin, WANG Chenxiao, WEI Chunke, YAO Bimu
cstr: 32037.14.aps.74.20241666
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Nonreciprocal electromagnetic wave transmission is essential for wireless communication, quantum computing, and radar systems, traditionally relying on breaking time-reversal symmetry through static magnetic fields or structural modifications, which face limitations in tunability and integration. Recent advancements in cavity magnonics, particularly the use of bound states in the continuum (BIC) and pump-induced magnon mode (PIM), have enhanced the nonreciprocal isolation and dynamic control of magnon dynamics. In this study, a novel method to achieve broadband-tunable microwave nonreciprocal isolation is presented by introducing multiple modulated pump signals, thereby extending traditional single-mode magnon-based nonreciprocal transmission to multi-channel and broadband regimes. The core method involves exciting multiple PIMs in a cavity magnonics system and strongly coupling them with BIC to generate hybrid modes with pronounced nonreciprocal characteristics. The experimental setup is comprised of a 1-millimeter-diameter yttrium iron garnet (YIG) sphere positioned at the node of a microwave resonator (central frequency: 2.92 GHz), with pump signals injected through a microwave patch antenna. By dynamically tuning the frequency, power, and number of pump signals, the precise control over the number of nonreciprocal isolation channels and their spectral positions is realized. Notably, the continuous tuning of the nonreciprocal bandwidth is achieved by increasing the number of pump signals from 2 to 5, expanding the isolation bandwidth from 6 MHz to 14 MHz. Furthermore, by tailoring the spectral distribution of pump signals, the system realizes flexible switching between bandpass and band-stop isolation states. Importantly, this method eliminates the need of static magnetic field adjustments or structural reconfiguration, relying solely on coherent microwave-photon interactions to modulate PIM-BIC coupling. Experimental results highlight two key physical outcomes: 1) Extending conventional single-mode magnonic nonreciprocal transmission to multi-channel and broadband-tunable regimes; 2) achieving microwave nonreciprocal control without the need of static magnetic field adjustments or structural reconfiguration. These advances establish a robust platform for designing reconfigurable multi-channel isolators and circulators, which can be directly applied to microwave communication systems, quantum information processing, and radar technologies.
      Corresponding author: CHEN Zhijian, chenzhj2022@shanghaitech.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1404603) and the National Natural Science Foundation of China (Grant No. 12122413).
    [1]

    Yu Z F, Fan S H 2009 Nat. Photonics 3 91Google Scholar

    [2]

    Lira H, Yu Z F, Fan S H, Lipson M 2012 Phys. Rev. Lett. 109 033901Google Scholar

    [3]

    Fang K, Yu Z F, Fan S H 2012 Phys. Rev. Lett. 108 153901Google Scholar

    [4]

    Sounas D L, Alù A 2017 Nat. Photonics 11 774Google Scholar

    [5]

    Kang M S, Butsch A, Russell P St J 2011 Nat. Photonics 5 549Google Scholar

    [6]

    Manipatruni S, Robinson J T, Lipson M 2009 Phys. Rev. Lett. 102 213903Google Scholar

    [7]

    Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S H, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394Google Scholar

    [8]

    Estep N A, Sounas D L, Soric J, Alù A 2014 Nat. Phys. 10 923Google Scholar

    [9]

    Jalas D, Petrov A, Eich M, Freude W, Fan S H, Yu Z F, Baets R, Popović M, Melloni A, Joannopoulos J D, Vanwolleghem J D, Vanwolleghem M, Doerr C R, Renner D H 2013 Nat. Photonics 7 579Google Scholar

    [10]

    Reiskarimian N, Krishnaswamy H 2016 Nat. Commun. 7 11217Google Scholar

    [11]

    Kord A, Sounas D L, Alù A 2017 IEEE Trans. Microw. Theory Tech. 66 911

    [12]

    Abdo B, Sliwa K, Frunzio L, Devoret M 2013 Phys. Rev. X 3 031001

    [13]

    Lecocq F, Ranzani L, Peterson G A, Cicak K, Simmonds R W, Teufel J D, Aumentado J 2017 Phys. Rev. Appl. 7 024028Google Scholar

    [14]

    Chapman B J, Rosenthal E I, Kerckhoff J, Moores B A, Vale L R, Mates J A B, Hilton G C, Lalumière K, Blais A, Lehnert K W 2017 Phys. Rev. X 7 041043

    [15]

    Sliwa K M, Hatridge M, Narla A, Shankar S, Frunzio L, Schoelkopf R J, Devoret M H 2015 Phys. Rev. X 5 041020

    [16]

    Ranzani L, Aumentado J 2015 New J. Phys. 17 023024Google Scholar

    [17]

    Kodera T, Sounas D L, Caloz C 2011 Appl. Phys. Lett. 99 031901Google Scholar

    [18]

    Caloz C, Alù A, Tretyakov S, Sounas D, Achouri K, Deck-Léger Z-L 2018 Phys. Rev. Appl. 10 047001Google Scholar

    [19]

    Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, Hu C M 2019 Phys. Rev. Lett. 123 127202Google Scholar

    [20]

    Zhao Y T, Rao J W, Gui Y S, Wang Y P, Hu C M 2020 Phys. Rev. Appl. 14 014035Google Scholar

    [21]

    Qian J, Rao J W, Gui Y S, Wang Y P, An Z H, Hu C M 2020 Appl. Phys. Lett. 116 031901Google Scholar

    [22]

    Rao J W, Yao B, Wang C Y, Zhang C, Yu T, Lu W 2023 Phys. Rev. Lett. 130 046705Google Scholar

    [23]

    Chen Z, Rao J, Zhao K X, Yang F, Wang C X, Yao B, Lu W 2024 Appl. Phys. Lett. 125 031901Google Scholar

  • 图 1  (a) 具有非互易特性的腔磁子系统实验装置图, 直径1 mm的YIG小球放置在微波谐振腔上, 通过VNA在1, 2端口测量其透射谱, 在3端口经由微波贴片天线送入泵浦信号; (b) 测量了系统在BIC条件下的|S21|和|S12|透射谱; (c) 在BIC频率(2.573 GHz)处输入一个功率为20 dBm的泵浦信号, 泵浦信号激发的PIM与BIC发生强耦合, 形成两个混合模式

    Figure 1.  (a) Schematic diagram of the experimental setup for the cavity magnonic system with nonreciprocal characteristics, a 1-mm-diameter YIG sphere is placed at the node of a microwave resonator, the transmission spectra are measured between ports 1 and 2 using a vector network analyzer (VNA), while pump signals are injected into port 3 through a microwave patch antenna; (b) transmission spectra |S21| and |S12| of the system are measured under the BIC condition; (c) a pump signal with a power of 20 dBm is injected at the BIC frequency, exciting PIMs that strongly couple with the BIC, resulting in the formation of two hybrid modes.

    图 2  (a), (c), (e), (g)分别为输入的泵浦调制信号在时域上的波形(其主要频率分量, 在频域上20 MHz的带宽内输入2—5个均分带宽的泵浦信号, 在右侧列中用透明条带表示); (b), (d), (f), (h)展示了系统可以调制的不同通道数, 当输入相应的泵浦调制信号时, 在VNA上测量的|S21|和|S12|透射谱

    Figure 2.  (a), (c), (e), (g) depict the time-domain waveforms of the input modulated pump signals, the main frequency components of these signals are distributed within a 20 MHz bandwidth in the frequency domain, with 2 to 5 evenly spaced pump signals injected, as indicated by the transparent bands on the right; (b), (d), (f), (h) illustrate the number of modulation channels achievable by the system. These results are obtained from the transmission spectra |S21| and |S12| measured on the VNA when the corresponding modulated pump signals are applied.

    图 3  (a)—(d) 不同泵浦调制信号下的非互易隔离带, 横轴表示调制的非互易带的隔离区域, 纵轴是器件对微波信号的非互易隔离度; (e) 隔离带宽的大小随输入泵浦信号的数目连续变化, 横轴是输入泵浦信号的数目, 纵轴是非互易隔离带的隔离带宽

    Figure 3.  (a)–(d) The nonreciprocal isolation bands under different modulated pump signals, the horizontal axis represents the isolation regions of the modulated nonreciprocal bands, while the vertical axis corresponds to the nonreciprocal isolation degree of the device for microwave signals; (e) the variation in isolation bandwidth as a function of the number of input pump signals, the horizontal axis indicates the number of input pump signals, and the vertical axis represents the isolation bandwidth of the nonreciprocal isolation bands.

    图 4  (a), (b) 测量的带通隔离器的输入泵浦信号的时域和频域图像; (c), (d) 测量的带阻隔离器的输入泵浦信号的时域和频域图像; (e)红色非互易带区域为带通区域, 灰色部分为带阻区域

    Figure 4.  (a), (b) The time-domain and frequency-domain representations of the input pump signals for the band-pass isolator; (c), (d) the time-domain and frequency-domain representations of the input pump signals for the band-stop isolator; (e) the red nonreciprocal band corresponds to the band-pass region, while the gray area represents the band-stop region.

  • [1]

    Yu Z F, Fan S H 2009 Nat. Photonics 3 91Google Scholar

    [2]

    Lira H, Yu Z F, Fan S H, Lipson M 2012 Phys. Rev. Lett. 109 033901Google Scholar

    [3]

    Fang K, Yu Z F, Fan S H 2012 Phys. Rev. Lett. 108 153901Google Scholar

    [4]

    Sounas D L, Alù A 2017 Nat. Photonics 11 774Google Scholar

    [5]

    Kang M S, Butsch A, Russell P St J 2011 Nat. Photonics 5 549Google Scholar

    [6]

    Manipatruni S, Robinson J T, Lipson M 2009 Phys. Rev. Lett. 102 213903Google Scholar

    [7]

    Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S H, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394Google Scholar

    [8]

    Estep N A, Sounas D L, Soric J, Alù A 2014 Nat. Phys. 10 923Google Scholar

    [9]

    Jalas D, Petrov A, Eich M, Freude W, Fan S H, Yu Z F, Baets R, Popović M, Melloni A, Joannopoulos J D, Vanwolleghem J D, Vanwolleghem M, Doerr C R, Renner D H 2013 Nat. Photonics 7 579Google Scholar

    [10]

    Reiskarimian N, Krishnaswamy H 2016 Nat. Commun. 7 11217Google Scholar

    [11]

    Kord A, Sounas D L, Alù A 2017 IEEE Trans. Microw. Theory Tech. 66 911

    [12]

    Abdo B, Sliwa K, Frunzio L, Devoret M 2013 Phys. Rev. X 3 031001

    [13]

    Lecocq F, Ranzani L, Peterson G A, Cicak K, Simmonds R W, Teufel J D, Aumentado J 2017 Phys. Rev. Appl. 7 024028Google Scholar

    [14]

    Chapman B J, Rosenthal E I, Kerckhoff J, Moores B A, Vale L R, Mates J A B, Hilton G C, Lalumière K, Blais A, Lehnert K W 2017 Phys. Rev. X 7 041043

    [15]

    Sliwa K M, Hatridge M, Narla A, Shankar S, Frunzio L, Schoelkopf R J, Devoret M H 2015 Phys. Rev. X 5 041020

    [16]

    Ranzani L, Aumentado J 2015 New J. Phys. 17 023024Google Scholar

    [17]

    Kodera T, Sounas D L, Caloz C 2011 Appl. Phys. Lett. 99 031901Google Scholar

    [18]

    Caloz C, Alù A, Tretyakov S, Sounas D, Achouri K, Deck-Léger Z-L 2018 Phys. Rev. Appl. 10 047001Google Scholar

    [19]

    Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, Hu C M 2019 Phys. Rev. Lett. 123 127202Google Scholar

    [20]

    Zhao Y T, Rao J W, Gui Y S, Wang Y P, Hu C M 2020 Phys. Rev. Appl. 14 014035Google Scholar

    [21]

    Qian J, Rao J W, Gui Y S, Wang Y P, An Z H, Hu C M 2020 Appl. Phys. Lett. 116 031901Google Scholar

    [22]

    Rao J W, Yao B, Wang C Y, Zhang C, Yu T, Lu W 2023 Phys. Rev. Lett. 130 046705Google Scholar

    [23]

    Chen Z, Rao J, Zhao K X, Yang F, Wang C X, Yao B, Lu W 2024 Appl. Phys. Lett. 125 031901Google Scholar

  • [1] XU Minghui, LIU Xiaomin, SHI Jiajia, ZHANG Chong, ZHANG Jing, YANG Rongguo, GAO Jiangrui. Generation of microwave-phonon and magnon-optics entangled states. Acta Physica Sinica, 2025, 74(5): 054202. doi: 10.7498/aps.74.20241664
    [2] YIN Fan, DAI Changjie, ZHANG Ying, YU Hailin, XIAO Yang. Zero damping effect of magnetic bilayer in microwave resonant cavity. Acta Physica Sinica, 2025, 74(5): 057601. doi: 10.7498/aps.74.20241730
    [3] Yang Dong-Chao, Yi Li-Zhi, Ding Lin-Jie, Liu Min, Zhu Li-Ya, Xu Yun-Li, He Xiong, Shen Shun-Qing, Pan Li-Qing, John Q. Xiao. Nonequilibrium steady-state transport properties of magnons in ferromagnetic insulators. Acta Physica Sinica, 2024, 73(14): 147101. doi: 10.7498/aps.73.20240498
    [4] Ren Yang, Li Zhen-Xiong, Zhang Lei, Cui Wei, Wu Xiong-Xiong, Huo Ya-Shan, He Zhi-Hui. Tunable continuous domain bound states based on Fabry-Perot cavities and their applications. Acta Physica Sinica, 2024, 73(17): 174205. doi: 10.7498/aps.73.20240861
    [5] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [6] Jin Zhe-Jun-Yu, Zeng Zhao-Zhuo, Cao Yun-Shan, Yan Peng. Magnon Hall effect. Acta Physica Sinica, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [7] Xia Zhao-Sheng, Liu Yu-Hang, Bao Zheng, Wang Li-Hua, Wu Bo, Wang Gang, Wang Hui, Ren Xin-Gang, Huang Zhi-Xiang. Strong circular dichroism chiral metasurfaces generated by quasi bound state in continuum domain. Acta Physica Sinica, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [8] Yan Meng, Sun Ke, Ning Ting-Yin, Zhao Li-Na, Ren Ying-Ying, Huo Yan-Yan. Numerical study of the low- threshold nanolaser based on quasi-bound states in the continuum supported by resonant waveguide grating structures. Acta Physica Sinica, 2023, 72(4): 044202. doi: 10.7498/aps.72.20221894
    [9] Yao Neng-Zhi, Wang Hao, Wang Bin, Wang Xue-Sheng. Venturi-effect rotating concentrators and nonreciprocity characteristics based on transformation hydrodynamics. Acta Physica Sinica, 2022, 71(10): 104701. doi: 10.7498/aps.71.20212361
    [10] Chen Chen, Liu Qin, Zhang Tong, Feng Dong-Lai. Vortex bound states and Majorana zero mode in electron-doped FeSe-based high-temperature superconductor. Acta Physica Sinica, 2021, 70(1): 017401. doi: 10.7498/aps.70.20201673
    [11] Du Qian, Chen Yi-Hang. Enhancing third-harmonic generation by quasi bound states in continuum in silicon nanoparticle arrays. Acta Physica Sinica, 2021, 70(15): 154206. doi: 10.7498/aps.70.20210332
    [12] Li Hang-Tian, Wang Zhi, Wang Hui-Ying, Cui Can, Li Zhi-Yong. Properties of one-way propagation inthe magneto-optical planar waveguide. Acta Physica Sinica, 2020, 69(7): 074206. doi: 10.7498/aps.69.20191795
    [13] Wang Hui-Ying, Wang Zhi, Cui Can, Li Hang-Tian, Li Qiang, Zhan Xiang-Kong, Wang Jian, Wu Chong-Qing. Dispersion characteristics of nonreciprocal gyroelectric silicon-on-insulator rectangular waveguide. Acta Physica Sinica, 2019, 68(15): 154203. doi: 10.7498/aps.68.20190109
    [14] Guo Ze-Bin, Tang Jun, Liu Jun, Wang Ming-Huan, Shang Cheng-Long, Lei Long-Hai, Xue Chen-Yang, Zhang Wen-Dong, Yan Shu-Bin. Optical model raciprocity of disk resonator excitated by tapered fiber. Acta Physica Sinica, 2014, 63(22): 227802. doi: 10.7498/aps.63.227802
    [15] Zhang Min-Cang, Wang Zhen-Bang. Bound state solutions of relativistic particles in a new ring-shaped non-harmonic oscillator potential. Acta Physica Sinica, 2007, 56(7): 3688-3692. doi: 10.7498/aps.56.3688
    [16] Lu Fa-Lin, Chen Chang-Yuan. Bound states of Klein-Gordon equation for ring-shaped non-spherical harmonic oscillator potentials. Acta Physica Sinica, 2004, 53(6): 1652-1656. doi: 10.7498/aps.53.1652
    [17] QI YONG-CHANG. STRUCTURE OF THE ENERGY SPECTRUM FOR THE BOUND STATES OF A CHARGED FERM1ON AND A DIRAC DYON WITH ZZd?137. Acta Physica Sinica, 1993, 42(4): 544-550. doi: 10.7498/aps.42.544
    [18] ZHANG JIAN-ZU, QI YONG-CHANG. BOUND STATE WAVE FUNCTIONS OF CHARGED FERMION AND ABELIAN DYON AND THEIR APPLICATION. Acta Physica Sinica, 1990, 39(5): 699-706. doi: 10.7498/aps.39.699
    [19] ZHANG SHI-WEI, SU RU-KENG. THE BOSON BOUND STATES IN KERR METRIE. Acta Physica Sinica, 1982, 31(3): 311-317. doi: 10.7498/aps.31.311
    [20] YU LUH. 含顺磁杂质超导体中的束缚态. Acta Physica Sinica, 1965, 21(1): 75-91. doi: 10.7498/aps.21.75
Metrics
  • Abstract views:  440
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2024
  • Accepted Date:  11 February 2025
  • Available Online:  21 February 2025
  • Published Online:  20 April 2025

/

返回文章
返回