Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunable Single-Photon Scattering in a Two-Level Giant Atom-Waveguide Coupled System with Local Coupling Phases

ZHU Zhonghua CHEN Keke ZHANG Yuqing FU Xiangyun PENG Zhaohui LU Zhenyan CHAI Yifeng XIONG Zuzhou TAN Lei

Citation:

Tunable Single-Photon Scattering in a Two-Level Giant Atom-Waveguide Coupled System with Local Coupling Phases

ZHU Zhonghua, CHEN Keke, ZHANG Yuqing, FU Xiangyun, PENG Zhaohui, LU Zhenyan, CHAI Yifeng, XIONG Zuzhou, TAN Lei
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • This work investigates single-photon scattering in a waveguide quantum electrodynamics system consisting of two dipole-coupled giant atoms, each interacting with a separate one-dimensional infinite waveguide at two distinct coupling points. Our primary objective is to establish a theoretical framework for manipulating photon propagation paths via quantum interference induced by multiple coupling points and local phase engineering. Different from conventional chiral coupling schemes, we implement an innovative approach utilizing locally engineered coupling phases at each atom-waveguide interface to achieve effective chiral coupling, thereby introducing novel quantum interference mechanisms.
    Using a real-space approach, we derive analytical expressions for four-port scattering amplitudes. We establish conditions for achieving perfect directional routing to any output port and demonstrate coherent control mechanisms enabled by geometric and local coupling phases. Continuous frequency tunability is primarily achieved through dipole-dipole interaction, with fine-tuning via the accumulated phase and local coupling phases.
    Local phase differences precisely regulate port-specific probability distributions within waveguides while preserving total routing efficiency.
    Furthermore, we elucidate nonreciprocal transport and chiral scattering mechanisms. Analysis reveals distinct governing principles: perfect nonreciprocity arises from the interplay of the accumulated phase, local coupling phases, photon-atom detuning, and dipole-dipole interaction. In contrast, perfect chiral scattering depends exclusively on the accumulated phase and local coupling phases, independent of the detuning. Notably, under phase-matching conditions, the system achieves simultaneous perfect chirality and directional routing, enabling frequency-selective path-asymmetric photon control. These findings provide a comprehensive framework for manipulating quantum interference in multi-atom waveguide systems, highlighting applications in quantum information processing including tunable single-photon routers, isolators, and chiral quantum nodes. Experimental feasibility is demonstrated through superconducting circuit implementations where local phases can be dynamically adjusted.
  • [1]

    Kockum A F, Delsing P, Johansson G 2014 Phys. Rev. A 90 013837

    [2]

    Qiu Q Y, Wu Y, Lü X Y 2023 Sci. China-Phys. Mech. Astron. 66 224212

    [3]

    Wen P Y, Lin K T, Kockum A F, Suri B, Ian H, Chen J C, Mao S Y, Chiu C C, Delsing P, Nori F, Lin G D, Hoi I C 2019 Phys. Rev. Lett. 123 233602

    [4]

    Kockum A F, Johansson G, Nori F 2018 Phys. Rev. Lett. 120 140404

    [5]

    Kannan B, Ruckriegel M J, Campbell D L, Kockum A F, Braumjller J, Kim D K, Kjaergaard M, Krantz P, Melville A, Niedzielski B M, Vepsäläinen A, Winik R, Yoder J L, Nori F, Orlando T P, Gustavsson S, Oliver W D 2020 Nature 583 775

    [6]

    Carollo A, Cilluffo D, Ciccarello F 2020 Phys. Rev. Res. 2 043184

    [7]

    Du L, Guo L, Li Y 2023 Phys. Rev. A 107 023705

    [8]

    Andersson G, Suri B, Guo L, Aref T, Delsing P 2019 Nat. Phys. 15 1123

    [9]

    Guo L, Kockum A F, Marquardt F, Johansson G 2020 Phys. Rev. Res. 2 043014

    [10]

    Guo S, Wang Y, Purdy T, Taylor J 2020 Phys. Rev. A 102 033706

    [11]

    Zhao W, Wang Z H 2020 Phys. Rev. A 101 053855

    [12]

    Wang X, Liu T, Kockum A F, Li H R, Nori F 2021 Phys. Rev. Lett. 126 043602

    [13]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Zoller P 2017 Nature 541 473

    [14]

    Soro A, Kockum A F 2022 Phys. Rev. A 105 023712

    [15]

    Wang X, Li H R 2022 Quantum Sci. Technol. 7 035007

    [16]

    Chen Y T, Du L, Guo L, Wang Z, Zhang Y, Li Y, Wu J H 2022 Commun. Phys. 5 215

    [17]

    Zhou J, Yin X L, Liao J Q 2023 Phys. Rev. A 107 063703

    [18]

    Joshi C, Yang F, Mirhosseini M 2023 Phys. Rev. X 13 021039

    [19]

    Li J, Lu J, Gong Z R, Zhou L 2024 New J. Phys. 26 033025

    [20]

    Chen Y T, Du L, Wang Z H, Artoni M, La Rocca G C, Wu J H 2024 Phys. Rev. A 109 063710

    [21]

    Zheng J C, Dong X L, Chen J Q, Hei X L, Pan X F, Yao X Y, Ren Y M, Qiao Y F, Li P B 2024 Phys. Rev. A 109 063709

    [22]

    Du L, Chen Y T, Li Y 2021 Phys. Rev. Res. 3 043226

    [23]

    Guo L, Grimsmo A L, Kockum A F, Pletyukhov M, Johansson G 2017 Phys. Rev. A 95 053821

    [24]

    Zhu Y T, Xue S, Wu R B, Li W L, Peng Z H, Jiang M 2022 Phys. Rev. A 106 043710

    [25]

    Yu H, Wang Z, Wu J H 2021 Phys. Rev. A 104 013720

    [26]

    Yin X L, Luo W B, Liao J Q 2022 Phys. Rev. A 106 063703

    [27]

    Santos A C, Bachelard R 2023 Phys. Rev. Lett. 130 053601

    [28]

    Yin X L, Liao J Q 2023 Phys. Rev. A 108 023728

    [29]

    Cai G, Ma X S, Huang X, Cheng M T 2024 Opt. Express 32 969

    [30]

    Ma X S, Quan J H, Lu Y N, Cheng M T 2024 Quantum Inf. Process 23 1

    [31]

    Huang J S, Huang H W, Li Y L, Xu Z H 2024 Chin. Phys. B 33 050506

    [32]

    Zhu M J, Zhao W, Wang Z H 2023 Acta Phys. Sin. 72 094202 (in Chinese) [朱明杰,赵微,王治海 2023 物理学报 72 094202]

    [33]

    Gustafsson M V, Aref T, Kockum A F, Ekström M K, Johansson G, Delsing P 2014 Science 346 207

    [34]

    Du L, Cai M R, Wu J H, Wang Z H, Li Y 2021 Phys. Rev. A 103 053701

    [35]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718 1

    [36]

    Vadiraj A M, Ask A, McConkey T G, Nsanzineza I, Chang C S, Kockum A F, Wilson CM 2021 Phys. Rev. A 103 023710

    [37]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005

    [38]

    González-Tudela A, Munoz C S, Cirac J I 2019 Phys. Rev. Lett. 122 203603

    [39]

    Du L, Zhang Y, Wu J H, Kockum A F, Li Y 2022 Phys. Rev. Lett. 128 223602

    [40]

    Chen Y T, Du L, Zhang Y, Guo L, Wu J H, Artoni M, La Rocca G C 2023 Phys. Rev. Res. 5 043135

    [41]

    Wang Z Q, Wang Y P, Yao J G, Shen R C, Wu W J, Qian J, Li J, Zhu S Y, You J Q 2022 Nat. Commun. 13 7580

    [42]

    Zhao Z, Zhang Y, Wang Z H 2022 Front. Phys. 17 1

    [43]

    Du L, Li Y 2021 Phys. Rev. A 104 023712

    [44]

    Shi C, Cheng M T, Ma X S, Wang D, Huang X S, Wang B, Zhang J Y 2018 Chin. Phys. Lett. 35 054202

    [45]

    Peng J S, Li G X 1993 Phys. Rev. A 47 4212

    [46]

    Shen J T, Fan S H 2009 Phys. Rev. A 79 023837

    [47]

    Poudyal B, Mirza I M 2020 Phys. Rev. Res. 2 043048

    [48]

    Roy D, Wilson C M, Firstenberg O 2017 Rev. Mod. Phys. 89 021001

    [49]

    Wang R T, Wang X D, Mei F, Xiao L T, Jia S T 2025 Acta Phys. Sin. 74 084205 (in Chinese) [汪润婷,王旭东,梅锋,肖连团,贾锁堂 2025 物理学报 74 084205]

    [50]

    Wang Z Y, Chen F J, Xi X, Gao Z, Yang Y H 2024 Acta Phys. Sin. 73 064201 (in Chinese) [王子尧,陈福家,郗翔,高振,杨怡豪 2024 1物理学报 73 064201]

    [51]

    Sun X J, Liu W X, Chen H, Li H R 2023 Commun. Theor. Phys. 75 035103

  • [1] Wu Hai-Bin, Liu Ying-Di, Liu Yan-Jun, Li Jin-Hua, Liu Jian-Jun. Chiral Majorana fermions resonance exchange moudulated by quantum dot coupling strength. Acta Physica Sinica, doi: 10.7498/aps.73.20240739
    [2] Zhang Jie, Chen Ai-Xi, Peng Ze-An. Spatially oriented correlated emission based on selective drive of diatomic superradiance states. Acta Physica Sinica, doi: 10.7498/aps.73.20240521
    [3] Guan Xin, Chen Gang, Pan Jing, You Xiu-Fen, Gui Zhi-Guo. Ground-state chiral currents in the synthetic Hall tube. Acta Physica Sinica, doi: 10.7498/aps.71.20220293
    [4] Zhu Ke-Jia, Guo Zhi-Wei, Chen Hong. Experimental observation of chiral inversion at exceptional points of non-Hermitian systems. Acta Physica Sinica, doi: 10.7498/aps.71.20220842
    [5] Wang Peng-Cheng, Cao Yi, Xie Hong-Guang, Yin Yao, Wang Wei, Wang Ze-Ying, Ma Xin-Chen, Wang Lin, Huang Wei. Magnetic properties of layered chiral topological magnetic material Cr1/3NbS2. Acta Physica Sinica, doi: 10.7498/aps.69.20200007
    [6] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, doi: 10.7498/aps.68.20191007
    [7] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, doi: 10.7498/aps.67.20180513
    [8] Yu Hang, Xu Xi-Fang, Niu Qian, Zhang Li-Fa. Phonon angular momentum and chiral phonons. Acta Physica Sinica, doi: 10.7498/aps.67.20172407
    [9] Lai Xiao-Lei. Ray optics calculation of axial force exerted by a highly focused Gaussian beam on a left-handed material sphere. Acta Physica Sinica, doi: 10.7498/aps.62.184201
    [10] Shen Hong-Xia, Wu Guo-Zhen, Wang Pei-Jie. The chiral asymmetry revealed by the Raman differential bond polarizability of (2R, 3R)-(-)- 2, 3-butanediol. Acta Physica Sinica, doi: 10.7498/aps.62.053301
    [11] Yu Ming-Zhang, Zeng Xiao-Dong, Wang Da-Wei, Yang Ya-Ping. Influence of left-handed materials on the spontaneous emission spectrum of V-type three-level atom. Acta Physica Sinica, doi: 10.7498/aps.61.043203
    [12] Mang Chao-Yong, Gou Gao-Zhang, Liu Cai-Ping, Wu Ke-Chen. Density functional study on chirospectra of bruguierols. Acta Physica Sinica, doi: 10.7498/aps.60.043101
    [13] Xu Lan-Qing, Li Hui, Xie Shu-Sen. Backscattered Mueller matrix patterns of optically active media and its application in noninvasive glucose monitoring. Acta Physica Sinica, doi: 10.7498/aps.57.6024
    [14] Lin Zhi-Li. Seidel aberration of left-handed media lens systems. Acta Physica Sinica, doi: 10.7498/aps.56.5758
    [15] Zhang Hui-Peng, Jin Qing-Hua, Wang Yu-Fang, Li Bao-Hui, Ding Da-Tong. Effect of single-wall carbon nanotubes’chiral angle for the phonon frequency. Acta Physica Sinica, doi: 10.7498/aps.54.4279
    [16] Zheng Yang-Dong, Li Jun-Qing, Li Chun-Fei. Second harmonic theory of two coupled oscillators in chiral molecular media. Acta Physica Sinica, doi: 10.7498/aps.52.372
    [17] Zheng Yang-Dong, Li Jun-Qing, Li Chun-Fei. . Acta Physica Sinica, doi: 10.7498/aps.51.1279
    [18] Tao Wei-Dong, Xia Hai-Peng, Bai Gui-Ru, Dong Jian-Feng, Nie Qiu-Hua. . Acta Physica Sinica, doi: 10.7498/aps.51.685
    [19] ZHANG ZHEN-HUA, PENG JING-CUI, CHEN XIAO-HUA, ZHANG HUA. THE ELECTRONIC STRUCTURE AND MAGNETIC PROPERTIES OF THE CHIRAL TOROIDAL CARBON NANOTUBES. Acta Physica Sinica, doi: 10.7498/aps.50.1150
    [20] LI JUN-QING, LI CHUN-FEI, XIN LI, LIU SHU-TIAN, T.M.IL’INOVA, N.I.KOROTEEV. MACROSCOPIC THEORY OF NONLINEAR OPTICAL ACTIVITY IN A NONCONDUCTIVE ISOTROPIC CHIRAL MEDIUM. Acta Physica Sinica, doi: 10.7498/aps.48.1052
Metrics
  • Abstract views:  142
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  11 June 2025

/

返回文章
返回