Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single-photon scattering in a two-level giant atom-dual waveguide coupled system based on local coupling phase regulation

ZHU Zhonghua CHEN Keke ZHANG Yuqing FU Xiangyun PENG Zhaohui LU Zhenyan CHAI Yifeng XIONG Zuzhou TAN Lei

Citation:

Single-photon scattering in a two-level giant atom-dual waveguide coupled system based on local coupling phase regulation

ZHU Zhonghua, CHEN Keke, ZHANG Yuqing, FU Xiangyun, PENG Zhaohui, LU Zhenyan, CHAI Yifeng, XIONG Zuzhou, TAN Lei
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This work is to investigate the single-photon scattering in a waveguide quantum electrodynamics system consisting of two dipole-coupled giant atoms, each interacting with a separate one-dimensional infinite waveguide at two distinct coupling points. Our primary objective is to establish a theoretical framework for manipulating photon propagation paths via quantum interference induced by multiple coupling points and local phase engineering. Unlike traditional chiral coupling schemes, an innovative method, in which the coupling phases are designed locally at each atom-waveguide interface, is used to achieve effective chiral coupling, thereby introducing novel quantum interference mechanisms. Using a real-space approach, we derive analytical expressions for four-port scattering amplitudes. We establish the conditions for achieving perfect directional routing to any output port and demonstrate the coherent control mechanisms implemented by geometric and local coupled phases. Continuous frequency tunability is primarily achieved through dipole-dipole interaction, and finely tuned through the cumulative phase and local coupling phases. Local phase differences precisely regulate port-specific probability distributions within the waveguides while preserving total routing efficiency. Furthermore, we elucidate the mechanisms of nonreciprocal transport and chiral scattering. The analysis reveals different governing principles: perfect nonreciprocity arises from the interplay of the cumulated phase, local coupling phases, photon-atom detuning, and dipole-dipole interaction. In contrast, perfect chiral scattering depends entirely on the cumulated phase and local coupling phases, and is independent of detuning. Notably, under the phase-matching conditions, the system achieves both perfect chiral and directional routing, and realizes frequency-selective path-asymmetric photon control. These findings provide a comprehensive framework for manipulating quantum interference in multi-atom waveguide systems, highlighting applications in quantum information processing, including tunable single-photon routers, isolators, and chiral quantum nodes. By implementing superconducting circuits, the local phase can be dynamically adjusted, thus proving the feasibility of the experiment.
  • 图 1  两二能级巨原子耦合两个一维波导构成的量子路由示意图. 二能级巨原子a(b)与波导m(n)存在两次耦合, 其位置坐标为$ x_\mathrm{m1} = 0 $ ($ x_\mathrm{n1} = 0 $) 和$ x_\mathrm{m2}=l $ ($ x_\mathrm{n2}= l $), 耦合强度均为$ g_\mathrm{a} $ ($ g_\mathrm{b} $), 局域耦合相位分别为$ \theta_{1} $ ($ \theta_{3} $)、$ \theta_{2} $ ($ \theta_{4} $). λ 表示巨原子之间的偶极-偶极相互作用强度

    Figure 1.  Schematic configuration of routing single photons in two channels made of two one-dimensional waveguides. The giant two-level atom a(b) interacts with waveguide m(n) at $ x_\mathrm{m1} = 0 $ ($ x_\mathrm{n1} = 0 $) and $ x_\mathrm{m2}=l $ ($ x_\mathrm{n2}=l $), characterized by coupling strengths $ g_\mathrm{a} $ ($ g_\mathrm{b} $) and local coupling phases $ \theta_{1} $ ($ \theta_{3} $), $ \theta_{2} $ ($ \theta_{4} $). The dipole-dipole interaction strength between the two giant atoms is denoted by λ.

    图 2  散射率$ T_{{\mathrm{a}}} $(黑色实线)、$ R_{{\mathrm{a}}} $(红色虚线)、$ T_{{\mathrm{b}}} $(蓝色点线)和$ R_{{\mathrm{b}}} $(绿色点划线)在不同的累积相位ϕ、局域耦合相位差$ \theta_{21} $、$ \theta_{43} $和偶极相互作用强度λ下随失谐Δ的演化行为. 参数取值情况为: (a) $ \phi=\pi $、$ \theta_{21}=\pi/4 $、$ \theta_{43} = 0 $、$ \lambda/\varGamma = 4 $; (b) $ \phi=\theta_{21}=\theta_{43}=\pi/2 $、$ \lambda/\varGamma = 4 $; (c) $ \phi=\theta_{21}=\pi/2 $、$ \theta_{43} = 3\pi/2 $、$ \lambda/\varGamma = 4 $; (d) $ \phi=\pi/3 $、$ \theta_{21} = 2\pi/3 $、$ \theta_{43}=\pi/3 $、$ \lambda/\varGamma=\sqrt{15} $. 其中插图为(d)图中$ T_{{\mathrm{b}}} $和$ R_{{\mathrm{b}}} $的最大散射率及两者和值随$ \theta_{43} $ 的调控情况

    Figure 2.  Scattering rates $ T_{{\mathrm{a}}} $ (solid black line), $ R_{{\mathrm{a}}} $ (dashed red line), $ T_{{\mathrm{b}}} $ (dotted blue line), and $ R_{{\mathrm{b}}} $ (dash-dotted green line) versus the detuning Δ with different accumulated phases ϕ, local coupling phase differences $ \theta_{21} $, $ \theta_{43} $, and dipole interaction strengths λ. The parameter values are as follows: (a) $ \phi = \pi $, $ \theta_{21} = \pi/4 $, $ \theta_{43} = 0 $, $ \lambda/\varGamma = 4 $; (b) $ \phi = \theta_{21} = \theta_{43} = \pi/2 $, $ \lambda/\varGamma = 4 $; (c) $ \phi = \theta_{21} = \pi/2 $, $ \theta_{43} = 3\pi/2 $, $ \lambda/\varGamma = 4 $; (d) $ \phi = \pi/3 $, $ \theta_{21} = 2\pi/3 $, $ \theta_{43} = \pi/3 $, $ \lambda/\varGamma = \sqrt{15} $. The inset in (d) shows the maximum scattering rates of $ T_{{\mathrm{b}}} $ and $ R_{{\mathrm{b}}} $ and their sum as functions of $ \theta_{43} $.

    图 3  散射率 (a) $ T_{{\mathrm{a}}} $ 和 (b) $ T_{{\mathrm{b}}} $ 随失谐Δ和原子偶极相互作用强度λ的变化. (c) 和 (d) 图分别为在给定的几个λ 的取值下与 (a) 和 (b) 对应的曲线图. 参数取值为: (a) 和 (c) 图中 $ \phi=\pi $、$ \theta_{21}=\pi/4 $、$ \theta_{43} = 0 $; (b) 和 (d) 图中 $ \phi=\pi/6 $、$ \theta_{21}= $$ \theta_{43} = 5\pi/6 $

    Figure 3.  Scattering rates (a) $ T_{{\mathrm{a}}} $ and (b) $ T_{{\mathrm{b}}} $ as functions of the detuning Δ and the dipole interaction strength λ. Panels (c) and (d) show the corresponding curves for several values of λ in (a) and (b), respectively. The parameter values are: $ \phi = \pi $, $ \theta_{21} = \pi/4 $, $ \theta_{43} = 0 $ for panels (a) and (c); $ \phi = \pi/6 $, $ \theta_{21} = \theta_{43} = 5\pi/6 $ for panels (b) and (d).

    图 4  (a) 在局域耦合相位差$ \theta_{21}=\theta_{43}=\pi-\phi $条件下$ T_{{\mathrm{b}}} $随失谐Δ和累积相位ϕ 的变化; (b) 几个典型的累积相位ϕ取值下与(a)图对应的单光子散射曲线图, 参数取值为: 黑色实线$ \phi=\pi/4 $、$ \theta_{21}=\theta_{43} = 3\pi/4 $, 红色点线$ \phi=\theta_{21}=\theta_{43}=\pi/2 $, 蓝色虚线$ \phi = 3\pi/4 $、$ \theta_{21}=\theta_{43}=\pi/4 $; (c)为图(a)中散射率最大值$ T_{{\mathrm{b}}} = 1 $的轮廓图, 即单光子谱线中双峰的峰位$ \varDelta_{\pm} $随ϕ的变化; (d)为双峰间距dϕ 的变化. 其他参数为: $ \lambda/\varGamma = 4 $

    Figure 4.  (a) Scattering rate $ T_{{\mathrm{b}}} $ as a function of the detuning Δ and the accumulated phase ϕ with $ \theta_{21} = \theta_{43} = \pi - \phi $; (b) The curves corresponding to (a) with some typical values of the accumulated phase ϕ. The parameter values are: solid black line $ \phi = \pi/4 $, $ \theta_{21} = \theta_{43} = 3\pi/4 $; dotted red line $ \phi = \theta_{21} = \theta_{43} = \pi/2 $; dashed blue line $ \phi = 3\pi/4 $, $ \theta_{21} = \theta_{43} = \pi/4 $; (c) Contour plot of the maximum scattering rate $ T_{{\mathrm{b}}} = 1 $ in (a), showing the detunings of the double peaks $ \varDelta_{\pm} $ as functions of ϕ; (d) The separation d of the double peaks versus ϕ. Other parameters are: $ \lambda/\varGamma = 4 $.

    图 5  累积相位和原子耦合强度对光子非互易性的影响. (a) 非互易度$ I_{{\mathrm{a}}} $随累积相位ϕ和失谐Δ的演化情况; (b)和(c)图分别给出了$ \phi = 3\pi/2 $和$ \pi/2 $下的两散射率$ T_{{\mathrm{a}}} $(黑色实线)和$ T'_{{\mathrm{a}}} $(红色点线)随Δ的变化曲线, 为了对比的需要, 两图还分别给出了$ \lambda/\varGamma = 6 $ 的$ T'_{{\mathrm{a}}} $和$ T_{{\mathrm{a}}} $的散射曲线(蓝色虚线). 其它参数为: $ \theta_{21}=\theta_{43}=\pi/2 $, $ \lambda/\varGamma = 4 $

    Figure 5.  The influence of accumulated phase and atomic coupling strength on photon non-reciprocity. (a) Evolution of non-reciprocity degree $ I_{{\mathrm{a}}} $ with accumulated phase ϕ and detuning Δ; (b) and (c) show the scattering rates $ T_{{\mathrm{a}}} $ (solid black line) and $ T'_{{\mathrm{a}}} $ (dotted red line) as functions of Δ for $ \phi = 3\pi/2 $ and $ \phi = \pi/2 $, respectively. For comparison, the scattering curves of $ T'_{{\mathrm{a}}} $ and $ T_{{\mathrm{a}}} $ for $ \lambda/\varGamma = 6 $ (dashed blue line) are also shown in both panels. Other parameters are: $ \theta_{21} = \theta_{43} = \pi/2 $, $ \lambda/\varGamma = 4 $.

    图 6  单光子手性散射受累积相位ϕ和局域耦合相位差$ \theta_{21} $、$ \theta_{43} $的影响. (a) 累积相位$ \phi=\pi/2 $ 取值下手性度C随$ \theta_{43} $和$ \theta_{21} $的演化; (b) 在给定的几个典型的$ \theta_{21} $的取值下手性度C与$ \theta_{43} $ 的变化关系; (c)—(h)图为完美手性散射下的$ T_{{\mathrm{b}}} $和$ T'_{{\mathrm{b}}} $散射曲线图, 参数取值为: (c) $ \phi=\theta_{21}=\pi/2 $、$ \theta_{43} = 0 $; (d) $ \phi=\pi/2 $、$ \theta_{21} = 3\pi/2 $、$ \theta_{43} = 0 $; (e) $ \phi=\theta_{21}=\theta_{43}=\pi/2 $; (f) $ \phi=\pi/2 $、$ \theta_{21}=\theta_{43} = 3\pi/2 $; (g) $ \phi=\pi/12 $、$ \theta_{21}=\theta_{43} = 11\pi/12 $; (h) $ \phi=\pi/12 $、$ \theta_{21}=\theta_{43} = 13\pi/12 $

    Figure 6.  The influence of accumulated phase ϕ and local coupling phase differences $ \theta_{21} $, $ \theta_{43} $ on single-photon chiral scattering. (a) Evolution of chirality C with $ \theta_{43} $ and $ \theta_{21} $ for $ \phi = \pi/2 $; (b) Dependence of chirality C on $ \theta_{43} $ for several typical values of $ \theta_{21} $; (c)–(h) Scattering curves of $ T_{{\mathrm{b}}} $ and $ T'_{{\mathrm{b}}} $ under perfect chiral scattering conditions. The parameter values are: (c) $ \phi = \theta_{21} = \pi/2 $, $ \theta_{43} = 0 $; (d) $ \phi = \pi/2 $, $ \theta_{21} = 3\pi/2 $, $ \theta_{43} = 0 $; (e) $ \phi = \theta_{21} = \theta_{43} = \pi/2 $; (f) $ \phi = \pi/2 $, $ \theta_{21} = \theta_{43} = 3\pi/2 $; (g) $ \phi = \pi/12 $, $ \theta_{21} = \theta_{43} = 11\pi/12 $; (h) $ \phi = \pi/12 $, $ \theta_{21} = \theta_{43} = 13\pi/12 $.

  • [1]

    Kockum A F, Delsing P, Johansson G 2014 Phys. Rev. A 90 013837Google Scholar

    [2]

    Qiu Q Y, Wu Y, Lü X Y 2023 Sci. China-Phys. Mech. Astron. 66 224212Google Scholar

    [3]

    Wen P Y, Lin K T, Kockum A F, Suri B, Ian H, Chen J C, Mao S Y, Chiu C C, Delsing P, Nori F, Lin G D, Hoi I C 2019 Phys. Rev. Lett. 123 233602Google Scholar

    [4]

    Kockum A F, Johansson G, Nori F 2018 Phys. Rev. Lett. 120 140404Google Scholar

    [5]

    Kannan B, Ruckriegel M J, Campbell D L, Kockum A F, Braumüller J, Kim D K, Kjaergaard M, Krantz P, Melville A, Niedzielski B M, Vepsäläinen A, Winik R, Yoder J L, Nori F, Orlando T P, Gustavsson S, Oliver W D 2020 Nature 583 775Google Scholar

    [6]

    Carollo A, Cilluffo D, Ciccarello F 2020 Phys. Rev. Res. 2 043184Google Scholar

    [7]

    Du L, Guo L, Li Y 2023 Phys. Rev. A 107 023705Google Scholar

    [8]

    Andersson G, Suri B, Guo L, Aref T, Delsing P 2019 Nat. Phys. 15 1123Google Scholar

    [9]

    Guo L, Kockum A F, Marquardt F, Johansson G 2020 Phys. Rev. Res. 2 043014Google Scholar

    [10]

    Guo S, Wang Y, Purdy T, Taylor J 2020 Phys. Rev. A 102 033706Google Scholar

    [11]

    Zhao W, Wang Z H 2020 Phys. Rev. A 101 053855Google Scholar

    [12]

    Wang X, Liu T, Kockum A F, Li H R, Nori F 2021 Phys. Rev. Lett. 126 043602Google Scholar

    [13]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Zoller P 2017 Nature 541 473Google Scholar

    [14]

    Soro A, Kockum A F 2022 Phys. Rev. A 105 023712Google Scholar

    [15]

    Wang X, Li H R 2022 Quantum Sci. Technol. 7 035007Google Scholar

    [16]

    Chen Y T, Du L, Guo L, Wang Z, Zhang Y, Li Y, Wu J H 2022 Commun. Phys. 5 215Google Scholar

    [17]

    Zhou J, Yin X L, Liao J Q 2023 Phys. Rev. A 107 063703Google Scholar

    [18]

    Joshi C, Yang F, Mirhosseini M 2023 Phys. Rev. X 13 021039

    [19]

    Li J, Lu J, Gong Z R, Zhou L 2024 New J. Phys. 26 033025Google Scholar

    [20]

    Chen Y T, Du L, Wang Z H, Artoni M, La Rocca G C, Wu J H 2024 Phys. Rev. A 109 063710Google Scholar

    [21]

    Zheng J C, Dong X L, Chen J Q, Hei X L, Pan X F, Yao X Y, Ren Y M, Qiao Y F, Li P B 2024 Phys. Rev. A 109 063709Google Scholar

    [22]

    Du L, Chen Y T, Li Y 2021 Phys. Rev. Res. 3 043226Google Scholar

    [23]

    Guo L, Grimsmo A L, Kockum A F, Pletyukhov M, Johansson G 2017 Phys. Rev. A 95 053821Google Scholar

    [24]

    Zhu Y T, Xue S, Wu R B, Li W L, Peng Z H, Jiang M 2022 Phys. Rev. A 106 043710Google Scholar

    [25]

    Yu H, Wang Z, Wu J H 2021 Phys. Rev. A 104 013720Google Scholar

    [26]

    Yin X L, Luo W B, Liao J Q 2022 Phys. Rev. A 106 063703Google Scholar

    [27]

    Santos A C, Bachelard R 2023 Phys. Rev. Lett. 130 053601Google Scholar

    [28]

    Yin X L, Liao J Q 2023 Phys. Rev. A 108 023728Google Scholar

    [29]

    Cai G, Ma X S, Huang X, Cheng M T 2024 Opt. Express 32 969Google Scholar

    [30]

    Ma X S, Quan J H, Lu Y N, Cheng M T 2024 Quantum Inf. Process 23 1

    [31]

    Huang J S, Huang H W, Li Y L, Xu Z H 2024 Chin. Phys. B 33 050506Google Scholar

    [32]

    朱明杰, 赵微, 王治海 2023 物理学报 72 094202Google Scholar

    Zhu M J, Zhao W, Wang Z H 2023 Acta Phys. Sin. 72 094202Google Scholar

    [33]

    Gustafsson M V, Aref T, Kockum A F, Ekström M K, Johansson G, Delsing P 2014 Science 346 207Google Scholar

    [34]

    Du L, Cai M R, Wu J H, Wang Z H, Li Y 2021 Phys. Rev. A 103 053701Google Scholar

    [35]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718 1

    [36]

    Vadiraj A M, Ask A, McConkey T G, Nsanzineza I, Chang C S, Kockum A F, Wilson CM 2021 Phys. Rev. A 103 023710Google Scholar

    [37]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005Google Scholar

    [38]

    González-Tudela A, Muñoz C S, Cirac J I 2019 Phys. Rev. Lett. 122 203603Google Scholar

    [39]

    Du L, Zhang Y, Wu J H, Kockum A F, Li Y 2022 Phys. Rev. Lett. 128 223602Google Scholar

    [40]

    Chen Y T, Du L, Zhang Y, Guo L, Wu J H, Artoni M, La Rocca G C 2023 Phys. Rev. Res. 5 043135Google Scholar

    [41]

    Wang Z Q, Wang Y P, Yao J G, Shen R C, Wu W J, Qian J, Li J, Zhu S Y, You J Q 2022 Nat. Commun. 13 7580Google Scholar

    [42]

    Zhao Z, Zhang Y, Wang Z H 2022 Front. Phys. 17 1

    [43]

    Du L, Li Y 2021 Phys. Rev. A 104 023712Google Scholar

    [44]

    Shi C, Cheng M T, Ma X S, Wang D, Huang X S, Wang B, Zhang J Y 2018 Chin. Phys. Lett. 35 054202Google Scholar

    [45]

    Peng J S, Li G X 1993 Phys. Rev. A 47 4212Google Scholar

    [46]

    Shen J T, Fan S H 2009 Phys. Rev. A 79 023837Google Scholar

    [47]

    Poudyal B, Mirza I M 2020 Phys. Rev. Res. 2 043048Google Scholar

    [48]

    Roy D, Wilson C M, Firstenberg O 2017 Rev. Mod. Phys. 89 021001Google Scholar

    [49]

    汪润婷, 王旭东, 梅锋, 肖连团, 贾锁堂 2025 物理学报 74 084205Google Scholar

    Wang R T, Wang X D, Mei F, Xiao L T, Jia S T 2025 Acta Phys. Sin. 74 084205Google Scholar

    [50]

    王子尧, 陈福家, 郗翔, 高振, 杨怡豪 2024 物理学报 73 064201Google Scholar

    Wang Z Y, Chen F J, Xi X, Gao Z, Yang Y H 2024 Acta Phys. Sin. 73 064201Google Scholar

    [51]

    Sun X J, Liu W X, Chen H, Li H R 2023 Commun. Theor. Phys. 75 035103Google Scholar

  • [1] Wu Hai-Bin, Liu Ying-Di, Liu Yan-Jun, Li Jin-Hua, Liu Jian-Jun. Chiral Majorana fermions resonance exchange moudulated by quantum dot coupling strength. Acta Physica Sinica, doi: 10.7498/aps.73.20240739
    [2] Zhang Jie, Chen Ai-Xi, Peng Ze-An. Spatially oriented correlated emission based on selective drive of diatomic superradiance states. Acta Physica Sinica, doi: 10.7498/aps.73.20240521
    [3] Guan Xin, Chen Gang, Pan Jing, You Xiu-Fen, Gui Zhi-Guo. Ground-state chiral currents in the synthetic Hall tube. Acta Physica Sinica, doi: 10.7498/aps.71.20220293
    [4] Zhu Ke-Jia, Guo Zhi-Wei, Chen Hong. Experimental observation of chiral inversion at exceptional points of non-Hermitian systems. Acta Physica Sinica, doi: 10.7498/aps.71.20220842
    [5] Wang Peng-Cheng, Cao Yi, Xie Hong-Guang, Yin Yao, Wang Wei, Wang Ze-Ying, Ma Xin-Chen, Wang Lin, Huang Wei. Magnetic properties of layered chiral topological magnetic material Cr1/3NbS2. Acta Physica Sinica, doi: 10.7498/aps.69.20200007
    [6] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, doi: 10.7498/aps.68.20191007
    [7] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, doi: 10.7498/aps.67.20180513
    [8] Yu Hang, Xu Xi-Fang, Niu Qian, Zhang Li-Fa. Phonon angular momentum and chiral phonons. Acta Physica Sinica, doi: 10.7498/aps.67.20172407
    [9] Lai Xiao-Lei. Ray optics calculation of axial force exerted by a highly focused Gaussian beam on a left-handed material sphere. Acta Physica Sinica, doi: 10.7498/aps.62.184201
    [10] Shen Hong-Xia, Wu Guo-Zhen, Wang Pei-Jie. The chiral asymmetry revealed by the Raman differential bond polarizability of (2R, 3R)-(-)- 2, 3-butanediol. Acta Physica Sinica, doi: 10.7498/aps.62.053301
    [11] Yu Ming-Zhang, Zeng Xiao-Dong, Wang Da-Wei, Yang Ya-Ping. Influence of left-handed materials on the spontaneous emission spectrum of V-type three-level atom. Acta Physica Sinica, doi: 10.7498/aps.61.043203
    [12] Mang Chao-Yong, Gou Gao-Zhang, Liu Cai-Ping, Wu Ke-Chen. Density functional study on chirospectra of bruguierols. Acta Physica Sinica, doi: 10.7498/aps.60.043101
    [13] Xu Lan-Qing, Li Hui, Xie Shu-Sen. Backscattered Mueller matrix patterns of optically active media and its application in noninvasive glucose monitoring. Acta Physica Sinica, doi: 10.7498/aps.57.6024
    [14] Lin Zhi-Li. Seidel aberration of left-handed media lens systems. Acta Physica Sinica, doi: 10.7498/aps.56.5758
    [15] Zhang Hui-Peng, Jin Qing-Hua, Wang Yu-Fang, Li Bao-Hui, Ding Da-Tong. Effect of single-wall carbon nanotubes’chiral angle for the phonon frequency. Acta Physica Sinica, doi: 10.7498/aps.54.4279
    [16] Zheng Yang-Dong, Li Jun-Qing, Li Chun-Fei. Second harmonic theory of two coupled oscillators in chiral molecular media. Acta Physica Sinica, doi: 10.7498/aps.52.372
    [17] Zheng Yang-Dong, Li Jun-Qing, Li Chun-Fei. . Acta Physica Sinica, doi: 10.7498/aps.51.1279
    [18] Tao Wei-Dong, Xia Hai-Peng, Bai Gui-Ru, Dong Jian-Feng, Nie Qiu-Hua. . Acta Physica Sinica, doi: 10.7498/aps.51.685
    [19] ZHANG ZHEN-HUA, PENG JING-CUI, CHEN XIAO-HUA, ZHANG HUA. THE ELECTRONIC STRUCTURE AND MAGNETIC PROPERTIES OF THE CHIRAL TOROIDAL CARBON NANOTUBES. Acta Physica Sinica, doi: 10.7498/aps.50.1150
    [20] LI JUN-QING, LI CHUN-FEI, XIN LI, LIU SHU-TIAN, T.M.IL’INOVA, N.I.KOROTEEV. MACROSCOPIC THEORY OF NONLINEAR OPTICAL ACTIVITY IN A NONCONDUCTIVE ISOTROPIC CHIRAL MEDIUM. Acta Physica Sinica, doi: 10.7498/aps.48.1052
Metrics
  • Abstract views:  270
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2025
  • Accepted Date:  23 May 2025
  • Available Online:  11 June 2025
  • /

    返回文章
    返回