Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental observation of chiral inversion at exceptional points of non-Hermitian systems

Zhu Ke-Jia Guo Zhi-Wei Chen Hong

Citation:

Experimental observation of chiral inversion at exceptional points of non-Hermitian systems

Zhu Ke-Jia, Guo Zhi-Wei, Chen Hong
PDF
HTML
Get Citation
  • Based on the quantum mechanics, the physical observables are represented by Hermitian linear operators. Derived from the conservation of energy, these Hermitian operators exhibit real eigenvalues. However, when a closed system described by an effective Hamiltonian is coupled with the surrounding environment, the dynamics of the system itself becomes non-Hermitian dynamic. In general, the eigenvalues of an open optical non-Hermitian system are complex. Parity-time symmetric structure is the system composed of complex potentials, which is neither parity symmetric nor time reversal symmetric alone but is symmetric after operations of parity inversion and time reversal have been combined. The eigenvalue of the parity-time symmetric Hamiltonian can be found to be real, despite the non-Hermitian nature of the system. One of the most attractive properties of non-Hermitian system is the exceptional point, which is degenerate at which two or more eigenvalues and eigenstates of a non-Hermitian physical system coalesce. The unique topological features of EPs, forming a self-intersecting Riemann surface, have given rise to several exotic physical properties. As a kind of phase singularity in a physical system, exceptional point of non-Hermitian system gives rise to a plethora of counterintuitive phenomenon, such as the loss-induced transmission enhancement, unidirectional reflection and asymmetric state transfer. Especially, the eigenvectors of exceptional point are self-orthogonal and an inherent chirality can be determined because of the missing dimension. Chirality lies at the heart of the most fascinating and fundamental phenomena in modern physics, and how to impose a strong chirality and a switchable direction of light propagation in an optical system by steering it to an exceptional point is an interesting research topic. In this work, a non-Hermitian system is constructed based on the special metamaterial resonator of split-ring resonator, in which the sign of coupling coefficient can be flexibly controlled. Especially, the chiral inversion at an exceptional point of non-Hermitian system is observed experimentally. This sign of coupling coefficient controlled exceptional point not only paves a new way for studying the fundamental non-Hermitian physics in an open system, but also holds great potential in the applied photonic devices such as the efficient chiral mode converter and chiral antennas.
      Corresponding author: Guo Zhi-Wei, 2014guozhiwei@tongji.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1400602), the National Natural Science Foundation of China (Grant Nos. 12004284, 61621001), the Fundamental Research Fund for the Central Universities, China (Grant No. 22120210579), and the Shanghai Chenguang Plan, China (Grant No. 21CGA22).
    [1]

    Berry M V 2004 Czech. J. Phys. 54 1039Google Scholar

    [2]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Nat. Phys. 14 11Google Scholar

    [3]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [4]

    Heiss W D 2012 J. Phys. A:Math. Theor. 45 444016Google Scholar

    [5]

    Zeng C, Guo Z, Zhu K, Fan C, Li G, Jiang J, Li Y, Jiang H, Yang Y, Sun Y, Chen H 2022 Chin. Phys. B 31 010307Google Scholar

    [6]

    Guo A, Salamo G J, Duchesne D, et al. 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [7]

    Feng L, El-Ganainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [8]

    Özdemir K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783Google Scholar

    [9]

    Miri M, Alù A 2019 Science 363 eaar7709Google Scholar

    [10]

    Shi C, Dubois M, Chen Y, Cheng L, Ramezani H, Wang Y, Zhang X 2016 Nat. Commun. 7 11110Google Scholar

    [11]

    Ding K, Ma G, Xiao M, Zhang Z Q, Chan C T 2016 Phys. Rev. X 6 021007

    [12]

    Tang W, Jiang X, Ding K, Xiao Y X, Zhang Z Q, Chan C T, Ma G 2020 Science 370 1077Google Scholar

    [13]

    Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387Google Scholar

    [14]

    Choi Y, Hahn C, Yoon J W, Song S H 2018 Nat. Commun. 9 2182Google Scholar

    [15]

    Xiao Z, Li H, Kottos T, Alù A 2019 Phys. Rev. Lett. 123 213901Google Scholar

    [16]

    Peng B, Özdemir K, Rotterh S, Yilmaz H, Liertzer M, Monifi F, Bender C, Nori F, Yang L 2014 Science 346 328Google Scholar

    [17]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [18]

    Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Jiang H, Chen H 2021 Phys. Rev. Appl. 15 014009Google Scholar

    [19]

    Shu X, Li A, Hu G, Wang J, Alù A, Chen L 2022 Nat. Commun. 13 2123Google Scholar

    [20]

    Schumer A, Liu Y, Leshin J, Ding L, et al. 2022 Science 375 884Google Scholar

    [21]

    Hodaei H, Hassan A U, Wittek S, et al. 2017 Nature 548 187Google Scholar

    [22]

    Chen W J, Özdemir K, Zhao G M, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [23]

    Guo Z, Zhang T, Song J, Jiang H, Chen H 2021 Photonics Res. 9 574Google Scholar

    [24]

    Guo Z, Jiang J, Jiang H, et al. 2021 Phys. Rev. Res. 3 013122Google Scholar

    [25]

    Doppler J, Mailybaev A, Böhm J, et al. 2016 Nature 537 76Google Scholar

    [26]

    Liu Q, Li S, Wang B, Ke S, Qin C, Wang K, Liu W, Gao D, Berini P, Lu P 2020 Phys. Rev. Lett. 124 153903Google Scholar

    [27]

    Song Q H, Odeh M, Zúñiga-Pérez J, Kanté B, and Genevet P 2021 Science 373 1133Google Scholar

    [28]

    Dembowski C, Dietz B, Gräf H D, Harney H L, Heine A, Heiss W D, Richter A 2003 Phys. Rev. Lett. 90 034101Google Scholar

    [29]

    Cao Q T, Wang H M, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q H, Xiao Y F 2017 Phys. Rev. Lett. 118 033901Google Scholar

    [30]

    Chen H, Liu T, Luan H, et al. 2020 Nat. Phys. 16 571Google Scholar

    [31]

    Wang C Q, Sweeney W R, Stone A D, Yang L 2021 Science 373 1261Google Scholar

    [32]

    Keil R, Poli C, Heinrich M, Arkinstall J, Weihs G, Schomerus H, Szameit A 2016 Phys. Rev. Lett. 116 213901Google Scholar

    [33]

    Fu N, Fu Z, Zhang H, Liao Q, Zhao D, Ke S 2020 Opt. Quantum Electron. 52 61Google Scholar

    [34]

    Ke S, Wang B, Qin C, Long H, Wang K, Lu P 2016 J. Lightwave Technol. 34 5258Google Scholar

    [35]

    Guo Z, Jiang H, Chen H 2022 J. Phys. D:Appl. Phys. 55 083001Google Scholar

    [36]

    梁浩, 李剑生, 郭云胜 2014 物理学报 63 144101

    Liang H, Li J S, Guo Y S 2014 Acta Phys. Sin. 63 144101

    [37]

    张萌徕, 覃赵福, 陈卓 2021 物理学报 70 054206Google Scholar

    Zhang M L, Qin Z F, Chen Z 2021 Acta Phys. Sin. 70 054206Google Scholar

    [38]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075Google Scholar

    [39]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [40]

    Shamonina E 2008 Phys. Status Solidi B 245 1471Google Scholar

    [41]

    Jiang J, Guo Z, Ding Y, Sun Y, Li Y, Jiang H, Chen H 2018 Opt. Express 26 12891Google Scholar

    [42]

    Guo Z, Jiang H, Sun Y, Li Y, Chen H 2018 Opt. Lett. 43 5142Google Scholar

    [43]

    Jiang J, Ren J, Guo Z, Zhu W, Long Y, Jiang H, Chen H 2020 Phys. Rev. B 101 165427Google Scholar

    [44]

    Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X 2007 Phys. Rev. B 76 073101Google Scholar

    [45]

    Grbic A, Eleftheriades G V 2004 Phys. Rev. Lett. 92 117403Google Scholar

    [46]

    Guo Z, Jiang H, Zhu K, Sun Y, Li Y, Chen H 2018 Phys. Rev. Appl. 10 064048Google Scholar

    [47]

    Guo Z, Long Y, Jiang H, et al. 2021 Adv. Photonics 3 036001

    [48]

    Guo Z, Jiang H, Li Y, et al. 2018 Opt. Express 26 627Google Scholar

    [49]

    Li Y, Sun Y, Zhu W, et al. 2018 Nat. Commun. 9 4598Google Scholar

    [50]

    Hadad Y, Soric J C, Khanikaev A B, Alù A 2018 Nat. Electron. 1 178Google Scholar

  • 图 1  两个共振原子近场耦合组成的二阶非厄米系统

    Figure 1.  A second-order non-Hermitian system composed of two coupled resonant atoms with near-field coupling.

    图 2  在耦合系数$ \kappa $和本征损耗因子${\varGamma _2}$构成的参数空间内, 非厄米系统本征频率 (a)实部和(b)虚部的黎曼表面

    Figure 2.  The Riemannian surface of the (a) real part and (b)imaginary part of the eigenfrequency of the non-Hermitian system in the parameter space composed of the coupling coefficient $ \kappa $ and the intrinsic loss factor ${\varGamma _2}$

    图 3  开口谐振环不同相对转角下的耦合情况 (a)开口谐振环相对夹角为$ \theta ={180}^{\circ} $时的负耦合; (b)开口谐振环相对夹角为$ \theta = {0^\circ} $的正耦合

    Figure 3.  The coupling of the split-ring resonator under different relative rotation angles: (a) The negative coupling when the relative rotation angle of the split-ring resonators is $ \theta = {180^\circ} $; (b) the positive coupling when the relative rotation angle of the split-ring resonators is $ \theta = {0^\circ} $.

    图 4  开口谐振环相对夹角为 (a)$\theta = {180^\circ}$和(b)$ \theta = {0^\circ} $时构造的非厄米系统实验样品图; (c)$ \theta = {180^\circ} $和(d)$ \theta = {0^\circ} $对应的非厄米系统中, 调节集总电阻的阻值$ {R_2} $时测得的透射谱

    Figure 4.  Sample photos of the non-Hermitian system with relative rotation angle between split-ring resonators is (a)$ \theta = {180^\circ} $ and (b) $ \theta = {0^\circ} $; The corresponding transmittance spectrum of the non-Hermitian system with (c) $ \theta = {180^\circ} $and (d) $ \theta = {0^\circ} $as a function of lumped resistance $ {R_2} $.

    图 5  实验观测当${\varGamma _2}$变化时, 开口谐振环相对夹角为 (a)$\theta = {180^\circ}$和(b)$\theta = {0^\circ}$构成的非厄米系统的本征频率实部(上图)和虚部(下图)

    Figure 5.  Experimental measured the eigenfrequeies of the non-Hermitian system as a function of ${\varGamma _2}$ when the relative rotation angle between split-ring resonators is (a) $\theta = {180^\circ}$and(b) $\theta = {0^\circ}$. The upper and lower rows denote the real part and imaginary part, respectively.

    图 6  实验测得开口谐振环相对夹角为$ \theta = {180^\circ} $(上图)和$ \theta = {0^\circ} $(下图)构成的非厄米系统中, 不同的本征损耗因子$ {\varGamma _2} $两个振子的相位差$ \Delta \varphi = {\varphi _1} - {\varphi _2} $

    Figure 6.  Measured phase difference between two resonant atoms $ \Delta \varphi = {\varphi _1} - {\varphi _2} $ for different intrinsic loss factor $ {\varGamma _2} $ in the non-Hermitian systems exhibiting the intrinsic chirality of EP. The upper and lower figures denote the relative rotation angle between split-ring resonators is $ \theta = {180^\circ} $ and $ \theta = {0^\circ} $, respectively.

    图 7  全场数值仿真得到的开口谐振环相对夹角为 (a)$\theta = $$ {180^\circ}$和(b)$\theta = {0^\circ}$构成的非厄米系统中, EP位置手性态的场分布仿真演化图

    Figure 7.  Full-wave numerical simulated evolution of field distribution for the non-Hermitian system with the relative rotation angle between split-ring resonators is (a)$\theta = {180^\circ}$ and (b)$\theta = {0^\circ}$

  • [1]

    Berry M V 2004 Czech. J. Phys. 54 1039Google Scholar

    [2]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Nat. Phys. 14 11Google Scholar

    [3]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [4]

    Heiss W D 2012 J. Phys. A:Math. Theor. 45 444016Google Scholar

    [5]

    Zeng C, Guo Z, Zhu K, Fan C, Li G, Jiang J, Li Y, Jiang H, Yang Y, Sun Y, Chen H 2022 Chin. Phys. B 31 010307Google Scholar

    [6]

    Guo A, Salamo G J, Duchesne D, et al. 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [7]

    Feng L, El-Ganainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [8]

    Özdemir K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783Google Scholar

    [9]

    Miri M, Alù A 2019 Science 363 eaar7709Google Scholar

    [10]

    Shi C, Dubois M, Chen Y, Cheng L, Ramezani H, Wang Y, Zhang X 2016 Nat. Commun. 7 11110Google Scholar

    [11]

    Ding K, Ma G, Xiao M, Zhang Z Q, Chan C T 2016 Phys. Rev. X 6 021007

    [12]

    Tang W, Jiang X, Ding K, Xiao Y X, Zhang Z Q, Chan C T, Ma G 2020 Science 370 1077Google Scholar

    [13]

    Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387Google Scholar

    [14]

    Choi Y, Hahn C, Yoon J W, Song S H 2018 Nat. Commun. 9 2182Google Scholar

    [15]

    Xiao Z, Li H, Kottos T, Alù A 2019 Phys. Rev. Lett. 123 213901Google Scholar

    [16]

    Peng B, Özdemir K, Rotterh S, Yilmaz H, Liertzer M, Monifi F, Bender C, Nori F, Yang L 2014 Science 346 328Google Scholar

    [17]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [18]

    Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Jiang H, Chen H 2021 Phys. Rev. Appl. 15 014009Google Scholar

    [19]

    Shu X, Li A, Hu G, Wang J, Alù A, Chen L 2022 Nat. Commun. 13 2123Google Scholar

    [20]

    Schumer A, Liu Y, Leshin J, Ding L, et al. 2022 Science 375 884Google Scholar

    [21]

    Hodaei H, Hassan A U, Wittek S, et al. 2017 Nature 548 187Google Scholar

    [22]

    Chen W J, Özdemir K, Zhao G M, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [23]

    Guo Z, Zhang T, Song J, Jiang H, Chen H 2021 Photonics Res. 9 574Google Scholar

    [24]

    Guo Z, Jiang J, Jiang H, et al. 2021 Phys. Rev. Res. 3 013122Google Scholar

    [25]

    Doppler J, Mailybaev A, Böhm J, et al. 2016 Nature 537 76Google Scholar

    [26]

    Liu Q, Li S, Wang B, Ke S, Qin C, Wang K, Liu W, Gao D, Berini P, Lu P 2020 Phys. Rev. Lett. 124 153903Google Scholar

    [27]

    Song Q H, Odeh M, Zúñiga-Pérez J, Kanté B, and Genevet P 2021 Science 373 1133Google Scholar

    [28]

    Dembowski C, Dietz B, Gräf H D, Harney H L, Heine A, Heiss W D, Richter A 2003 Phys. Rev. Lett. 90 034101Google Scholar

    [29]

    Cao Q T, Wang H M, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q H, Xiao Y F 2017 Phys. Rev. Lett. 118 033901Google Scholar

    [30]

    Chen H, Liu T, Luan H, et al. 2020 Nat. Phys. 16 571Google Scholar

    [31]

    Wang C Q, Sweeney W R, Stone A D, Yang L 2021 Science 373 1261Google Scholar

    [32]

    Keil R, Poli C, Heinrich M, Arkinstall J, Weihs G, Schomerus H, Szameit A 2016 Phys. Rev. Lett. 116 213901Google Scholar

    [33]

    Fu N, Fu Z, Zhang H, Liao Q, Zhao D, Ke S 2020 Opt. Quantum Electron. 52 61Google Scholar

    [34]

    Ke S, Wang B, Qin C, Long H, Wang K, Lu P 2016 J. Lightwave Technol. 34 5258Google Scholar

    [35]

    Guo Z, Jiang H, Chen H 2022 J. Phys. D:Appl. Phys. 55 083001Google Scholar

    [36]

    梁浩, 李剑生, 郭云胜 2014 物理学报 63 144101

    Liang H, Li J S, Guo Y S 2014 Acta Phys. Sin. 63 144101

    [37]

    张萌徕, 覃赵福, 陈卓 2021 物理学报 70 054206Google Scholar

    Zhang M L, Qin Z F, Chen Z 2021 Acta Phys. Sin. 70 054206Google Scholar

    [38]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075Google Scholar

    [39]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [40]

    Shamonina E 2008 Phys. Status Solidi B 245 1471Google Scholar

    [41]

    Jiang J, Guo Z, Ding Y, Sun Y, Li Y, Jiang H, Chen H 2018 Opt. Express 26 12891Google Scholar

    [42]

    Guo Z, Jiang H, Sun Y, Li Y, Chen H 2018 Opt. Lett. 43 5142Google Scholar

    [43]

    Jiang J, Ren J, Guo Z, Zhu W, Long Y, Jiang H, Chen H 2020 Phys. Rev. B 101 165427Google Scholar

    [44]

    Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X 2007 Phys. Rev. B 76 073101Google Scholar

    [45]

    Grbic A, Eleftheriades G V 2004 Phys. Rev. Lett. 92 117403Google Scholar

    [46]

    Guo Z, Jiang H, Zhu K, Sun Y, Li Y, Chen H 2018 Phys. Rev. Appl. 10 064048Google Scholar

    [47]

    Guo Z, Long Y, Jiang H, et al. 2021 Adv. Photonics 3 036001

    [48]

    Guo Z, Jiang H, Li Y, et al. 2018 Opt. Express 26 627Google Scholar

    [49]

    Li Y, Sun Y, Zhu W, et al. 2018 Nat. Commun. 9 4598Google Scholar

    [50]

    Hadad Y, Soric J C, Khanikaev A B, Alù A 2018 Nat. Electron. 1 178Google Scholar

  • [1] Li Jing, Ding Hai-Tao, Zhang Dan-Wei. Quantum Fisher information and parameter estimation in non-Hermitian Hamiltonians. Acta Physica Sinica, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [2] Deng Tian-Shu. Non-Hermitian skin effect in a domain-wall system. Acta Physica Sinica, 2022, 71(17): 170306. doi: 10.7498/aps.71.20221087
    [3] Tang Yuan-Jiang, Liang Chao, Liu Yong-Chun. Research progress of parity-time symmetry and anti-symmetry. Acta Physica Sinica, 2022, 71(17): 171101. doi: 10.7498/aps.71.20221323
    [4] Sun Si-Tong, Ding Ying-Xing, Liu Wu-Ming. Research progress in quantum precision measurements based on linear and nonlinear interferometers. Acta Physica Sinica, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [5] Zhang Xi-Zheng, Wang Peng, Zhang Kun-Liang, Yang Xue-Min, Song Zhi. Non-Hermitian critical dynamics and its application to quantum many-body systems. Acta Physica Sinica, 2022, 71(17): 174501. doi: 10.7498/aps.71.20220914
    [6] Hou Bo, Zeng Qi-Bo. Non-Hermitian mosaic dimerized lattices. Acta Physica Sinica, 2022, 71(13): 130302. doi: 10.7498/aps.71.20220890
    [7] Gao Xue-Er, Li Dai-Li, Liu Zhi-Hang, Zheng Chao. Recent progress of quantum simulation of non-Hermitian systems. Acta Physica Sinica, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [8] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [9] SHI Ting-Ting,  ZHANG Lu-Dan,  ZHANG Shuai-Ning,  ZHANG Wei. High-order exceptional point in a quantum system of two qubits with interaction. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220716
    [10] Shi Ting-Ting, Zhang Lu-Dan, Zhang Shuai-Ning, Zhang Wei. High-order exceptional point in a quantum system of two qubits with interaction. Acta Physica Sinica, 2022, 71(13): 130303. doi: 10.7498/aps.70.20220716
    [11] Zhang Xiang-Yu, Liu Hui-Gang, Kang Ming, Liu Bo, Liu Hai-Tao. Metal-dielectric-metal multilayer structure with tunable Fabry-Perot resonance for highly sensitive refractive index sensing. Acta Physica Sinica, 2021, 70(14): 140702. doi: 10.7498/aps.70.20202058
    [12] Qiu Ke-Peng, Luo Yue, Zhang Wei-Hong. Analysis and design of new chiral metamaterials with asymmetric transmission characteristics. Acta Physica Sinica, 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [13] Zhang Gao-Jian, Wang Yi-Pu. Observation of the anisotropic exceptional point in cavity magnonics system. Acta Physica Sinica, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [14] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [15] Liao Qing-Hong, Deng Wei-Can, Wen Jian, Zhou Nan-Run, Liu Nian-Hua. Phonon blockade induced by a non-Hermitian Hamiltonian in a nanomechanical resonator coupled with a qubit. Acta Physica Sinica, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [16] Yu Hang, Xu Xi-Fang, Niu Qian, Zhang Li-Fa. Phonon angular momentum and chiral phonons. Acta Physica Sinica, 2018, 67(7): 076302. doi: 10.7498/aps.67.20172407
    [17] Lin Zhi-Li. Seidel aberration of left-handed media lens systems. Acta Physica Sinica, 2007, 56(10): 5758-5765. doi: 10.7498/aps.56.5758
    [18] Peng Yong-Jin, Zhang Hui-Peng, Jin Qing-Hua, Wang Yu-Fang, Li Bao-Hui, Ding Da-Tong. The E1 and E2 vibrational modes at Γ point for chiral single wall carbon nanotubes. Acta Physica Sinica, 2006, 55(6): 2860-2864. doi: 10.7498/aps.55.2860
    [19] Zhang Hui-Peng, Jin Qing-Hua, Wang Yu-Fang, Li Bao-Hui, Ding Da-Tong. Effect of single-wall carbon nanotubes’chiral angle for the phonon frequency. Acta Physica Sinica, 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
    [20] Tao Wei-Dong, Xia Hai-Peng, Bai Gui-Ru, Dong Jian-Feng, Nie Qiu-Hua. . Acta Physica Sinica, 2002, 51(3): 685-689. doi: 10.7498/aps.51.685
Metrics
  • Abstract views:  4821
  • PDF Downloads:  420
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2022
  • Accepted Date:  28 May 2022
  • Available Online:  27 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回