Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ground-state chiral currents in the synthetic Hall tube

Guan Xin Chen Gang Pan Jing You Xiu-Fen Gui Zhi-Guo

Citation:

Ground-state chiral currents in the synthetic Hall tube

Guan Xin, Chen Gang, Pan Jing, You Xiu-Fen, Gui Zhi-Guo
PDF
HTML
Get Citation
  • Hall tube is an important model to simulate the quantum Hall effect. However it hasn't been realized in superconducting circuits which have emerged as a promising platform for macro-controlling quantum effect. Taking advantage of the fine tunability of superconducting circuits, the three-chain superconducting transmon qubits with periodic boundary condition are designed in this paper. For constructing a synthetic Hall tube, ac magnetic fluxes are introduced to drive each transmon qubit. The gauge field emerged in this synthetic Hall tube can be tuned independently by properly choosing the driving phases. Then the ground-state chiral currents are discovered in this synthetic Hall tube, which are Meissner current on $xy$ plane ($xy$-M), vortex current on $xy$ plane ($xy$-V), vortex current on $xz$ plane ($xz$-V), and vortex current on both $xy$ and $xz$ planes (DV). For distinguishing these chiral currents, four order parameters $J_{C//}$, $J_{AB}$ ($J_{BC}$), and $J_{CA}$ are defined. Then the ground-state quantum phase diagrams are mapped out. The emergence of the different quantum phases is due to the competition between the coupling strengths $\tilde{t}$ and $t_{CA}$. The Meissner and vortex currents emerging in this synthetic Hall tube also emerge in type II superconductor, which can generate an opposite field to weaken the influence of the applied field. Thus this synthetic Hall tube can be used as a diamagnet. At last we consider the influence of the imperfections in device fabrication. We proof when the strength of the imperfection is not large enough, the quantum phase diagrams shown in this paper remain valid. Moreover, the possible experimental observations of the ground-state chiral currents are addressed. The ground state of this synthetic Hall tube can be generated by applying microwave pulses. Then the corresponding density matrix can be constructed by the quantum state tomography. After constructing the density matrix, the order parameters can be obtained by calculating the trace. These results enrich the quantum currents in Hall tube and provide a new route to explore novel quantum phases.
      Corresponding author: Guan Xin, guanxin810712@163.com
    • Funds: Project supported by National Key Program of the National Health Commission’s “Thirteenth Five-Year Plan”, China (Grant No. NHFPC102018), the Collaborative Education Program of the Ministry of Education, China (Grant No. 202101029006), the Higher Education Science and Technology Innovation Program of Shanxi Province, China (Grant No. 2021L574), the Natural Science Foundation of Shanxi Province, China(Grant No. 202103021223010), and the Natural Science Foundation of Taiyuan University, China (Grant No. 21TYKQ22)
    [1]

    Tai M E, Lukin A, Rispoli M, Menke T, Borgnia D, Preiss P M, Grusdt F, Kaufman A M, Greiner M 2017 Nature 546 519Google Scholar

    [2]

    刘彪, 周晓凡, 陈刚, 贾锁堂 2020 物理学报 69 080501Google Scholar

    Liu B, Zhou X F, Chen G, Jia S T 2020 Acta Phys. Sin. 69 080501Google Scholar

    [3]

    Creutz M 1999 Phys. Rev. Lett. 83 2636Google Scholar

    [4]

    Hung J S C, Busnaina J H, Chang C W S, Vadiraj A M, Nsanzineza I, Solano E, Alaeian H, Rico E, Wilson C M 2020 Phys. Rev. Lett. 127 100503Google Scholar

    [5]

    Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M, Fallani L 2015 Science 349 1510Google Scholar

    [6]

    Stuhl B K, Lu H I, Aycock L M, Genkina D, Spielman I B 2015 Science 349 1514Google Scholar

    [7]

    夏世强, 唐莉勤, 夏士齐, 马继娜, 燕文超, 宋道红, 胡毅, 许京军, 陈志刚 2020 物理学报 69 154207Google Scholar

    Xia S Q, Tang L Q, Xia S Q, Ma J N, Yan W C, Song D H, Hu Y, Xu J J, Chen Z G 2020 Acta Phys. Sin. 69 154207Google Scholar

    [8]

    Hofstadter D R 1976 Phys. Rev. B 14 2239Google Scholar

    [9]

    Laughlin R B 1981 Phys. Rev. B 23 5632Google Scholar

    [10]

    Zeng T S, Wang C, Zhai H 2015 Phys. Rev. Lett. 115 095302Google Scholar

    [11]

    Taddia L, Cornfeld E, Rossini D, Mazza L, Sela E, Fazio R 2017 Phys. Rev. Lett. 118 230402Google Scholar

    [12]

    Han J H, Kang J H, Shin Y 2019 Phys. Rev. Lett. 122 065303Google Scholar

    [13]

    Luo X W, Zhang J, Zhang C W 2020 Phys. Rev. A 102 063327Google Scholar

    [14]

    Zhou X F, Chen G, Jia S T 2020 Phys. Rev. A 102 043313Google Scholar

    [15]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [16]

    Gu X, Kockum A F, Miranowicz A, Liu Y, Nori F 2017 Phys. Rep. 718 1Google Scholar

    [17]

    喻祥敏, 谭新生, 于海峰, 于扬 2018 物理学报 67 220302Google Scholar

    Yu X M, Tan X S, Yu H F, Yu Y 2018 Acta Phys. Sin. 67 220302Google Scholar

    [18]

    赵士平, 刘玉玺, 郑东宁 2018 物理学报 67 228501Google Scholar

    Zhao S P, Liu Y X, Zheng D N, 2018 Acta Phys. Sin. 67 228501Google Scholar

    [19]

    Xu K, Sun Z H, Liu W, Zhang Y R, Li H K, Dong H, Ren W H, Zhang P F, Nori F, Zheng D N, Fan H, Wang H 2020 Sci. Adv. 6 eaba4935Google Scholar

    [20]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [21]

    Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potočnik A, Mezzacapo A, Heras U L, Lamata L, Solano E, Filipp S, Wallraff A 2015 Phys. Rev. X 5 021027Google Scholar

    [22]

    Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, Gambetta J M 2017 Nature 549 242Google Scholar

    [23]

    Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z Q, Jia S T, Sun L Y 2019 Phys. Rev. Lett. 123 080501Google Scholar

    [24]

    Tan X S, Zhang D W, Yang Z, Chu J, Zhu Y Q, Li D Y, Yang X P, Song S Q, Han Z K, Li Z Y, Dong Y Q, Yu H F, Yan H, Zhu S L, Yu Y 2019 Phys. Rev. Lett. 123 159902Google Scholar

    [25]

    Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Lin Y, Guo C, Sun L H, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X B, Pan J W 2019 Science 364 753Google Scholar

    [26]

    Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J 2019 Nature 566 51Google Scholar

    [27]

    Gong M, Wang S Y, Zha C, Chen M C, Huang H L, Wu Y L, Zhu Q L, Zhao Y W, Li S W, Guo S J, Qian H R, Ye Y S, Chen F S, Ying C, Yu J L, Fan D J, Wu D C, Su H, Deng H, Rong H, Zhang K L, Cao S R, Lin J, Xu Y, Sun L H, Guo C, Li N, Liang F T, Bastidas V M, Nemoto K, Munro W J, Huo Y H, Lu C Y, Peng C Z, Zhu X B, Pan J W 2021 Science 372 948Google Scholar

    [28]

    Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L, Sun L 2020 Phys. Rev. Appl. 14 024070Google Scholar

    [29]

    Han X Y, Cai T Q, Li X G, Wu Y K, Ma Y W, Ma Y L, Wang J H, Zhang H Y, Song Y P, Duan L M 2020 Phys. Rev. A 102 022619Google Scholar

    [30]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [31]

    Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Ming G, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Ma N, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 123 050502Google Scholar

    [32]

    Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q, Sun L Y 2018 Phys. Rev. Appl. 10 054009Google Scholar

    [33]

    Atala M, Aidelsburger M, Lohse M, Barreiro J T, Paredes B, Bloch I 2014 Nat. Phys. 10 588Google Scholar

    [34]

    Piraud M, Meisner F H, McCulloch I P, Greschner S, Vekua T, Schollwöck U 2015 Phys. Rev. B 91 140406(RGoogle Scholar

    [35]

    Guan X, Feng Y, Xue Z Y, Chen G, Jia S 2020 Phys. Rev. A 102 032610Google Scholar

    [36]

    Tai M E, Lukin A, Rispoli M, Schittko R, Menke T, Borgnia D, Preiss P M, Grusdt F, Kaufman A M, Greiner M 2017 Nature 546 519

    [37]

    Wang D W, Song C, Feng W, Cai H, Xu D, Deng H, Li H K, Zheng D N, Zhu X B, Wang H, Zhu S Y, Scully M O 2019 Nat. Phys. 15 382Google Scholar

    [38]

    Santos R A, Huang C W, Gefen Y, Gutman D B 2015 Phys. Rev. B 91 205141Google Scholar

    [39]

    Jia W, Huang Z H, Wei X, Zhao Q, Liu X J 2019 Phys. Rev. B 99 094520Google Scholar

    [40]

    Jiang Y F, Jiang H C 2020 Phys. Rev. Lett. 125 157002Google Scholar

    [41]

    Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O’Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2014 Nature 508 500Google Scholar

    [42]

    Song C, Xu K, Liu W, Yang C P, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S, Pan J W 2017 Phys. Rev. Lett. 119 180511Google Scholar

    [43]

    Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O’Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H, Martinis J 2017 Nat. Phys. 13 146Google Scholar

  • 图 1  人造霍尔管模型 (a) 三条transmon比特链分别标记为A, B, C. 沿着每条链, 最近邻比特之间耦合. 三条链之间, 同一个元胞中的比特两两耦合. 这里所有的耦合器均为电容. $ Q_{\nu j} $表示的是第ν条链上的第j个比特. $ C_{\nu j} $$ E_{\nu j}^{{\rm{J}}} $分别是第ν条链上、第j个比特的有效电容和约瑟夫森能. $ C_{\nu ij} $是耦合第ν条链上、第i和第j个元比特的电容. $ \{C_{ABj}, C_{BCj}, C_{CAj}\} $是耦合第j个元胞中不同链间比特的电容. $ \phi _{\nu j} $是第ν条链上、第j个比特的约瑟夫森结的相位. transmon比特的约瑟夫森结由超导量子干涉仪(SQUID)形成, $ E_{\nu j}^{{\rm{J}}0} $是SQUID中每个约瑟夫森结的能量. 每个比特都受到外加磁通$ \varPhi_{\nu j}(t) $的调制. (b) 人造霍尔管示意图, 在面$ Q_{A(j-1)}Q_{Aj}Q_{Bj}Q_{B(j-1)} $$ Q_{C(j-1)}Q_{Cj}Q_{Bj}Q_{B(j-1)} $上积累$ \varphi_0 $的相位, 在面$ Q_{A(j-1)}Q_{Aj}Q_{Cj}Q_{C(j-1)} $上积累$ 2\varphi_0 $的相位. 图中, 红色、黑色和蓝色的实心球分别表示A, BC链上的比特

    Figure 1.  Model of the synthetic Hall tube: (a) Three-leg (labeled respectively by A, B, C) superconducting circuits with transmon qubits. Along each leg, the qubits are coupled with their nearestneighbor sites, while they interact with each other between legs at the same unit cell. All couplers are capacitors. $ C_{\nu j} $ and $ E_{\nu j}^{{\rm{J}}} $ are the effective capacitance and the Josephson energy of the qubit at the j th site on the ν th leg. $ C_{\nu ij} $ and $ \{C_{ABj}, C_{BCj}, C_{CAj}\} $ are the capacitors to couple the qubits at the jth site on the νth leg with its nearest-neighbor sites along each leg and between the legs, respectively. $ \phi _{\nu j} $ is the phase of the Josephson junction of the qubit at the jth site on the νth leg. The Josephson junction of the transmon qubit is a superconducting quantum interference device (SQUID). $ E_{\nu j}^{{\rm{J}}0} $ is the Josephson energy of SQUID. Each qubit is modulate by an external magnetic flux $ \varPhi_{\nu j}(t) $. (b) Schematics of the synthetic Hall tube with an effective phase $ \varphi_0 $ in the plaquette $ Q_{A(j-1)}Q_{Aj}Q_{Bj}Q_{B(j-1)} $ and $Q_{C(j-1)}Q_{Cj}Q_{Bj} $$ Q_{B(j-1)}$ and $ 2\varphi_0 $ in the plaquette $ Q_{A(j-1)}Q_{Aj}Q_{Cj}Q_{C(j-1)} $. The red, black, and blue filled circles indicate the qubits in the A, B and C legs, respectively.

    图 2  霍尔管上的流以及比特的态密度分布. 箭头的粗细表示流的强弱, 红色、蓝色和黑色实心小球的大小分别表示A链、B链和C链上比特态密度分布的多少. 参数选择分别为 (a) $ \tilde{t} = 1.1 $$ t_{CA} = 4.5 $; (b) $ \tilde{t} = 0.4 $$ t_{CA} = 1.8 $; (c) $ \tilde{t} = 4 $$ t_{CA} = 4.4 $; (d) $ \tilde{t} = 2 $$ t_{CA} = 2 $. 这四个图共同的参数是$ \varphi_0 = 2\pi/3 $, 并且所有参数均以$ t_0 $为单位

    Figure 2.  Currents and densities distributions on the Hall tube with (a) $ \tilde{t} = 1.1 $ and $ t_{CA} = 4.5 $; (b) $ \tilde{t} = 0.4 $ and $ t_{CA} = 1.8 $; (c) $ \tilde{t} = 4 $ and $ t_{CA} = 4.4 $; (d) $ \tilde{t} = 2 $ and $ t_{CA} = 2 $. The thicknesses of the arrow denote the currents strength. The size of the red, black, and blue filled circles indicate the densities on the A, B, and C legs respectively. Here $ t_0 $ is used as the unit. The common parameter is $ \varphi_0 = 2\pi/3 $.

    图 3  参数空间中的相图 (a) $J_{C//}$; (b) $ J_{CA} $; (c) $ J_{AB} $$ J_{BC} $; (d)参数空间中$ \tilde{t} $-$ t_{CA} $不同的相. 这四个图共同的参数是$ \varphi_0 = 2\pi/3 $, 并且所有参数均以$ t_0 $为单位

    Figure 3.  Phase diagram of (a)$J_{C//}$, (b)$ J_{CA} $, (c)$ J_{AB} $ and $ J_{BC} $ as functions of $ \tilde{t} $ and $ t_{CA} $. Different phases are indicated in (d). Here $ t_0 $ is used as the unit. The common parameter is $ \varphi_0 = 2\pi/3 $.

    图 4  不同参数取值下序参量$J_{C//}$, $ J_{AB} $, $ J_{BC} $$ J_{CA} $$\lg W$的变化 (a) $ \tilde{t} = 1 $$ t_{CA} = 4 $; (b) $ \tilde{t} = 0.5 $$ t_{CA} = 2.5 $; (c) $ \tilde{t} = 2.5 $$ t_{CA} = 3 $; (d) $ \tilde{t} = 2 $$ t_{CA} = 2 $. 这四个图共同的参数是$ \varphi_0 = 2\pi/3 $, 并且所有参数均以$ t_0 $为单位

    Figure 4.  $J_{C//}$, $ J_{AB} $, $ J_{BC} $, and $ J_{CA} $ as functions of $\lg W$ with (a) $ \tilde{t} = 1 $ and $ t_{CA} = 4 $, (b) $ \tilde{t} = 0.5 $ and $ t_{CA} = 2.5 $), (c) $ \tilde{t} = 2.5 $ and $ t_{CA} = 3 $, (d) $ \tilde{t} = 2 $ and $ t_{CA} = 2 $. The common parameter is $ \varphi_0 = 2\pi/3 $. Here $ t_0 $ is used as the unit.

    图 5  ν条链的第j个比特的态$ \vert \psi \rangle _{\nu j} $在布洛赫球上的表示. $ \theta _{\nu j} $$ \chi_\nu j $分别表示$ \vert \psi \rangle _{\nu j} $在布洛赫球上与z轴和x轴的夹角

    Figure 5.  The jth qubit located on the ν leg described in Bloch sphere. $ \theta _{\nu j} $($ \chi_\nu j $) is the angle between the state $ \vert \psi \rangle _{\nu j} $ and z (x) axis in the Bloch sphere.

    表 1  不同手性流的判别

    Table 1.  Discriminant of the chiral currents.

    手性流的类别 $xy$-M $xy$-V $xz$-V DV
    $J_{C\Vert }$ 非0 非0 0 非0
    $J_{AB }$($J_{BC}$) 0 0 非0 非0
    $J_{CA}$ 0 非0 1非0 非0
    DownLoad: CSV
  • [1]

    Tai M E, Lukin A, Rispoli M, Menke T, Borgnia D, Preiss P M, Grusdt F, Kaufman A M, Greiner M 2017 Nature 546 519Google Scholar

    [2]

    刘彪, 周晓凡, 陈刚, 贾锁堂 2020 物理学报 69 080501Google Scholar

    Liu B, Zhou X F, Chen G, Jia S T 2020 Acta Phys. Sin. 69 080501Google Scholar

    [3]

    Creutz M 1999 Phys. Rev. Lett. 83 2636Google Scholar

    [4]

    Hung J S C, Busnaina J H, Chang C W S, Vadiraj A M, Nsanzineza I, Solano E, Alaeian H, Rico E, Wilson C M 2020 Phys. Rev. Lett. 127 100503Google Scholar

    [5]

    Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M, Fallani L 2015 Science 349 1510Google Scholar

    [6]

    Stuhl B K, Lu H I, Aycock L M, Genkina D, Spielman I B 2015 Science 349 1514Google Scholar

    [7]

    夏世强, 唐莉勤, 夏士齐, 马继娜, 燕文超, 宋道红, 胡毅, 许京军, 陈志刚 2020 物理学报 69 154207Google Scholar

    Xia S Q, Tang L Q, Xia S Q, Ma J N, Yan W C, Song D H, Hu Y, Xu J J, Chen Z G 2020 Acta Phys. Sin. 69 154207Google Scholar

    [8]

    Hofstadter D R 1976 Phys. Rev. B 14 2239Google Scholar

    [9]

    Laughlin R B 1981 Phys. Rev. B 23 5632Google Scholar

    [10]

    Zeng T S, Wang C, Zhai H 2015 Phys. Rev. Lett. 115 095302Google Scholar

    [11]

    Taddia L, Cornfeld E, Rossini D, Mazza L, Sela E, Fazio R 2017 Phys. Rev. Lett. 118 230402Google Scholar

    [12]

    Han J H, Kang J H, Shin Y 2019 Phys. Rev. Lett. 122 065303Google Scholar

    [13]

    Luo X W, Zhang J, Zhang C W 2020 Phys. Rev. A 102 063327Google Scholar

    [14]

    Zhou X F, Chen G, Jia S T 2020 Phys. Rev. A 102 043313Google Scholar

    [15]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [16]

    Gu X, Kockum A F, Miranowicz A, Liu Y, Nori F 2017 Phys. Rep. 718 1Google Scholar

    [17]

    喻祥敏, 谭新生, 于海峰, 于扬 2018 物理学报 67 220302Google Scholar

    Yu X M, Tan X S, Yu H F, Yu Y 2018 Acta Phys. Sin. 67 220302Google Scholar

    [18]

    赵士平, 刘玉玺, 郑东宁 2018 物理学报 67 228501Google Scholar

    Zhao S P, Liu Y X, Zheng D N, 2018 Acta Phys. Sin. 67 228501Google Scholar

    [19]

    Xu K, Sun Z H, Liu W, Zhang Y R, Li H K, Dong H, Ren W H, Zhang P F, Nori F, Zheng D N, Fan H, Wang H 2020 Sci. Adv. 6 eaba4935Google Scholar

    [20]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [21]

    Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potočnik A, Mezzacapo A, Heras U L, Lamata L, Solano E, Filipp S, Wallraff A 2015 Phys. Rev. X 5 021027Google Scholar

    [22]

    Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, Gambetta J M 2017 Nature 549 242Google Scholar

    [23]

    Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z Q, Jia S T, Sun L Y 2019 Phys. Rev. Lett. 123 080501Google Scholar

    [24]

    Tan X S, Zhang D W, Yang Z, Chu J, Zhu Y Q, Li D Y, Yang X P, Song S Q, Han Z K, Li Z Y, Dong Y Q, Yu H F, Yan H, Zhu S L, Yu Y 2019 Phys. Rev. Lett. 123 159902Google Scholar

    [25]

    Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Lin Y, Guo C, Sun L H, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X B, Pan J W 2019 Science 364 753Google Scholar

    [26]

    Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J 2019 Nature 566 51Google Scholar

    [27]

    Gong M, Wang S Y, Zha C, Chen M C, Huang H L, Wu Y L, Zhu Q L, Zhao Y W, Li S W, Guo S J, Qian H R, Ye Y S, Chen F S, Ying C, Yu J L, Fan D J, Wu D C, Su H, Deng H, Rong H, Zhang K L, Cao S R, Lin J, Xu Y, Sun L H, Guo C, Li N, Liang F T, Bastidas V M, Nemoto K, Munro W J, Huo Y H, Lu C Y, Peng C Z, Zhu X B, Pan J W 2021 Science 372 948Google Scholar

    [28]

    Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L, Sun L 2020 Phys. Rev. Appl. 14 024070Google Scholar

    [29]

    Han X Y, Cai T Q, Li X G, Wu Y K, Ma Y W, Ma Y L, Wang J H, Zhang H Y, Song Y P, Duan L M 2020 Phys. Rev. A 102 022619Google Scholar

    [30]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [31]

    Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Ming G, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Ma N, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 123 050502Google Scholar

    [32]

    Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q, Sun L Y 2018 Phys. Rev. Appl. 10 054009Google Scholar

    [33]

    Atala M, Aidelsburger M, Lohse M, Barreiro J T, Paredes B, Bloch I 2014 Nat. Phys. 10 588Google Scholar

    [34]

    Piraud M, Meisner F H, McCulloch I P, Greschner S, Vekua T, Schollwöck U 2015 Phys. Rev. B 91 140406(RGoogle Scholar

    [35]

    Guan X, Feng Y, Xue Z Y, Chen G, Jia S 2020 Phys. Rev. A 102 032610Google Scholar

    [36]

    Tai M E, Lukin A, Rispoli M, Schittko R, Menke T, Borgnia D, Preiss P M, Grusdt F, Kaufman A M, Greiner M 2017 Nature 546 519

    [37]

    Wang D W, Song C, Feng W, Cai H, Xu D, Deng H, Li H K, Zheng D N, Zhu X B, Wang H, Zhu S Y, Scully M O 2019 Nat. Phys. 15 382Google Scholar

    [38]

    Santos R A, Huang C W, Gefen Y, Gutman D B 2015 Phys. Rev. B 91 205141Google Scholar

    [39]

    Jia W, Huang Z H, Wei X, Zhao Q, Liu X J 2019 Phys. Rev. B 99 094520Google Scholar

    [40]

    Jiang Y F, Jiang H C 2020 Phys. Rev. Lett. 125 157002Google Scholar

    [41]

    Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O’Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2014 Nature 508 500Google Scholar

    [42]

    Song C, Xu K, Liu W, Yang C P, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S, Pan J W 2017 Phys. Rev. Lett. 119 180511Google Scholar

    [43]

    Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O’Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H, Martinis J 2017 Nat. Phys. 13 146Google Scholar

  • [1] Wu Hai-Bin, Liu Ying-Di, Liu Yan-Jun, Li Jin-Hua, Liu Jian-Jun. Chiral Majorana fermions resonance exchange moudulated by quantum dot coupling strength. Acta Physica Sinica, 2024, 73(13): 130502. doi: 10.7498/aps.73.20240739
    [2] Zheng Zhi-Yong, Chen Li-Jie, Xiang Lü, Wang He, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states by counter-rotating wave effect in one-dimensional superconducting microwave cavity lattice. Acta Physica Sinica, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [3] Guan Xin, Chen Gang. Topological nonmediocre nodes on two-leg superconducting quantum circuits. Acta Physica Sinica, 2023, 72(14): 140301. doi: 10.7498/aps.72.20230152
    [4] Shi Shu-Shu, Xiao Shan, Xu Xiu-Lai. Chiral optical transport of quantum dots with different diamagnetic behaviors in a waveguide. Acta Physica Sinica, 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [5] Wang Wei, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states in one-dimensional superconducting transmission line cavities lattice. Acta Physica Sinica, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [6] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [7] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [8] Luo Xi, Li Xin-Yang, Hu Shi-Jie, Huang Kui, Wang Xiao-Yun. Experimental investigation of angular anisoplanatism for sodium beacon. Acta Physica Sinica, 2018, 67(9): 099501. doi: 10.7498/aps.67.20172686
    [9] Yu Hang, Xu Xi-Fang, Niu Qian, Zhang Li-Fa. Phonon angular momentum and chiral phonons. Acta Physica Sinica, 2018, 67(7): 076302. doi: 10.7498/aps.67.20172407
    [10] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [11] Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang. Topological quantum material simulated with superconducting quantum circuits. Acta Physica Sinica, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [12] Leng Chun-Ling, Zhang Ying-Qiao, Ji Xin. The -type four-particle entangled state generated by using superconducting artificial atoms with broken symmetry. Acta Physica Sinica, 2015, 64(18): 184207. doi: 10.7498/aps.64.184207
    [13] Liu Ming, Xu Xiao-Feng, Wang Yong-Liang, Zeng Jia, Li Hua, Qiu Yang, Zhang Shu-Lin, Zhang Guo-Feng, Kong Xiang-Yan, Xie Xiao-Ming. Study on transmission characteristics of matching transformer in DC superconducting quantum interference device readout. Acta Physica Sinica, 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
    [14] He Rui. Quantum communication based on the circuit coupled by SQUID and mesoscopic LC resonator. Acta Physica Sinica, 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [15] Wei Yan, Hu Hui-Fang, Wang Zhi-Yong, Cheng Cai-Ping, Chen Nan-Ting, Xie Neng. Theoretical research on the electronic structure and transport properties of nitrogen doping chiral carbon nanotubes. Acta Physica Sinica, 2011, 60(2): 027307. doi: 10.7498/aps.60.027307
    [16] Liu Chun-Xu, Zhang Ji-Sen, Liu Jun-Ye, Jin Guang. The quantum coherent left handness of Λ-type four level system in Er3+:YAlO3 crystal. Acta Physica Sinica, 2009, 58(8): 5778-5783. doi: 10.7498/aps.58.5778
    [17] Peng Yong-Jin, Zhang Hui-Peng, Jin Qing-Hua, Wang Yu-Fang, Li Bao-Hui, Ding Da-Tong. The E1 and E2 vibrational modes at Γ point for chiral single wall carbon nanotubes. Acta Physica Sinica, 2006, 55(6): 2860-2864. doi: 10.7498/aps.55.2860
    [18] Zhang Hui-Peng, Jin Qing-Hua, Wang Yu-Fang, Li Bao-Hui, Ding Da-Tong. Effect of single-wall carbon nanotubes’chiral angle for the phonon frequency. Acta Physica Sinica, 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
    [19] Tao Wei-Dong, Xia Hai-Peng, Bai Gui-Ru, Dong Jian-Feng, Nie Qiu-Hua. . Acta Physica Sinica, 2002, 51(3): 685-689. doi: 10.7498/aps.51.685
    [20] ZHANG ZHEN-HUA, PENG JING-CUI, CHEN XIAO-HUA, ZHANG HUA. THE ELECTRONIC STRUCTURE AND MAGNETIC PROPERTIES OF THE CHIRAL TOROIDAL CARBON NANOTUBES. Acta Physica Sinica, 2001, 50(6): 1150-1156. doi: 10.7498/aps.50.1150
Metrics
  • Abstract views:  3678
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  18 February 2022
  • Accepted Date:  13 April 2022
  • Available Online:  01 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回