Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological quantum material simulated with superconducting quantum circuits

Yu Xiang-Min Tan Xin-Sheng Yu Hai-Feng Yu Yang

Citation:

Topological quantum material simulated with superconducting quantum circuits

Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • During the past decades, the exploration of new topological material and the study of their novel physical properties have become a hot topic in condensed matter physics. However, it is hard to realize various topological materials and observe their physical properties that have been predicted theoretically due to the limitation of experimental techniques, such as fabrication, parameter control, and measurement. This situation makes quantum simulation a way alternative to simulating large quantum systems. In general, quantum simulation can be implemented by some controllable quantum systems. As a kind of all-solid state device, superconducting quantum circuit is an artificial quantum system that has great advantage in scalability, integration, and controllability, which provides an important scheme to realize the quantum simulator. In this paper, we review our recent results of quantum simulation in the space-time inversion symmetry protected topological semimetal bands, Hopf-link semimetal bands, and topological Maxwell metal bands with superconducting quantum circuits. These results show that the superconducting circuit is a promising system for simulating the quantum many-body system in condensed matter physics.
      Corresponding author: Yu Hai-Feng, hfyu@nju.edu.cn;yuyang@nju.edu.cn ; Yu Yang, hfyu@nju.edu.cn;yuyang@nju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301802) and the National Natural Science Foundation of China (Grant Nos. 11274156, 11504165, 11474152, 61521001).
    [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467

    [2]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [3]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nature Phys. 9 795

    [4]

    Houck A, Tureci H, Koch J 2012 Nature Phys. 8 292

    [5]

    You J, Nori F 2011 Nature 474 589

    [6]

    Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H, Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501

    [7]

    Georgescu I, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153

    [8]

    Lloyd S 1996 Science 273 1073

    [9]

    Buluta I, Nori F 2009 Science 326 108

    [10]

    Cirac J, Zoller P 2012 Nature Phys. 8 264

    [11]

    Reed M D 2013 Ph. D Dissertation (New Haven: Yale University)

    [12]

    Girvin S M, Devoret M H, Schoelkopf R J 2009 Phys. Scri. T137 014012

    [13]

    Schuster D I 2007 Ph. D Dissertation (New Haven: Yale University)

    [14]

    Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L, Schoelkopf R J 2010 Phys. Rev. Lett. 105 173601

    [15]

    Li J, Paraoanu G S, Cicak K, Altomare F, Park J I, Simonds R W, Sillanpaa M A, Hakonen P J 2012 Sci. Rep. 2 645

    [16]

    Ekert A, Ericsson M, Hayden P, Inamori H, Jones J A, Daniel K L, Vedral V 2000 J. Mod. Optic 47 2501

    [17]

    Aidelsburger M,Lohse M,Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N R, Bloch I, Goldman N 2015 Nature Phys. 11 162

    [18]

    Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J 2007 Science 318 1889

    [19]

    Yuan X X, He L, Wang S T, Deng D L, Wang F, Lian W Q, Wang X, Zhang C H, Zhang H L, Chang X Y, Duan M L 2017 Chin. Phys. Lett. 34 060302

    [20]

    Deng D L, Wang S T, Sun K, Duan M L 2018 Chin. Phys. Lett. 35 013701

    [21]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [22]

    Zhao Y X, Schnyder A P, Wang Z D 2016 Phys. Rev. Lett. 116 156402

    [23]

    Tan X S, Zhao Y X, Liu Q, Xue G M, Yu H F, Yu Y 2017 npj Quantum Mater. 2 60

    [24]

    Chen W, Lu H Z, Hou J M 2017 Phys. Rev. B 96 041102

    [25]

    Chang P Y, Yee C H 2017 Phys. Rev. B 96 081114

    [26]

    Tan X S, Li M M, Li D Y, Dai K Z, Yu H F, Yu Y 2018 Appl. Phys. Lett. 112 172601

    [27]

    Yan Z B, Bi R, Shen H T, Lu L, Zhang S C, Wang Z 2017 Phys. Rev. B 96 041103

    [28]

    Abanin D A, Kitagawa T, Bloch I, Demler E 2013 Phys. Rev. Lett. 110 165304

    [29]

    Xiao D, Chang M, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [30]

    Bradlyn B, Cano J, Wang Z J, Vergniory M G, Felser C, Cava R J, Bernevig B A 2016 Science 353 5037

    [31]

    Stone M 2016 Int. J. Mod. Phys. B 30 1550249

    [32]

    Zhu Y Q, Zhang D W, Yan H, Xing D Y, Zhu S L 2018 ArXiv:1610.05993 [cond-mat. quant-gas]

    [33]

    Tan X S, Zhang D W, Liu Q, Xue G M, Yu H F, Zhu Y Q, Yan H, Zhu S L, Yu Y 2018 Phys. Rev. Lett. 120 130503

    [34]

    Gritsev V, Polkovnikov A 2012 Proc. Natl Acad. Sci. USA 109 6457

    [35]

    Roushan P, Neill C, Chen Y, Kolodrubetz M, Quintana C, Leung N, Fang M, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Mutus J, O’Malley P, Sank D, Vainsencher A, Wenner J, White T, Polkovnikov A, Cleland A N, Martinis J M 2014 Nature 515 241

  • [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467

    [2]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [3]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nature Phys. 9 795

    [4]

    Houck A, Tureci H, Koch J 2012 Nature Phys. 8 292

    [5]

    You J, Nori F 2011 Nature 474 589

    [6]

    Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H, Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501

    [7]

    Georgescu I, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153

    [8]

    Lloyd S 1996 Science 273 1073

    [9]

    Buluta I, Nori F 2009 Science 326 108

    [10]

    Cirac J, Zoller P 2012 Nature Phys. 8 264

    [11]

    Reed M D 2013 Ph. D Dissertation (New Haven: Yale University)

    [12]

    Girvin S M, Devoret M H, Schoelkopf R J 2009 Phys. Scri. T137 014012

    [13]

    Schuster D I 2007 Ph. D Dissertation (New Haven: Yale University)

    [14]

    Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L, Schoelkopf R J 2010 Phys. Rev. Lett. 105 173601

    [15]

    Li J, Paraoanu G S, Cicak K, Altomare F, Park J I, Simonds R W, Sillanpaa M A, Hakonen P J 2012 Sci. Rep. 2 645

    [16]

    Ekert A, Ericsson M, Hayden P, Inamori H, Jones J A, Daniel K L, Vedral V 2000 J. Mod. Optic 47 2501

    [17]

    Aidelsburger M,Lohse M,Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N R, Bloch I, Goldman N 2015 Nature Phys. 11 162

    [18]

    Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J 2007 Science 318 1889

    [19]

    Yuan X X, He L, Wang S T, Deng D L, Wang F, Lian W Q, Wang X, Zhang C H, Zhang H L, Chang X Y, Duan M L 2017 Chin. Phys. Lett. 34 060302

    [20]

    Deng D L, Wang S T, Sun K, Duan M L 2018 Chin. Phys. Lett. 35 013701

    [21]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [22]

    Zhao Y X, Schnyder A P, Wang Z D 2016 Phys. Rev. Lett. 116 156402

    [23]

    Tan X S, Zhao Y X, Liu Q, Xue G M, Yu H F, Yu Y 2017 npj Quantum Mater. 2 60

    [24]

    Chen W, Lu H Z, Hou J M 2017 Phys. Rev. B 96 041102

    [25]

    Chang P Y, Yee C H 2017 Phys. Rev. B 96 081114

    [26]

    Tan X S, Li M M, Li D Y, Dai K Z, Yu H F, Yu Y 2018 Appl. Phys. Lett. 112 172601

    [27]

    Yan Z B, Bi R, Shen H T, Lu L, Zhang S C, Wang Z 2017 Phys. Rev. B 96 041103

    [28]

    Abanin D A, Kitagawa T, Bloch I, Demler E 2013 Phys. Rev. Lett. 110 165304

    [29]

    Xiao D, Chang M, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [30]

    Bradlyn B, Cano J, Wang Z J, Vergniory M G, Felser C, Cava R J, Bernevig B A 2016 Science 353 5037

    [31]

    Stone M 2016 Int. J. Mod. Phys. B 30 1550249

    [32]

    Zhu Y Q, Zhang D W, Yan H, Xing D Y, Zhu S L 2018 ArXiv:1610.05993 [cond-mat. quant-gas]

    [33]

    Tan X S, Zhang D W, Liu Q, Xue G M, Yu H F, Zhu Y Q, Yan H, Zhu S L, Yu Y 2018 Phys. Rev. Lett. 120 130503

    [34]

    Gritsev V, Polkovnikov A 2012 Proc. Natl Acad. Sci. USA 109 6457

    [35]

    Roushan P, Neill C, Chen Y, Kolodrubetz M, Quintana C, Leung N, Fang M, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Mutus J, O’Malley P, Sank D, Vainsencher A, Wenner J, White T, Polkovnikov A, Cleland A N, Martinis J M 2014 Nature 515 241

  • [1] Liu Xiang-Lian, Li Kai-Zhou, Li Xiao-Qiong, Zhang Qiang. Coexistence of quantum spin and valley hall effect in two-dimensional dielectric photonic crystals. Acta Physica Sinica, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [2] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [3] Zheng Zhi-Yong, Chen Li-Jie, Xiang Lü, Wang He, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states by counter-rotating wave effect in one-dimensional superconducting microwave cavity lattice. Acta Physica Sinica, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [4] Guan Xin, Chen Gang. Topological nonmediocre nodes on two-leg superconducting quantum circuits. Acta Physica Sinica, 2023, 72(14): 140301. doi: 10.7498/aps.72.20230152
    [5] Xu Da, Wang Yi-Pu, Li Tie-Fu, You Jian-Qiang. Coherent coupling in a driven qubit-magnon hybrid quantum system. Acta Physica Sinica, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [6] Gao Xue-Er, Li Dai-Li, Liu Zhi-Hang, Zheng Chao. Recent progress of quantum simulation of non-Hermitian systems. Acta Physica Sinica, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [7] Wang Chen-Xu, He Ran, Li Rui-Rui, Chen Yan, Fang Ding, Cui Jin-Ming, Huang Yun-Feng, Li Chuan-Feng, Guo Guang-Can. Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [8] Luo Yu-Chen, Li Xiao-Peng. Quantum simulation of interacting fermions. Acta Physica Sinica, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [9] Chen Yang, Zhang Tian-Yang, Guo Guang-Can, Ren Xi-Feng. Research progress of integrated photonic quantum simulation. Acta Physica Sinica, 2022, 71(24): 244207. doi: 10.7498/aps.71.20221938
    [10] Wang Wei, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states in one-dimensional superconducting transmission line cavities lattice. Acta Physica Sinica, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [11] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [12] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [13] Kong Xiang-Yu, Zhu Yuan-Ye, Wen Jing-Wei, Xin Tao, Li Ke-Ren, Long Gui-Lu. New research progress of nuclear magnetic resonance quantum information processing. Acta Physica Sinica, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [14] Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning. Novel superconducting qubits and quantum physics. Acta Physica Sinica, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [15] Hao Ning, Hu Jiang-Ping. Research progress of topological quantum states in iron-based superconductor. Acta Physica Sinica, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [16] Fan Heng. Quantum computation and quantum simulation. Acta Physica Sinica, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [17] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [18] Wang Jian, Wu Shi-Qiao, Mei Jun. Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals. Acta Physica Sinica, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [19] Wang Qing-Hai, Li Feng, Huang Xue-Qin, Lu Jiu-Yang, Liu Zheng-You. The topological phase transition and the tunable interface states in granular crystal. Acta Physica Sinica, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [20] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
Metrics
  • Abstract views:  9148
  • PDF Downloads:  351
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2018
  • Accepted Date:  16 November 2018
  • Published Online:  20 November 2019

/

返回文章
返回