Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states

Fang Yun-Tuan Wang Zhang-Xin Fan Er-Pan Li Xiao-Xue Wang Hong-Jin

Citation:

Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states

Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin
PDF
HTML
Get Citation
  • Two kinds of two-dimensional photonic crystal with hexagonal honeycomb lattices are constructed in which the scatterer and the matrix materials are reversed. Due to the symmetry of special point group, the lattices have p and d orbitals in the center of Brillouin region, which are similar to those in the electronic system. With the structure reversal, the p and d orbitals are also directly inverted. Quantitative analysis shows that the orbital inversion is due to the inversion of air band and medium band because of the local resonance effect in the low frequency bands. Based on the parity properties of p and d orbitals, the pseudo spin states are constructed by analogy to the quantum spin Hall effect in electronic systems. The analysis of the effective Hamiltonian at Γ point shows that the topological phase transition caused by orbital inversion is revealed. The pseudo spin edge states construct an optimal structure. The electromagnetic wave simulations and energy flow vector analysis show that the structure edge takes on the properties of quantum spin Hall effect, namely, the propagation direction is locked by the spin direction and the propagation is topologically protected. The results also show that the quantum spin Hall effect can be realized without undergoing the closing of gap. The comparison among similar researches indicates that the realization of the pseudo spin states does not need the deformation of lattice, and the structure proposed in this work possesses the characteristics of simple design, wide band gap and strong edge localization.
      Corresponding author: Fang Yun-Tuan, fang_yt1965@sina.com
    • Funds: Project supported by the Open Fund of Jiangsu Key Laboratory of Security Tech. for Industrial Cyberspace, China (Grant No. STICB201906)
    [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [4]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [5]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [6]

    Sheng L, Sheng D N, Ting C S, Haldane F D M 2005 Phys. Rev. Lett. 95 136602Google Scholar

    [7]

    Wang Z, Chong Y D, Joannopoulos J D, et al. 2009 Nature 461 772Google Scholar

    [8]

    Wang Z, Chong Y D, Soljačić M 2008 Phys. Rev. Lett. 100 013905Google Scholar

    [9]

    Fang Y T, He H Q, Hu J X, Wen Z 2016 Phys. Rev. A 91 033827Google Scholar

    [10]

    Fang Y T, He H Q, Hu J X 2016 IEEE J. Sel. Top. Quant. 22 4901109Google Scholar

    [11]

    Lu L, Joannopoulos J D, Soljaˇci′c M 2014 Nat. Photonics 8 821Google Scholar

    [12]

    孙晓晨, 何程, 卢明辉, 陈延峰 2017 物理学报 66 224203Google Scholar

    Sun X C, He C, Lu M H, Chen Y F 2017 Acta Phys. Sin. 66 224203Google Scholar

    [13]

    王洪飞, 解碧野, 詹鹏, 卢明辉, 陈延峰 2019 物理学报 68 224206Google Scholar

    Wang H F, Xie B Y, Zhan P, Lu M H, Chen Y F 2019 Acta Phys. Sin. 68 224206Google Scholar

    [14]

    Skirlo S A, Lu L, Soljačić M 2014 Phys. Rev. Lett. 113 113904Google Scholar

    [15]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar

    [16]

    He C, Sun X C, Liu X P, Lu M H, Chen Y, Feng L, Chen Y F 2016 Proc. Natl. Acad. Sci. USA 113 4924Google Scholar

    [17]

    Guo Z W, Jiang H T, Long Y, Yu K, Ren J, Xue C H, Chen H 2017 Sci. Rep. 7 7742Google Scholar

    [18]

    Bisharat D J, Sievenpiper D F 2019 Laser Photonics Rev. 13 1900126Google Scholar

    [19]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [20]

    Li Y, Sun Y, Zhu W W, Guo Z W, Jiang J, Kariyado T, Chen H, Hu X 2018 Nat. Commun. 9 4598Google Scholar

    [21]

    Huang X Q, Yang Y T, Hang Z H, Zhang Z Q, Chan C T 2016 Phys. Rev. B 93 085415Google Scholar

    [22]

    Xu L, Wang H X, Xu Y D, Chen H Y, Jiang J H 2016 Opt. Express 24 18059Google Scholar

    [23]

    Mei J, Chen Z G, Wu Y 2016 Sci. Rep. 6 32752Google Scholar

    [24]

    Gao Y F, Jiang Z and Zhang L L, et al. 2018 J. Appl. Phys. 124 213107Google Scholar

    [25]

    王键, 吴世巧, 梅军 2017 物理学报 66 224301Google Scholar

    Wang J, Wu S Q, Mei J 2017 Acta Phys. Sin. 66 224301Google Scholar

    [26]

    贾鼎, 葛勇, 袁寿其, 孙宏祥 2019 物理学报 68 224301Google Scholar

    Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301Google Scholar

    [27]

    Xia B Z, Fan H Y, Liu T T 2019 Int. J. Mech. Sci. 155 197Google Scholar

    [28]

    Yang Y T, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2018 Phys. Rev. Lett. 120 217401Google Scholar

    [29]

    Yang Y H, Sun H X, Xia J P, Xue H R, Guo Z, Ge Y, Jia D, Yuan S Q, Chong Y D, Zhang B L 2019 Nat. Phys. 15 645Google Scholar

    [30]

    John D J, Steven G J, Robert D M 2008 Photonic Crystals Molding the Flow of Light (2nd Ed.) (Princeton: Princeton University Press) pp46–49

    [31]

    温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2009 声子晶体 (北京: 国防工业出版社) 第8页

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2009 Phononic Crystals (Beijing: National Defense Industry Press) p8 (in Chinese)

    [32]

    Lemoult F, Kaina N, Fink M, Lerosey 2013 Nat. Phys. 9 55Google Scholar

    [33]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [34]

    Xia J P, Jia D, Sun H X, Yuan S Q, Ge Y, Si Q R, Liu X J 2018 Adv. Mater. 30 1805002Google Scholar

    [35]

    Jiang Z, Gao Y F, He L, Sun J P, Song H, Wang Q 2019 Phys. Chem. Chem. Phys. 21 11367Google Scholar

    [36]

    Ji C Y, Liu G B, Zhang Y Y, Zou B S, Yao Y G 2019 Phys. Rev. A 99 043801Google Scholar

  • 图 1  六角蜂窝晶格结构模型(六边形是原胞, a1a2是晶格基矢) (a) A型结构, 散射体是空气柱, 基体是介质; (b) D型结构, 散射体是介质柱, 基体是空气; (c) 晶格第一布里渊区

    Figure 1.  Schematic of hexagonal honeycomb lattice (the hexagon is the unit cell, and a1 and a2 are the basic vectors of lattice): (a) The scatterer and matrix are air rods and dielectric, respectively; (b) the scatterer and matrix are dielectric rods and air, respectively; (c) the first Brillouin zone.

    图 2  两种结构的能带和在Γ点的p轨道和d轨道 (a) A型结构; (b) D型结构

    Figure 2.  Band structures of the hexagonal honeycomb lattices, and the orbitals of p and d: (a) Type A; (b) type D.

    图 3  p轨道和d轨道的频率随散射体材料介电常数$ {\varepsilon _{\rm{s}}} $和基体体材料介电常数$ {\varepsilon _{\rm{m}}} $之差的变化

    Figure 3.  Frequency positions of p and d orbits with the differences of $ {\varepsilon _{\rm{s}}} $ and $ {\varepsilon _{\rm{m}}} $

    图 4  优化后两种结构的能带以及p轨道和d轨道的位置 (a) A型结构; (b) D型结构

    Figure 4.  Band structures of the optimized lattices, and the orbitals of p and d: (a) Type A; (b) type D.

    图 5  边界态的构建与分析 (a) 超胞; (b) 超胞的带结构; (c) 模式分析; 图(c)给出图(b)边界态AB两点在拓扑非平庸层(中间层)左、右两侧边界激发的模场Ez和边界靠非平庸层一侧的能流矢量, 它们分别对应不同旋转方向的赝自旋, 分别用旋转箭头表示; 由于边界处能流矢量比涡旋处能流矢量大很多, 为了看清矢量旋转方向, 将矢量图的位置向非平庸层方向进行了适当的偏离

    Figure 5.  Construction and analysis of the edge states: (a) Supercell; (b) bands of the supercell; (c) mode analysis. The mode field Ez of the energy flow vectors of points A and B in (c) reveal the pseudo spins at the two edges of the middle non-trivial layer in (a). Because the energy flow vectors at the edge are much larger than those in the vortex, we move the vector plots to the non-trivial layer for a proper distance.

    图 6  赝自旋源(白色六角星)激发的电磁波边界态传输 (a) 频率位置为AB, 逆时针自旋; (b) 频率位置为AB, 顺时针自旋; (c) 频率位置为CD, 逆时针自旋; (d) 频率位置为CD, 顺时针自旋

    Figure 6.  Edge state transmission of electromagnetic wave excited by pseudospin source (white hexagon star): (a) Frequency position at AB and counterclockwise spin; (b) frequency position at AB and clockwise spin; (c) frequency position at CD and counterclockwise spin; (d) frequency position at CD and clockwise spin.

    图 7  拓扑边界态鲁棒性的验证, 白色六角星为赝自旋源位置 (a) 电场Ez幅度的分布, 障碍物(插图黑色区域)介电常数2.25; (b) 电场Ez幅度的分布, 障碍物介电常数11.7; (c) 边界态沿z型路线传输Ez场的分布, 插图为局部放大的能流矢量分布; (d) 边界态沿z型路线传输的能流矢量和Ez场的分布, 和图(c)比较, 源向右移动3个晶格常数距离

    Figure 7.  Robust of the topological boundary states and the pseudo-spin source position represented by white hexagonal star: (a) The distribution of the Ez field amplitude with the obstacle (the black area in the illustration) permittivity 2.25; (b) the distribution of the Ez field amplitude with the obstacle permittivity 11.7; (c) the distribution of the Ez field from the edge state transmission along the z-type route (the inset shows a locally amplified Poynting vector distribution); (d) the distribution of the Ez field and the energy flow vectors from the edge state transmission along the z-type route with the source moved 3a to the right.

    表 1  电场能量密度在两种类型结构的分布

    Table 1.  Distribution of electric field energy density in two structures.

    p orbitd orbit
    Type A$\begin{array}{l}\dfrac{ { { {\bar w}_{ {\rm{air} } } } } }{ { { {\bar w}_{ {\rm{dielectric} } } } } } = \dfrac{ {9.8962 \times { {10}^{ - 13} }\, {\rm{J} } \cdot { {\rm{m} }^{ - 2} } } }{ {6.4143 \times { {10}^{ - 11} }\, {\rm{J} } \cdot { {\rm{m} }^{ - 2} } } } = 0.01542\end{array}$$\begin{array}{l}\dfrac{ { { {\bar w}_{ {\rm{air} } } } } }{ { { {\bar w}_{ {\rm{dielectric} } } } } } = \dfrac{ {2.834 \times { {10}^{ - 12} }\, {\rm{J} } \cdot { {\rm{m} }^{ - 2} } } }{ {5.9366 \times { {10}^{ - 11} }\, {\rm{J} } \cdot { {\rm{m} }^{ - 2} } } } = 0.04774\end{array}$
    Type D$\begin{array}{l}\dfrac{ { { {\bar w}_{ {\rm{air} } } } } }{ { { {\bar w}_{ {\rm{dielectric} } } } } } = \dfrac{ {3.2652 \times { {10}^{ - 12} }\, {\rm{J} } \cdot { {\rm{m} }^{ - 2} } } }{ {9.2058 \times { {10}^{ - 11} }\, {\rm{J} } \cdot { {\rm{m} }^{ - 2} } } } = 0.03574\end{array}$$\begin{array}{l}\dfrac{ { { {\bar w}_{ {\rm{air} } } } } }{ { { {\bar w}_{ {\rm{dielectric} } } } } } = \dfrac{ {3.603 \times { {10}^{ - 12} }\, {\rm{J} } \cdot { {\rm{m} }^{ - 2} } } }{ {8.5597 \times { {10}^{ - 11} }\, {\rm{J} } \cdot { {\rm{m} }^{ - 2} } } } = 0.042\end{array}$
    DownLoad: CSV
  • [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [4]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [5]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [6]

    Sheng L, Sheng D N, Ting C S, Haldane F D M 2005 Phys. Rev. Lett. 95 136602Google Scholar

    [7]

    Wang Z, Chong Y D, Joannopoulos J D, et al. 2009 Nature 461 772Google Scholar

    [8]

    Wang Z, Chong Y D, Soljačić M 2008 Phys. Rev. Lett. 100 013905Google Scholar

    [9]

    Fang Y T, He H Q, Hu J X, Wen Z 2016 Phys. Rev. A 91 033827Google Scholar

    [10]

    Fang Y T, He H Q, Hu J X 2016 IEEE J. Sel. Top. Quant. 22 4901109Google Scholar

    [11]

    Lu L, Joannopoulos J D, Soljaˇci′c M 2014 Nat. Photonics 8 821Google Scholar

    [12]

    孙晓晨, 何程, 卢明辉, 陈延峰 2017 物理学报 66 224203Google Scholar

    Sun X C, He C, Lu M H, Chen Y F 2017 Acta Phys. Sin. 66 224203Google Scholar

    [13]

    王洪飞, 解碧野, 詹鹏, 卢明辉, 陈延峰 2019 物理学报 68 224206Google Scholar

    Wang H F, Xie B Y, Zhan P, Lu M H, Chen Y F 2019 Acta Phys. Sin. 68 224206Google Scholar

    [14]

    Skirlo S A, Lu L, Soljačić M 2014 Phys. Rev. Lett. 113 113904Google Scholar

    [15]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar

    [16]

    He C, Sun X C, Liu X P, Lu M H, Chen Y, Feng L, Chen Y F 2016 Proc. Natl. Acad. Sci. USA 113 4924Google Scholar

    [17]

    Guo Z W, Jiang H T, Long Y, Yu K, Ren J, Xue C H, Chen H 2017 Sci. Rep. 7 7742Google Scholar

    [18]

    Bisharat D J, Sievenpiper D F 2019 Laser Photonics Rev. 13 1900126Google Scholar

    [19]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [20]

    Li Y, Sun Y, Zhu W W, Guo Z W, Jiang J, Kariyado T, Chen H, Hu X 2018 Nat. Commun. 9 4598Google Scholar

    [21]

    Huang X Q, Yang Y T, Hang Z H, Zhang Z Q, Chan C T 2016 Phys. Rev. B 93 085415Google Scholar

    [22]

    Xu L, Wang H X, Xu Y D, Chen H Y, Jiang J H 2016 Opt. Express 24 18059Google Scholar

    [23]

    Mei J, Chen Z G, Wu Y 2016 Sci. Rep. 6 32752Google Scholar

    [24]

    Gao Y F, Jiang Z and Zhang L L, et al. 2018 J. Appl. Phys. 124 213107Google Scholar

    [25]

    王键, 吴世巧, 梅军 2017 物理学报 66 224301Google Scholar

    Wang J, Wu S Q, Mei J 2017 Acta Phys. Sin. 66 224301Google Scholar

    [26]

    贾鼎, 葛勇, 袁寿其, 孙宏祥 2019 物理学报 68 224301Google Scholar

    Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301Google Scholar

    [27]

    Xia B Z, Fan H Y, Liu T T 2019 Int. J. Mech. Sci. 155 197Google Scholar

    [28]

    Yang Y T, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2018 Phys. Rev. Lett. 120 217401Google Scholar

    [29]

    Yang Y H, Sun H X, Xia J P, Xue H R, Guo Z, Ge Y, Jia D, Yuan S Q, Chong Y D, Zhang B L 2019 Nat. Phys. 15 645Google Scholar

    [30]

    John D J, Steven G J, Robert D M 2008 Photonic Crystals Molding the Flow of Light (2nd Ed.) (Princeton: Princeton University Press) pp46–49

    [31]

    温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2009 声子晶体 (北京: 国防工业出版社) 第8页

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2009 Phononic Crystals (Beijing: National Defense Industry Press) p8 (in Chinese)

    [32]

    Lemoult F, Kaina N, Fink M, Lerosey 2013 Nat. Phys. 9 55Google Scholar

    [33]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [34]

    Xia J P, Jia D, Sun H X, Yuan S Q, Ge Y, Si Q R, Liu X J 2018 Adv. Mater. 30 1805002Google Scholar

    [35]

    Jiang Z, Gao Y F, He L, Sun J P, Song H, Wang Q 2019 Phys. Chem. Chem. Phys. 21 11367Google Scholar

    [36]

    Ji C Y, Liu G B, Zhang Y Y, Zou B S, Yao Y G 2019 Phys. Rev. A 99 043801Google Scholar

  • [1] Yang Yu-Ting, Qian Xin-Yue, Shi Li-Wei. Manipulation of electromagnetic waves induced by pseudomagnetic fields in two dimensional photonic crystals. Acta Physica Sinica, 2023, 72(13): 134203. doi: 10.7498/aps.72.20222242
    [2] Liu Xiang-Lian, Li Kai-Zhou, Li Xiao-Qiong, Zhang Qiang. Coexistence of quantum spin and valley hall effect in two-dimensional dielectric photonic crystals. Acta Physica Sinica, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [3] Sui Wen-Jie, Zhang Yu, Zhang Zi-Rui, Wang Xiao-Long, Zhang Hong-Fang, Shi Qiang, Yang Bing. Unidirectional propagation control of helical edge states in topological spin photonic crystals. Acta Physica Sinica, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [4] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [5] Luo Quan-Bin, Huang Xue-Qin, Deng Wei-Yin, Wu Ying, Lu Jiu-Yang, Liu Zheng-You. Type-II Dirac points and edge transports in phononic crystal plates. Acta Physica Sinica, 2021, 70(18): 184302. doi: 10.7498/aps.70.20210712
    [6] Pei Dong-Liang, Yang Tao, Chen Meng, Liu Yu, Xu Wen-Shuai, Zhang Man-Gong, Jiang Heng, Wang Yu-Ren. Broadband periodic and aperiodic acoustic topological insulator based on composite honeycomb structure. Acta Physica Sinica, 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [7] Zheng Zhou-Fu, Yin Jian-Fei, Wen Ji-Hong, Yu Dian-Long. Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [8] Wang Yan-Lan, Li Yan. Pseudospin states and topological phase transitions in two-dimensional photonic crystals made of dielectric materials. Acta Physica Sinica, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [9] Wang Yi-He, Zhang Zhi-Wang, Cheng Ying, Liu Xiao-Jun. Pseudospin modes of surface acoustic wave and topologically protected sound transmission in phononic crystal. Acta Physica Sinica, 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [10] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [11] Wang Qing-Hai, Li Feng, Huang Xue-Qin, Lu Jiu-Yang, Liu Zheng-You. The topological phase transition and the tunable interface states in granular crystal. Acta Physica Sinica, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [12] Shen Qing-Wei, Xu Lin, Jiang Jian-Hua. Topological phase transitions in core-shell gyromagnetic photonic crystal. Acta Physica Sinica, 2017, 66(22): 224102. doi: 10.7498/aps.66.224102
    [13] Wang Jian, Wu Shi-Qiao, Mei Jun. Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals. Acta Physica Sinica, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [14] Wu Zhi-Zheng, Yu Kun, Guo Zhi-Wei, Li Yun-Hui, Jiang Hai-Tao. Electronic Tamm states of metamaterial-like semiconductor composite structures. Acta Physica Sinica, 2015, 64(10): 107302. doi: 10.7498/aps.64.107302
    [15] Zhang Zheng-Ren, Long Zheng-Wen, Yuan Yu-Qun, Diao Xin-Feng. The band structure of symmetrical structured one-dimensional photonic crystal with single-negative materials. Acta Physica Sinica, 2010, 59(1): 587-591. doi: 10.7498/aps.59.587
    [16] Zhu Yong-Zheng, Yin Ji-Qiu, Qiu Ming-Hui. Non-close-packed photonic crystal of TiO2 hollow spheres: Fabrication and photonic bandgap calculation. Acta Physica Sinica, 2008, 57(12): 7725-7728. doi: 10.7498/aps.57.7725
    [17] Guan Chun-Ying, Yuan Li-Bo. Analysis of band gap in honeycomb photonic crystal heterostructure. Acta Physica Sinica, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [18] Dong Hui-Yuan, Liu Mei, Wu Zong-Han, Wang Jing, Wang Zhen-Lin. Band structures of three-dimensional photonic crystals consisting of dielectric spheres: a plane-wave approach. Acta Physica Sinica, 2005, 54(7): 3194-3199. doi: 10.7498/aps.54.3194
    [19] Liu Xiao-Dong, Wang Yi-Quan, Xu Xing-Sheng, Cheng Bing-Ying, Zhang Dao-Zhong. Enhancement and suppression of the spontaneous emission of a two-level atom in a photonic crystal with a state-conservative photonic pseudogap. Acta Physica Sinica, 2004, 53(1): 125-131. doi: 10.7498/aps.53.125
    [20] Li Yan, Zheng Rui-Sheng, Feng Yu-Chun, Niu Han-Ben. Photonic band in quasi-fractal photonic crystal structure including idealized metal. Acta Physica Sinica, 2004, 53(9): 3205-3210. doi: 10.7498/aps.53.3205
Metrics
  • Abstract views:  10389
  • PDF Downloads:  392
  • Cited By: 0
Publishing process
  • Received Date:  19 March 2020
  • Accepted Date:  09 May 2020
  • Available Online:  07 June 2020
  • Published Online:  20 September 2020

/

返回文章
返回