Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coexistence of quantum spin and valley hall effect in two-dimensional dielectric photonic crystals

Liu Xiang-Lian Li Kai-Zhou Li Xiao-Qiong Zhang Qiang

Citation:

Coexistence of quantum spin and valley hall effect in two-dimensional dielectric photonic crystals

Liu Xiang-Lian, Li Kai-Zhou, Li Xiao-Qiong, Zhang Qiang
PDF
HTML
Get Citation
  • The location and transmission of light is the core of modern photonic integrated device, and the proposal of topological photonics provides a new way of implementing optical manipulation. Topological photonic structures based on the quantum spin hall effect or quantum valley hall effect have the properties of immunity to defects and suppress backscattering, so they play a key role in designing novel low-loss photonic devices. In this work, we design a two-dimensional dielectric photonic crystal with time-reversal symmetry to achieve the coexistence of the quantum spin hall effect and the quantum valley hall effect in a photonic crystal. The design can be likened to an electronic system in which two pairs of Kramers simplex pairs are constructed to achieve a quadruple simplex pair in a photonic crystal. First, based on the method of shrinking and expanding the silicon pillars arranged in the honeycomb structure, the quadruple degeneracy point at the Γ point of the first Brillouin zone is opened, and the corresponding topologically trivial or non-trivial photonic band gap is formed,thereby realizing quantum spin hall effect. The expanded honeycomb lattice evolves into a Kagome structure, and then positive and negative perturbations are added to the Kagome lattice, breaking the spatial inversion symmetry of the Photonic crystal. When mirror symmetry is broken, different chiral photonic crystals can be created,leading the degeneracy point of the non-equivalent valleys K and K' in the Brillouin zone to be opened and a complete band gap to appear, thus realizing the Quantum valley hall effect. In the common band gap, topologically protected edge states are induced by nontrivial valley Chern number at the interface between two photonic crystals with opposite chirality. The numerical calculations show that unidirectional transport and bending-immune topological boundary states can be realized at the interface composed of topologically trivial (non-trivial) and positively (negatively) perturbed photonic crystals. Finally, a four-channel system based on the coexistence of the two effects is designed, The system is a novel electromagnetic wave router that can be selectively controlled by pseudospin degree of freedom or valley degree of freedom. This system provides a potential method for realizing the optical encoding and robust signal transmission, thereby providing greater flexibility for manipulating electromagnetic waves.
      Corresponding author: Liu Xiang-Lian, liuxianglian@tyut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China(Grant Nos. 202103021224090, 202103021224075) and the National Natural Science Foundation of China (Grant No. 61705159).
    [1]

    Klitzing V K 2017 Annu. Rev. Conden. Ma. P. 8 13Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    Haldane F D, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [4]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [5]

    沈清玮 徐林 蒋建华 2017 物理学报 66 224102Google Scholar

    Shen Q W, Xu L, Jiang J H 2017 Acta Phys. Sin. 66 224102Google Scholar

    [6]

    Khanikaev A B, Hossein Mousavi S, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar

    [7]

    Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W, Chan C T 2014 Nat. Commun. 5 1

    [8]

    He C, Sun X C, Liu X P, Lu M H, Chen Y, Feng L, Chen Y F 2016 Proc. Natl. Acad. Sci. U. S. A. 113 4924Google Scholar

    [9]

    Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907Google Scholar

    [10]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photonics 7 1001Google Scholar

    [11]

    Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W, Chan C T 2014 Nat. Commun. 5 5782Google Scholar

    [12]

    Liang G Q, Chong Y D 2013 Phys. Rev. Lett. 110 203904Google Scholar

    [13]

    Ma T, Khanikaev A B, Mousavi S H, Shvets G 2015 Phys. Rev. Lett. 114 127401Google Scholar

    [14]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [15]

    Barik S, Miyake H, DeGottardi W, Waks E, Hafezi M 2016 New J. Phys. 18 113013Google Scholar

    [16]

    Anderson P D, Subramania G 2017 Opt. Express 25 23293Google Scholar

    [17]

    Zhang Z, Wei Q, Cheng Y, Zhang T, Wu D, Liu X 2017 Phys. Rev. Lett. 118 084303Google Scholar

    [18]

    Xia B Z, Liu T T, Huang G L, Dai H Q, Jiao J R, Zang X G, Liu J 2017 Phys. Rev. B 96 094106Google Scholar

    [19]

    Zhu X, Wang H X, Xu C, Lai Y, Jiang J H, John S 2018 Phys. Rev. B 97 085148Google Scholar

    [20]

    Chen M L, Jiang L J, Lan Z H, Sha W 2019 IEEE. Trans. Antennas Propag. 68 609

    [21]

    方云团, 王张鑫, 范尔盼, 李小雪, 王洪金 2020 物理学报 69 184101Google Scholar

    Fang Y T, Wang Z X, Fan E P, Li X X, Wang H J 2020 Acta Phys. Sin. 69 184101Google Scholar

    [22]

    王彦兰, 李妍 2020 物理学报 69 094206Google Scholar

    Wang Y L, Li Y 2020 Acta Phys. Sin. 69 094206Google Scholar

    [23]

    Peng S, Schilder N J, Ni X, Van De Groep J, Brongersma M L, Alù A, Polman A 2019 Phys. Rev. Lett. 122 117401Google Scholar

    [24]

    Xie B, Su G, Wang H F, Liu F, Hu L, Yu S Y, Chen Y F 2020 Nat. Commun. 11 1Google Scholar

    [25]

    Ma T, Shvets G 2016 New J. Phys. 18 025012Google Scholar

    [26]

    Chen X D, Zhao F L, Chen M, Dong J W 2017 Phys. Rev. B 96 020202Google Scholar

    [27]

    Wiltshaw R, Craster R V, Makwana M P 2020 Wave Motion 99 102662Google Scholar

    [28]

    Wong S, Saba M, Hess O, Oh S S 2020 Phys. Rev. Res. 2 012011Google Scholar

    [29]

    Zhang L 2019 arXiv: 1903.03338 [physics. optics]

    [30]

    Gong Y, Wong S, Bennett A J, Huffaker D L, Oh S S 2020 Acs. Photonics 7 2089Google Scholar

    [31]

    He X T, Liang E T, Yuan J J, Qiu H Y, Chen X D, Zhao F L, Dong J W 2019 Nat. Commun. 10 1Google Scholar

    [32]

    Han Y, Fei H, Lin H, Zhang Y, Zhang M, Yang Y 2021 Opt. Commun. 488 126847Google Scholar

    [33]

    Liu X L, Zhao L J, Zhang D, Gao S H 2022 Opt. Express 30 4965Google Scholar

    [34]

    Zhong H, Li Y D, Song D H, Kartashov Y V, Zhang Y Q 2020 Laser Photonics Rev. 14 7

    [35]

    Zhong H, Xia S Q, Zhang Y Q, Li Y D, Song D H, Liu C L, Chen Z G 2021 Adv. Photonics 3 056001

    [36]

    Tang Q, Zhang Y Q, V. Kartashov Y, Li Y D, V. Konotop V 2022 Chaos Solitons Fractals 161 112364Google Scholar

    [37]

    Tang Q, Ren B Q, Belić M R, Zhang Y Q, Li Y D 2022 Rom. Rep. Phys. 74 405

    [38]

    Ren B Q, Wang H G, O. Kompanets V, V. Kartashov Y, Li Y D, Zhang Y Q 2021 Nanophoton. 10 3559Google Scholar

    [39]

    Arora S, Bauer T, Barczyk R, Verhagen E, Kuipers L 2021 Light Sci. Appl. 10 1Google Scholar

    [40]

    Chen M L, Jiang L J, Lan Z H, Sha W 2020 Phys. Rev. Res. 2 043148Google Scholar

    [41]

    Wei G C, Liu Z Z, Wang L C, Song J Y, Xiao J J 2022 Photonics Res. 10 999Google Scholar

    [42]

    Wu L H, Hu X 2016 Sci. Rep. 6 1Google Scholar

    [43]

    Liu F, Deng H Y, Wakabayashi K 2019 Phys. Rev. Lett. 122 086804Google Scholar

    [44]

    Wang C, Zhang H, Yuan H, Zhong J, Lu C 2020 Front. Optoelectron. 13 73Google Scholar

    [45]

    Oh S S, Lang B, Beggs D M, Huffaker D L, Saba M, Hess O 2018 The 13th Pacific Rim Conference on Lasers and Electro-Optics Hongkong, China, July 29–August 3, 2018 pTh4H5

  • 图 1  PC示意图, 红色向量分别表示六边形和菱形原胞的单位向量, 长度$ {a}_{0} $是晶格常数. 右图为六边形单胞的放大图, R为相邻硅柱间距, D为硅柱的直径, $ {\varepsilon }_{{\rm{d}}}{\rm{和}}{\varepsilon }_{{\rm{A}}} $分别是硅和周围环境的介电常数

    Figure 1.  PC schematic diagram, red vectors represent unit vectors of hexagonal and rhomboid unit cell respectively, and the length of lattice constant is $ {a}_{0} $. The right figure is an enlarged view of a hexagonal cell. R is the distance between adjacent silicon columns and D is the diameter of cylinder. $ {\varepsilon }_{{\rm{d}}}, {\varepsilon }_{{\rm{A}}} $ are dielectric constants of cylinder and surrounding environment, respectively.

    图 2  (a)灰色区域表示菱形原胞的BZ, 用$ Z $表示, 蓝色区域表示六边形原胞的BZ, 用$ {Z}_{{\rm{s}}} $表示, ($ {b}_{1}, {b}_{2} $)和($ {b}_{{\rm{s}}1}, {b}_{{\rm{s}}2} $)是对应的倒格子基矢; (b)从$ Z $$ {Z}_{{\rm{s}}} $的折叠机制示意图; (c)菱形原胞的BZ内选择不同的扫描路径的能带色散图及折叠到六边形原胞的BZ内的能带色散图; (d)基于单胞$ {C}_{{\rm{s}}} $的色散曲线, 插图为原始单胞和扫描的BZ, 结构参数为${a}_{0}=1~{\rm{μ }}{\rm{m}}$, $D=0.24 {a}_{0}$, $ R/{a}_{0}=1/3 $, 右图为狄拉克四重简并点的电场图

    Figure 2.  (a) The gray area denoted by $ Z $ represents the BZ of the rhomboid unit cell; the blue area denoted by $ {Z}_{{\rm{s}}} $ represents the BZ of the hexagonal unit cell; ($ {b}_{1}, {b}_{2} $) and ($ {b}_{{\rm{s}}1}, {b}_{{\rm{s}}2} $) are the corresponding inverted lattice basis vectors, respectively; (b) the folding mechanism from $ Z $ to $ {Z}_{{\rm{s}}} $; (c) band dispersion maps in the BZ of the rhomboid unit cell with different scanning paths, and band dispersion maps with different scanning paths based on the folding mechanism; (d) dispersion curves based on a single cell $ {C}_{{\rm{s}}} $, and the inset is the original single cell and the scanned BZ, the structural parameters are ${a}_{0}=1~{\rm{μ }}{\rm{m}}$, $D=0.24 {a}_{0}$, $ R/{a}_{0}=1/3 $, the right of Fig. (d) is electric fields of Dirac quadruple degenerate points.

    图 3  $ R/{a}_{0}=0.25 $($D=0.36 {a}_{0}$) (a)和$ R/{a}_{0}=0.5 $($D=0.4 {a}_{0}$)(b)的能带图, 说明$ \varGamma $发生p, d模式反转(b); (c)晶格结构为$ R/{a}_{0}=0.25 $时上下能级的电场图(左1和左2)和晶格结构为$ R/{a}_{0}=0.5 $时上下能级的电场图(右1和右2)

    Figure 3.  Energy bands of lattices with $ R/{a}_{0}=0.25 $($D=0.36 {a}_{0}$)(a) and $ R/{a}_{0}=0.5 $($D=0.4 {a}_{0}$)(b), respectively, the p and d modes reversal occurs in $ \varGamma $ (b); (c) two columns on the left: electric fields of the p or d state at point Γ for the lattice with $R/{a}_{0}=0.25\left({\rm{l}}{\rm{e}}{\rm{f}}{\rm{t}}\; 1\;{\rm{ }}{\rm{a}}{\rm{n}}{\rm{d}}\;2\right)$, two columns on the right: electric fields for the p or d state for the lattice with $R/{a}_{0}=0.5\left({\rm{r}}{\rm{i}}{\rm{g}}{\rm{h}}{\rm{t}}{\rm{ }}\;1\;{\rm{ }}{\rm{a}}{\rm{n}}{\rm{d}}\; 2\right)$

    图 4  (a)KPC的结构示意图; (b)$D=0.4 {a}_{0}, R/{a}_{0}=0.5, d=1.2 {d}_{0}$$d=0.8 {d}_{0}~({d}_{0}=\dfrac{{a}_{0}}{2 \sqrt{3}})$的KPC的色散曲线; (c)第一、二条能带$K\left({K}'\right)$点的相位图及上下能带$ \varGamma $点的电场图; (d)KPC原胞正扰动和负扰动第一条能带的Berry曲率

    Figure 4.  (a) The structure diagram of KPC; (b) the dispersion curve of KPC with $D=0.4 {a}_{0}$, $ R/{a}_{0}=0.5 $, $d=1.2 {d}_{0}$ or $d=0.8 {d}_{0} $$ \Big({d}_{0}=\dfrac{{a}_{0}}{2\sqrt{3}}\Big)$; (c) phase diagram of the first and second band $K\left({K}'\right)$ and electric field diagram of the upper and lower band $ \varGamma $; (d) Berry curvature of the first band of positive or negative perturbations of the KPC unit cell.

    图 5  (a)赝自旋极化边缘态, 拓扑平凡PC和拓扑非平凡PC组成超胞的几何结构、能带结构以及A, B两点对应的电场分布图;(b)谷极化边缘态, 由正扰动和负扰动KPC结构所组成的几何结构、能带结构以及A, B两点对应的电场分布图

    Figure 5.  (a) Pseudospin-polarized edge states, the structure and the energy band of a supercell composed of the topological trivial PC and the topological nontrivial PC, and the electric field distribution corresponding to points A and B at the energy band; (b) valley-polarized edge states, the geometry and band structure of the KPC consisting of positive and negative perturbations and the corresponding electric field distribution at points A and B.

    图 6  赝自旋边缘态的光传输特性和场分布(a)由$ R=0.5*{a}_{0} $(蓝色区域)非平凡结构和$ R=0.25*{a}_{0} $平凡结构(红色区域)组成直波导示意图, 图中黄色的六角形表示手性源的位置; (b)6个点源组成的手性激发源示意图, 相邻点源的相位差是$ {\text{π}}/3 $; (c)和(d)直波导中分别由RCP和LCP光源所激发的光束电场强度分布; (e)由$ R=0.5*{a}_{0} $(蓝色区域)和$ R=0.25*{a}_{0} $(红色区域)组成的“Z”字形波导; (f)Z字形波导中RCP源所激发的电场分布图

    Figure 6.  Optical transmission characteristics and the electric field distribution of the pseudospin boundary state: (a) Schematic diagram of the straight waveguide consisting of the non-trivial structure with $ R=0.5*{a}_{0} $ (blue area) and the trivial structure with $ R=0.25*{a}_{0} $ (red area), the yellow hexagon in the diagram shows the position of the excitation source; (b) schematic diagram of a chiral power consisting of six antennas, and the phase difference between adjacent antennas is π/3; (c), (d) the electric field intensity distributions excited by RCP or LCP sources, respectively; (e) Z-shaped waveguide consisting of $ R=0.5*{a}_{0} $ (blue area) and $ R=0.25*{a}_{0} $ (red area); (f) field intensity distribution of the electric field excited by the RCP source.

    图 7  谷边缘态的光传输特性和场分布(a)由$d = 0.8{d}_{0}$(蓝色区域)和$d = 1.2{d}_{0}$(红色区域)组成的直波导示意图, 左手性源(标记为六角形)放置在正扰动和负扰动KPC界面附近的不同位置处, 以激发不同的边缘模式; (b)—(d)分别由LCP光源在不同的激发源位置所激发的光束电场强度分布; (e)和(f)分别是构建的“Z”字形拓扑波导, 以及由黄星表示的LCP源所激发的电场强度分布

    Figure 7.  Optical transmission characteristics and the electric field distribution of the valley edge state: (a) Schematic diagram of valley waveguide composed of $d=0.8 {d}_{0}$ (blue region) and $d=1.2 {d}_{0}$ (red region), the left-handed circular polarized dipoles (marked as the hexagon) placed at different locations near the interface between KPCs with positive or negative disturbances to excite edge modes; (b)–(d) are the electric field intensity distributions excited by the LCP light source at different positions; (e) schemes of z-shaped waveguide; (f) the electric field intensity distribution of Z-shaped waveguide excited by the LCP source.

    图 8  (a)四通道系统的结构图; (b)谷激发的场强分布; (c)赝自旋激发的场强分布

    Figure 8.  (a)The four-channel system for the electromagnetic wave routing; (b) the field intensity distribution of the valley excitation; (c) the field intensity distribution of the pseudospin excitation.

  • [1]

    Klitzing V K 2017 Annu. Rev. Conden. Ma. P. 8 13Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    Haldane F D, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [4]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [5]

    沈清玮 徐林 蒋建华 2017 物理学报 66 224102Google Scholar

    Shen Q W, Xu L, Jiang J H 2017 Acta Phys. Sin. 66 224102Google Scholar

    [6]

    Khanikaev A B, Hossein Mousavi S, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar

    [7]

    Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W, Chan C T 2014 Nat. Commun. 5 1

    [8]

    He C, Sun X C, Liu X P, Lu M H, Chen Y, Feng L, Chen Y F 2016 Proc. Natl. Acad. Sci. U. S. A. 113 4924Google Scholar

    [9]

    Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907Google Scholar

    [10]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photonics 7 1001Google Scholar

    [11]

    Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W, Chan C T 2014 Nat. Commun. 5 5782Google Scholar

    [12]

    Liang G Q, Chong Y D 2013 Phys. Rev. Lett. 110 203904Google Scholar

    [13]

    Ma T, Khanikaev A B, Mousavi S H, Shvets G 2015 Phys. Rev. Lett. 114 127401Google Scholar

    [14]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [15]

    Barik S, Miyake H, DeGottardi W, Waks E, Hafezi M 2016 New J. Phys. 18 113013Google Scholar

    [16]

    Anderson P D, Subramania G 2017 Opt. Express 25 23293Google Scholar

    [17]

    Zhang Z, Wei Q, Cheng Y, Zhang T, Wu D, Liu X 2017 Phys. Rev. Lett. 118 084303Google Scholar

    [18]

    Xia B Z, Liu T T, Huang G L, Dai H Q, Jiao J R, Zang X G, Liu J 2017 Phys. Rev. B 96 094106Google Scholar

    [19]

    Zhu X, Wang H X, Xu C, Lai Y, Jiang J H, John S 2018 Phys. Rev. B 97 085148Google Scholar

    [20]

    Chen M L, Jiang L J, Lan Z H, Sha W 2019 IEEE. Trans. Antennas Propag. 68 609

    [21]

    方云团, 王张鑫, 范尔盼, 李小雪, 王洪金 2020 物理学报 69 184101Google Scholar

    Fang Y T, Wang Z X, Fan E P, Li X X, Wang H J 2020 Acta Phys. Sin. 69 184101Google Scholar

    [22]

    王彦兰, 李妍 2020 物理学报 69 094206Google Scholar

    Wang Y L, Li Y 2020 Acta Phys. Sin. 69 094206Google Scholar

    [23]

    Peng S, Schilder N J, Ni X, Van De Groep J, Brongersma M L, Alù A, Polman A 2019 Phys. Rev. Lett. 122 117401Google Scholar

    [24]

    Xie B, Su G, Wang H F, Liu F, Hu L, Yu S Y, Chen Y F 2020 Nat. Commun. 11 1Google Scholar

    [25]

    Ma T, Shvets G 2016 New J. Phys. 18 025012Google Scholar

    [26]

    Chen X D, Zhao F L, Chen M, Dong J W 2017 Phys. Rev. B 96 020202Google Scholar

    [27]

    Wiltshaw R, Craster R V, Makwana M P 2020 Wave Motion 99 102662Google Scholar

    [28]

    Wong S, Saba M, Hess O, Oh S S 2020 Phys. Rev. Res. 2 012011Google Scholar

    [29]

    Zhang L 2019 arXiv: 1903.03338 [physics. optics]

    [30]

    Gong Y, Wong S, Bennett A J, Huffaker D L, Oh S S 2020 Acs. Photonics 7 2089Google Scholar

    [31]

    He X T, Liang E T, Yuan J J, Qiu H Y, Chen X D, Zhao F L, Dong J W 2019 Nat. Commun. 10 1Google Scholar

    [32]

    Han Y, Fei H, Lin H, Zhang Y, Zhang M, Yang Y 2021 Opt. Commun. 488 126847Google Scholar

    [33]

    Liu X L, Zhao L J, Zhang D, Gao S H 2022 Opt. Express 30 4965Google Scholar

    [34]

    Zhong H, Li Y D, Song D H, Kartashov Y V, Zhang Y Q 2020 Laser Photonics Rev. 14 7

    [35]

    Zhong H, Xia S Q, Zhang Y Q, Li Y D, Song D H, Liu C L, Chen Z G 2021 Adv. Photonics 3 056001

    [36]

    Tang Q, Zhang Y Q, V. Kartashov Y, Li Y D, V. Konotop V 2022 Chaos Solitons Fractals 161 112364Google Scholar

    [37]

    Tang Q, Ren B Q, Belić M R, Zhang Y Q, Li Y D 2022 Rom. Rep. Phys. 74 405

    [38]

    Ren B Q, Wang H G, O. Kompanets V, V. Kartashov Y, Li Y D, Zhang Y Q 2021 Nanophoton. 10 3559Google Scholar

    [39]

    Arora S, Bauer T, Barczyk R, Verhagen E, Kuipers L 2021 Light Sci. Appl. 10 1Google Scholar

    [40]

    Chen M L, Jiang L J, Lan Z H, Sha W 2020 Phys. Rev. Res. 2 043148Google Scholar

    [41]

    Wei G C, Liu Z Z, Wang L C, Song J Y, Xiao J J 2022 Photonics Res. 10 999Google Scholar

    [42]

    Wu L H, Hu X 2016 Sci. Rep. 6 1Google Scholar

    [43]

    Liu F, Deng H Y, Wakabayashi K 2019 Phys. Rev. Lett. 122 086804Google Scholar

    [44]

    Wang C, Zhang H, Yuan H, Zhong J, Lu C 2020 Front. Optoelectron. 13 73Google Scholar

    [45]

    Oh S S, Lang B, Beggs D M, Huffaker D L, Saba M, Hess O 2018 The 13th Pacific Rim Conference on Lasers and Electro-Optics Hongkong, China, July 29–August 3, 2018 pTh4H5

  • [1] Yang Yu-Ting, Qian Xin-Yue, Shi Li-Wei. Manipulation of electromagnetic waves induced by pseudomagnetic fields in two dimensional photonic crystals. Acta Physica Sinica, 2023, 72(13): 134203. doi: 10.7498/aps.72.20222242
    [2] Sui Wen-Jie, Zhang Yu, Zhang Zi-Rui, Wang Xiao-Long, Zhang Hong-Fang, Shi Qiang, Yang Bing. Unidirectional propagation control of helical edge states in topological spin photonic crystals. Acta Physica Sinica, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [3] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [4] Zheng Zhou-Fu, Yin Jian-Fei, Wen Ji-Hong, Yu Dian-Long. Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [5] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [6] Wang Yan-Lan, Li Yan. Pseudospin states and topological phase transitions in two-dimensional photonic crystals made of dielectric materials. Acta Physica Sinica, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [7] Wang Yi-He, Zhang Zhi-Wang, Cheng Ying, Liu Xiao-Jun. Pseudospin modes of surface acoustic wave and topologically protected sound transmission in phononic crystal. Acta Physica Sinica, 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [8] Zuo Yi-Fan, Li Pei-Li, Luan Kai-Zhi, Wang Lei. Heterojunction polarization beam splitter based on self-collimation in photonic crystal. Acta Physica Sinica, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [9] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [10] Zhao Xuan, Liu Chen, Ma Hui-Li, Feng Shuai. Photonic crystal frequency band selecting and power splitting devices based on the energy coupling effect between waveguides. Acta Physica Sinica, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [11] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [12] Wang Qing-Hai, Li Feng, Huang Xue-Qin, Lu Jiu-Yang, Liu Zheng-You. The topological phase transition and the tunable interface states in granular crystal. Acta Physica Sinica, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [13] Shen Qing-Wei, Xu Lin, Jiang Jian-Hua. Topological phase transitions in core-shell gyromagnetic photonic crystal. Acta Physica Sinica, 2017, 66(22): 224102. doi: 10.7498/aps.66.224102
    [14] Wang Jian, Wu Shi-Qiao, Mei Jun. Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals. Acta Physica Sinica, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [15] Deng Fu-Sheng, Sun Yong, Liu Yan-Hong, Dong Li-Juan, Shi Yun-Long. Valley Hall effect induced by pseudomagnetic field in distorted photonic graphene. Acta Physica Sinica, 2017, 66(14): 144204. doi: 10.7498/aps.66.144204
    [16] Zhou Wen, Chen He-Ming. Mode division multiplexing of two-dimensional triangular lattice photonic crystal based on magneto-optical effect. Acta Physica Sinica, 2015, 64(6): 064210. doi: 10.7498/aps.64.064210
    [17] Sun Jia-Tao, Meng Sheng. The valley degree of freedom of an electron. Acta Physica Sinica, 2015, 64(18): 187301. doi: 10.7498/aps.64.187301
    [18] Han Kui, Wang Zi-Yu, Shen Xiao-Peng, Wu Qiong-Hua, Tong Xing, Tang Gang, Wu Yu-Xi. Mach-Zehnder interferometer designed based on self-collimating beams and photonic band gap in photonic crystals. Acta Physica Sinica, 2011, 60(4): 044212. doi: 10.7498/aps.60.044212
    [19] Du Xiao-Yu, Zheng Wan-Hua, Ren Gang, Wang Ke, Xing Ming-Xin, Chen Liang-Hui. Slow wave effect of 2-D photonic crystal coupled cavity array. Acta Physica Sinica, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [20] Liu Xiao-Dong, Wang Yi-Quan, Xu Xing-Sheng, Cheng Bing-Ying, Zhang Dao-Zhong. Enhancement and suppression of the spontaneous emission of a two-level atom in a photonic crystal with a state-conservative photonic pseudogap. Acta Physica Sinica, 2004, 53(1): 125-131. doi: 10.7498/aps.53.125
Metrics
  • Abstract views:  4261
  • PDF Downloads:  206
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2022
  • Accepted Date:  14 December 2022
  • Available Online:  14 February 2023
  • Published Online:  05 April 2023

/

返回文章
返回