Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of integrated photonic quantum simulation

Chen Yang Zhang Tian-Yang Guo Guang-Can Ren Xi-Feng

Citation:

Research progress of integrated photonic quantum simulation

Chen Yang, Zhang Tian-Yang, Guo Guang-Can, Ren Xi-Feng
PDF
HTML
Get Citation
  • Quantum simulation is to use a controllable quantum system to simulate other complicated or hard-to-control quantum system, and to deal with some complex unknown quantum systems that cannot be simulated on classical computers due to the exponential explosion of the Hilbert space. Among different kinds of physical realizations of quantum simulation, integrated optical systems have emerged as an appropriate platform in recent years due to the advantages of flexible control, weak decoherence, and no interaction in optical systems. In this review, we attempt to introduce some of the basic models used for quantum simulation in integrated photonic systems. This review article is organized as follows. In Section 2, we introduce the commonly used material platforms for integrated quantum simulation, including the silicon-based, lithium niobate-based integrated circuits, and the femtosecond laser direct writing optical waveguides. Several integrated optical platforms such as the coupled waveguide arrays, photonic crystals, coupled resonator arrays, and multiport interferometers are also introduced. In Section 3, we focus on the analog quantum simulations in the integrated photonic platform, including Anderson localization of light in disordered systems, various kinds of topological insulators, nonlinear and non-Hermitian systems. More specifically, in Subsection 3.1, we present the integrated photonic realizations of disordered and quasi-periodic systems. In Subsection 3.2, we review the integrated photonic realizations of the topological insulators with and without time-reversal symmetry, including Floquet topological insulators, quantum spin hall system, anomalous quantum hall system, valley hall system, Su-Schrieffer-Heeger (SSH) model, and photonic topological Anderson insulators. Besides, topological insulator lasers and topologically protected quantum photon sources are briefly reviewed. In Subsection 3.3, we review the nonlinear and non-Hermitian integrated optical systems. In Section 4 we present the integrated digital quantum simulations based on the multiport interferometers, including the discrete-time quantum random walk, Boson sampling, and molecular simulation. In Section 5, we summarize the content of the article and present the outlook on the future perspectives of the integrated photonic quantum simulation. We believe that the integrated photonic platforms will continue to provide an excellent platform for quantum simulation. More practical applications will be found based on this system through combining the fields of topological photonics, laser technologies, quantum information, nonlinear and non-Hermitian physics.
      Corresponding author: Ren Xi-Feng, renxf@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62061160487, 12204462), the China Postdoctoral Science Foundation (Grant No. 2022M723061), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Modern Phys. 86 153Google Scholar

    [3]

    Monroe C, Campbell W C, Duan L M, Gong Z X, Gorshkov A V, Hess P W, Islam R, Kim K, Linke N M, Pagano G, Richerme P, Senko C, Yao N Y 2021 Rev. Modern Phys. 93 025001Google Scholar

    [4]

    Houck A A, Tureci H E, Koch J 2012 Nat. Phys. 8 292Google Scholar

    [5]

    Schäfer F, Fukuhara T, Sugawa S, Takasu Y, Takahashi Y 2020 Nat. Rev. Phys. 2 411Google Scholar

    [6]

    Wang J W, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273Google Scholar

    [7]

    Elshaari A W, Pernice W, Srinivasan K, Benson O, Zwiller V 2020 Nat. Photonics 14 285Google Scholar

    [8]

    Politi A, Matthews J C F, Thompson M G, O'Brien J L 2009 IEEE J. Quantum Electron. 15 1673Google Scholar

    [9]

    Feng L, Zhang M, Wang J, Zhou X, Qiang X, Guo G, Ren X 2022 Photonics Res. 10 A135Google Scholar

    [10]

    Tang H, Lin X F, Feng Z, Chen J Y, Gao J, Sun K, Wang C Y, Lai P C, Xu X Y, Wang Y, Qiao L F, Yang A L, Jin X M 2018 Sci. Adv. 4 eaat3174Google Scholar

    [11]

    Perets H B, Lahini Y, Pozzi F, Sorel M, Morandotti R, Silberberg Y 2008 Phys. Rev. Lett. 100 170506Google Scholar

    [12]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108 010502Google Scholar

    [13]

    Peruzzo A, Lobino M, Matthews J C, Matsuda N, Politi A, Poulios K, Zhou X Q, Lahini Y, Ismail N, Worhoff K, Bromberg Y, Silberberg Y, Thompson M G, Obrien J L 2010 Science 329 1500Google Scholar

    [14]

    Crespi A, Osellame R, Ramponi R, Giovannetti V, Fazio R, Sansoni L, De Nicola F, Sciarrino F, Mataloni P 2013 Nat. Photonics 7 322Google Scholar

    [15]

    Spring J B, Metcalf B J, Humphreys P C, Kolthammer W S, Jin X M, Barbieri M, Datta A, Thomas-Peter N, Langford N K, Kundys D, Gates J C, Smith B J, Smith P G, Walmsley I A 2013 Science 339 798Google Scholar

    [16]

    Crespi A, Osellame R, Ramponi R, Brod D J, Galvao E F, Spagnolo N, Vitelli C, Maiorino E, Mataloni P, Sciarrino F 2013 Nat. Photonics 7 545Google Scholar

    [17]

    Tillmann M, Dakic B, Heilmann R, Nolte S, Szameit A, Walther P 2013 Nat. Photonics 7 540Google Scholar

    [18]

    Spagnolo N, Vitelli C, Bentivegna M, Brod D J, Crespi A, Flamini F, Giacomini S, Milani G, Ramponi R, Mataloni P, Osellame R, Galvao E F, Sciarrino F 2014 Nat. Photonics 8 615Google Scholar

    [19]

    Wang H, Qin J, Ding X, Chen M C, Chen S, You X, He Y M, Jiang X, You L, Wang Z, Schneider C, Renema J J, Hofling S, Lu C Y, Pan J W 2019 Phys. Rev. Lett. 123 250503Google Scholar

    [20]

    Hoch F, Piacentini S, Giordani T, Tian Z N, Iuliano M, Esposito C, Camillini A, Carvacho G, Ceccarelli F, Spagnolo N 2021 arXiv: 2106.08260

    [21]

    Mukherjee S, Rechtsman M C 2020 Science 368 856Google Scholar

    [22]

    Xia S, Kaltsas D, Song D, Komis I, Xu J, Szameit A, Buljan H, Makris K G, Chen Z 2021 Science 372 72Google Scholar

    [23]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O 2019 Rev. Modern Phys. 91 015006Google Scholar

    [24]

    Lu L, Joannopoulos J D, Soljacic M 2016 Nat. Phys. 12 626Google Scholar

    [25]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [26]

    Maczewsky L J, Heinrich M, Kremer M, Ivanov S K, Ehrhardt M, Martinez F, Kartashov Y V, Konotop V V, Torner L, Bauer D, Szameit A 2020 Science 370 701Google Scholar

    [27]

    Sparrow C, Martin-Lopez E, Maraviglia N, Neville A, Harrold C, Carolan J, Joglekar Y N, Hashimoto T, Matsuda N, O'Brien J L, Tew D P, Laing A 2018 Nature 557 660Google Scholar

    [28]

    McArdle S, Endo S, Aspuru-Guzik A, Benjamin S, Yuan X 2020 Rev. Modern Phys. 92 015003Google Scholar

    [29]

    Cao Y, Romero J, Olson J P, Degroote M, Johnson P D, Kieferova M, Kivlichan I D, Menke T, Peropadre B, Sawaya N P D, Sim S, Veis L, Aspuru-Guzik A 2019 Chem. Rev. 119 10856Google Scholar

    [30]

    Bogdanov S, Shalaginov M Y, Boltasseva A, Shalaev V M 2017 Opt. Mater. Express 7 111Google Scholar

    [31]

    Corrielli G, Crespi A, Osellame R 2021 Nanophotonics 10 3789Google Scholar

    [32]

    Ramakrishnan R K, Ravichandran A B, Mishra A, Kaushalram A, Hegde G, Talabattula S, Rohde P P 2022 arXiv: 2206.15383

    [33]

    Feng L T, Guo G C, Ren X F 2020 Adv. Quantum Technol. 3 1900058Google Scholar

    [34]

    Feng L T, Zhang M, Xiong X, Chen Y, Wu H, Li M, Guo G P, Guo G C, Dai D X, Ren X F 2019 NPJ Quantum Inf. 5 2Google Scholar

    [35]

    Feng L T, Zhang M, Zhou Z Y, Chen Y, Li M, Dai D X, Ren H L, Guo G P, Guo G C, Tame M, Ren X F 2019 NPJ Quantum Inf. 5 90Google Scholar

    [36]

    Wang Y, Lu Y H, Mei F, Gao J, Li Z M, Tang H, Zhu S L, Jia S, Jin X M 2019 Phys. Rev. Lett. 122 193903Google Scholar

    [37]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [38]

    Zhang M, Feng L T, Zhou Z Y, Chen Y, Wu H, Li M, Gao S M, Guo G P, Guo G C, Dai D X, Ren X F 2019 Light Sci. Appl. 8 41Google Scholar

    [39]

    Engin E, Bonneau D, Natarajan C M, Clark A S, Tanner M G, Hadfield R H, Dorenbos S N, Zwiller V, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, O'Brien J L, Thompson M G 2013 Opt. Express 21 27826Google Scholar

    [40]

    Lu X Y, Li Q, Westly D A, Moille G, Singh A, Anant V, Srinivasan K 2019 Nat. Phys. 15 373Google Scholar

    [41]

    Xu B Y, Chen L K, Lin J T, Feng L T, Niu R, Zhou Z Y, Gao R H, Dong C H, Guo G C, Gong Q H, Cheng Y, Xiao Y F, Ren X F 2022 Sci. China Phys. Mech. 65 294262Google Scholar

    [42]

    Jin H, Liu F M, Xu P, Xia J L, Zhong M L, Yuan Y, Zhou J W, Gong Y X, Wang W, Zhu S N 2014 Phys. Rev. Lett. 113 103601Google Scholar

    [43]

    Guo X, Zou C L, Schuck C, Jung H, Cheng R, Tang H X 2017 Light Sci. Appl. 6 e16249Google Scholar

    [44]

    Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N, Silberberg Y 2008 Phys. Rev. Lett. 100 013906Google Scholar

    [45]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photonics 7 1001Google Scholar

    [46]

    Longhi S 2009 Laser Photonics Rev. 3 243Google Scholar

    [47]

    Chen Y, Chen X M, Ren X F, Gong M, Guo G C 2021 Phys. Rev. A 104 023501Google Scholar

    [48]

    Christodoulides D N, Lederer F, Silberberg Y 2003 Nature 424 817Google Scholar

    [49]

    Jones A L 1965 JOSA 55 261Google Scholar

    [50]

    Somekh S, Garmire E, Yariv A, Garvin H L, Hunsperger R G 1973 Appl. Phys. Lett. 22 46Google Scholar

    [51]

    Jamois C, Wehrspohn R, Andreani L, Hermann C, Hess O, Gösele U 2003 Photonic. Nanostruct. Appl. 1 1Google Scholar

    [52]

    Tanaka Y, Nakamura H, Sugimoto Y, Ikeda N, Asakawa K, Inoue K 2005 IEEE J. Quantum Electron. 41 76Google Scholar

    [53]

    Johnson S G, Villeneuve P R, Fan S H, Joannopoulos J D 2000 Phys. Rev. B 62 8212

    [54]

    He L, Addison Z, Mele E J, Zhen B 2020 Nat. Commun. 11 3119Google Scholar

    [55]

    Xie B, Su G, Wang H F, Liu F, Hu L, Yu S Y, Zhan P, Lu M H, Wang Z, Chen Y F 2020 Nat. Commun. 11 3768Google Scholar

    [56]

    Jin M C, Gao Y F, Ma Q L, Zhang W, Song H, Sun J P 2021 Phys. Rev. Mater. 5 024204Google Scholar

    [57]

    Chen Y, He X T, Cheng Y J, Qiu H Y, Feng L T, Zhang M, Dai D X, Guo G C, Dong J W, Ren X F 2021 Phys. Rev. Lett. 126 230503Google Scholar

    [58]

    Yariv A, Xu Y, Lee R K, Scherer A 1999 Opt. Lett. 24 711Google Scholar

    [59]

    Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907Google Scholar

    [60]

    Liang G Q, Chong Y D 2013 Phys. Rev. Lett. 110 203904Google Scholar

    [61]

    Pasek M, Chong Y D 2014 Phys. Rev. B 89 075113Google Scholar

    [62]

    Afzal S, Zimmerling T J, Ren Y, Perron D, Van V 2020 Phys. Rev. Lett. 124 253601Google Scholar

    [63]

    Leykam D, Mittal S, Hafezi M, Chong Y D 2018 Phys. Rev. Lett. 121 023901Google Scholar

    [64]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [65]

    Mittal S, Orre V V, Leykam D, Chong Y D, Hafezi M 2019 Phys. Rev. Lett. 123 043201Google Scholar

    [66]

    Reck M, Zeilinger A, Bernstein H J, Bertani P 1994 Phys. Rev. Lett. 73 58Google Scholar

    [67]

    Clements W R, Humphreys P C, Metcalf B J, Kolthammer W S, Walmsley I A 2016 Optica 3 1460Google Scholar

    [68]

    Harris N C, Bunandar D, Pant M, Steinbrecher G R, Mower J, Prabhu M, Baehr-Jones T, Hochberg M, Englund D 2016 Nanophotonics 5 456Google Scholar

    [69]

    Yu S, Qiu C W, Chong Y, Torquato S, Park N 2021 Nat. Rev. Mater. 6 226Google Scholar

    [70]

    Lagendijk A, van Tiggelen B, Wiersma D S 2009 Phys. Today 62 24

    [71]

    Segev M, Silberberg Y, Christodoulides D N 2013 Nat. Photonics 7 197Google Scholar

    [72]

    Rothammer M, Zollfrank C, Busch K, von Freymann G 2021 Adv. Opt. Mater. 9 2100787Google Scholar

    [73]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [74]

    Mott N 1967 Adv. Phys. 16 49Google Scholar

    [75]

    De Raedt H, Lagendijk A, de Vries P 1989 Phys. Rev. Lett. 62 47Google Scholar

    [76]

    Schwartz T, Bartal G, Fishman S, Segev M 2007 Nature 446 52Google Scholar

    [77]

    Eisenberg H S, Silberberg Y, Morandotti R, Boyd A R, Aitchison J S 1998 Phys. Rev. Lett. 81 3383Google Scholar

    [78]

    Martin L, Di Giuseppe G, Perez-Leija A, Keil R, Dreisow F, Heinrich M, Nolte S, Szameit A, Abouraddy A F, Christodoulides D N, Saleh B E 2011 Opt. Express 19 13636Google Scholar

    [79]

    Geraldi A, Laneve A, Bonavena L D, Sansoni L, Ferraz J, Fratalocchi A, Sciarrino F, Cuevas Á, Mataloni P 2019 Phys. Rev. Lett. 123 140501Google Scholar

    [80]

    Levi L, Krivolapov Y, Fishman S, Segev M 2012 Nat. Phys. 8 912Google Scholar

    [81]

    Vasco J P, Hughes S 2018 Acs Photonics 5 1262Google Scholar

    [82]

    Hsieh P, Chung C, McMillan J F, Tsai M, Lu M, Panoiu N C, Wong C W 2015 Nat. Phys. 11 268Google Scholar

    [83]

    Ni X, Chen K, Weiner M, Apigo D J, Prodan C, Alu A, Prodan E, Khanikaev A B 2019 Commun. Phys. 2 55Google Scholar

    [84]

    Kraus Y E, Zilberberg O 2012 Phys. Rev. Lett. 109 116404Google Scholar

    [85]

    Verbin M, Zilberberg O, Kraus Y E, Lahini Y, Silberberg Y 2013 Phys. Rev. Lett. 110 076403Google Scholar

    [86]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Silberberg Y 2009 Phys. Rev. Lett. 103 013901Google Scholar

    [87]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109 106402Google Scholar

    [88]

    Levi L, Rechtsman M, Freedman B, Schwartz T, Manela O, Segev M 2011 Science 332 1541Google Scholar

    [89]

    Mukherjee S, Di Liberto M, Ohberg P, Thomson R R, Goldman N 2018 Phys. Rev. Lett. 121 075502Google Scholar

    [90]

    Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N, Khajavikhan M 2018 Science 359 eaar4005Google Scholar

    [91]

    Dai T X, Ao Y T, Bao J M, Mao J, Chi Y L, Fu Z R, You Y L, Chen X J, Zhai C H, Tang B, Yang Y, Li Z H, Yuan L Q, Gao F, Lino X, Thompson M G, O'Brien J L, Li Y, Hu X Y, Gong Q H, Wang J W 2022 Nat. Photonics 16 248Google Scholar

    [92]

    Stutzer S, Plotnik Y, Lumer Y, Titum P, Lindner N H, Segev M, Rechtsman M C, Szameit A 2018 Nature 560 461Google Scholar

    [93]

    Blanco-Redondo A, Bell B, Oren D, Eggleton B J, Segev M 2018 Science 362 568Google Scholar

    [94]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar

    [95]

    Hasan M Z, Kane C L 2010 Rev. Modern Phys. 82 3045Google Scholar

    [96]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [97]

    Haldane F D, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [98]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772Google Scholar

    [99]

    Longhi S 2014 Opt. Lett. 39 5892Google Scholar

    [100]

    Keil R, Poli C, Heinrich M, Arkinstall J, Weihs G, Schomerus H, Szameit A 2016 Phys. Rev. Lett. 116 213901Google Scholar

    [101]

    Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O, Szameit A 2020 Nat. Commun. 11 907Google Scholar

    [102]

    Mittal S, Goldschmidt E A, Hafezi M 2018 Nature 561 502Google Scholar

    [103]

    Mittal S, Orre V V, Goldschmidt E A, Hafezi M 2021 Nat. Photonics 15 542Google Scholar

    [104]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809Google Scholar

    [105]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar

    [106]

    Noh J, Huang S, Chen K P, Rechtsman M C 2018 Phys. Rev. Lett. 120 063902Google Scholar

    [107]

    He X T, Liang E T, Yuan J J, Qiu H Y, Chen X D, Zhao F L, Dong J W 2019 Nat. Commun. 10 872Google Scholar

    [108]

    Shalaev M I, Walasik W, Tsukernik A, Xu Y, Litchinitser N M 2019 Nat. Nanotechnol. 14 31Google Scholar

    [109]

    Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E 2018 Science 359 666Google Scholar

    [110]

    Zeng Y, Chattopadhyay U, Zhu B, Qiang B, Li J, Jin Y, Li L, Davies A G, Linfield E H, Zhang B, Chong Y, Wang Q J 2020 Nature 578 246Google Scholar

    [111]

    Shen S Q 2012 Topological Insulators (Vol. 174) (Berlin, Heidelberg: Springer)

    [112]

    Malkova N, Hromada I, Wang X, Bryant G, Chen Z 2009 Opt. Lett. 34 1633Google Scholar

    [113]

    Blanco-Redondo A, Andonegui I, Collins M J, Harari G, Lumer Y, Rechtsman M C, Eggleton B J, Segev M 2016 Phys. Rev. Lett. 116 163901Google Scholar

    [114]

    Wang Y, Pang X L, Lu Y H, Gao J, Chang Y J, Qiao L F, Jiao Z Q, Tang H, Jin X M 2019 Optica 6 955Google Scholar

    [115]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2019 Phys. Rev. Lett. 122 233902Google Scholar

    [116]

    Wang Y, Ke Y, Chang Y J, Lu Y H, Gao J, Lee C, Jin X M 2021 Phys. Rev. B 104 224303Google Scholar

    [117]

    El Hassan A, Kunst F K, Moritz A, Andler G, Bergholtz E J, Bourennane M 2019 Nat. Photonics 13 697Google Scholar

    [118]

    Parto M, Wittek S, Hodaei H, Harari G, Bandres M A, Ren J, Rechtsman M C, Segev M, Christodoulides D N, Khajavikhan M 2018 Phys. Rev. Lett. 120 113901Google Scholar

    [119]

    St-Jean P, Goblot V, Galopin E, Lemaitre A, Ozawa T, Le Gratiet L, Sagnes I, Bloch J, Amo A 2017 Nat. Photonics 11 651Google Scholar

    [120]

    Lustig E, Weimann S, Plotnik Y, Lumer Y, Bandres M A, Szameit A, Segev M 2019 Nature 567 356Google Scholar

    [121]

    Zilberberg O, Huang S, Guglielmon J, Wang M H, Chen K P, Kraus Y E, Rechtsman M C 2018 Nature 553 59Google Scholar

    [122]

    Jurgensen M, Mukherjee S, Rechtsman M C 2021 Nature 596 63Google Scholar

    [123]

    Cerjan A, Wang M, Huang S, Chen K P, Rechtsman M C 2020 Light Sci. Appl. 9 178Google Scholar

    [124]

    Christodoulides D N, Joseph R I 1988 Opt. Lett. 13 794Google Scholar

    [125]

    Fleischer J W, Segev M, Efremidis N K, Christodoulides D N 2003 Nature 422 147Google Scholar

    [126]

    Lederer F L, Stegeman G I, Christodoulides D N, Assanto G, Segev M, Silberberg Y R 2008 Phys. Rep. 463 1Google Scholar

    [127]

    Smirnova D, Leykam D, Chong Y D, Kivshar Y 2020 Appl. Phys. Rev. 7 021306Google Scholar

    [128]

    Dobrykh D A, Yulin A V, Slobozhanyuk A P, Poddubny A N, Kivshar Y S 2018 Phys. Rev. Lett. 121 163901Google Scholar

    [129]

    Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Modern Phys. 93 015005Google Scholar

    [130]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [131]

    Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311Google Scholar

    [132]

    Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192Google Scholar

    [133]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Nat. Phys. 14 11Google Scholar

    [134]

    Pitsios I, Banchi L, Rab A S, Bentivegna M, Caprara D, Crespi A, Spagnolo N, Bose S, Mataloni P, Osellame R, Sciarrino F 2017 Nat. Commun. 8 1569Google Scholar

    [135]

    Wu Y L, Bao W S, Cao S R, Chen F S, Chen M C, Chen X W, Chung T H, Deng H, Du Y J, Fan D J, Gong M, Guo C, Guo C, Guo S J, Han L C, Hong L Y, Huang H L, Huo Y H, Li L P, Li N, Li S W, Li Y, Liang F T, Lin C, Lin J, Qian H R, Qiao D, Rong H, Su H, Sun L H, Wang L Y, Wang S Y, Wu D C, Xu Y, Yan K, Yang W F, Yang Y, Ye Y S, Yin J H, Ying C, Yu J L, Zha C, Zhang C, Zhang H B, Zhang K L, Zhang Y M, Zhao H, Zhao Y W, Zhou L, Zhu Q L, Lu C Y, Peng C Z, Zhu X B, Pan J W 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [136]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [137]

    Zhu Q L, Cao S R, Chen F S, Chen M C, Chen X W, Chung T H, Deng H, Du Y J, Fan D J, Gong M, Guo C, Guo C, Guo S J, Han L C, Hong L Y, Huang H L, Huo Y H, Li L P, Li N, Li S W, Li Y, Liang F T, Lin C, Lin J, Qian H R, Qiao D, Rong H, Su H, Sun L H, Wang L Y, Wang S Y, Wu D C, Wu Y L, Xu Y, Yan K, Yang W F, Yang Y, Ye Y, Yin J H, Ying C, Yu J L, Zha C, Zhang C, Zhang H B, Zhang K L, Zhang Y M, Zhao H, Zhao Y W, Zhou L, Lu C Y, Peng C Z, Zhu X B, Pan J W 2022 Sci. Bull. 67 240Google Scholar

    [138]

    Paesani S, Gentile A A, Santagati R, Wang J, Wiebe N, Tew D P, O'Brien J L, Thompson M G 2017 Phys. Rev. Lett. 118 100503Google Scholar

    [139]

    黎颖, 韩泽尧, 黎超健, 吕劲, 袁骁, 吴步娇 2021 物理学报 70 210201Google Scholar

    Li Y, Han Z Y, Li J C, Lv J, Yuan X, Wu B J 2021 Acta Phys. Sin. 70 210201Google Scholar

    [140]

    Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A, O'Brien J L 2014 Nat. Commun. 5 4213Google Scholar

    [141]

    Nielsen M A, Chuang I 2002 Quantum Computation and Quantum Information (American Association of Physics Teachers)

    [142]

    Wiebe N, Granade C 2016 Phys. Rev. Lett. 117 010503Google Scholar

    [143]

    Zhao Y, Chen Y, Hou Z S, Han B, Fan H, Lin L H, Ren X F, Sun H B 2022 Opt. Lett. 47 617Google Scholar

    [144]

    Xu Y L, Fegadolli W S, Gan L, Lu M H, Liu X P, Li Z Y, Scherer A, Chen Y F 2016 Nat. Commun. 7 11319Google Scholar

    [145]

    Longhi S 2008 Phys. Rev. Lett. 101 193902Google Scholar

    [146]

    Crespi A, Pepe F V, Facchi P, Sciarrino F, Mataloni P, Nakazato H, Pascazio S, Osellame R 2019 Phys. Rev. Lett. 122 130401Google Scholar

    [147]

    Xu X Y, Wang X W, Chen D Y, Smith C M 2021 Nat. Photonics 15 703Google Scholar

    [148]

    Tang H, Di Franco C, Shi Z Y, He T S, Feng Z, Gao J, Sun K, Li Z M, Jiao Z Q, Wang T Y, Kim M S, Jin X M 2018 Nat. Photonics 12 754Google Scholar

    [149]

    Kim M, Jacob Z, Rho J 2020 Light Sci. Appl. 9 130Google Scholar

    [150]

    Zhang X L, Yu F, Chen Z G, Tian Z N, Chen Q D, Sun H B, Ma G C 2022 Nat. Photonics 16 390Google Scholar

    [151]

    Noh J, Schuster T, Iadecola T, Huang S, Wang M, Chen K P, Chamon C, Rechtsman M C 2020 Nat. Phys. 16 989Google Scholar

  • 图 1  几种常见的用于量子模拟的集成光学系统 (a) 耦合光波导阵列[44]; (b) 光子晶体; (c) 耦合环腔阵列[45]; (d) 多端口干涉仪[17]

    Figure 1.  Several integrated optical platforms for quantum simulation: (a) Coupled optical waveguide array[44]; (b) photonic crystal; (c) array of coupled ring resonators[45]; (d) multiport interferometer[17].

    图 2  用于模拟拓扑绝缘体结构的耦合环腔阵列 (a) 量子自旋霍尔效应系统[59]; (b) 周期驱动Floquet拓扑绝缘体结构[60]; (c) 反常量子霍尔效应系统[63]. (a)—(c)上列为周期阵列结构, 下列为周期结构中基本单元的物理图像

    Figure 2.  Arrays of coupled ring resonators for simulations of topological insulators: (a) Quantum spin Hall effect[59]; (b) Floquet topological insulators[60]; (c) anomalous quantum Hall effect[63]. The upper panel in (a)–(c): periodic coupled resonator arrays; lower panel: basic units in the periodic structures.

    图 3  多端口干涉仪用于量子模拟 (a) 三角形结构(左)[66]和矩形结构(右)[67]的多端口干涉仪用于实现任意的幺正变换; (b)双光子在离散型量子随机行走芯片中的安德森局域化现象[14]; (c) 硅基多端口干涉仪[68], 由可调马赫-曾德尔干涉仪组成

    Figure 3.  Multiport interferometer for quantum simulation: (a) Realizing arbitrary unitary operator using triangular (left)[66] and rectangular (right)[67] mesh of beam splitters; (b) two-photon Anderson localization in discrete-time quantum random walk circuits[14]; (c) multiport interferometer in a silicon-on-insulator platform[68], which is consist of tunable Mach-Zehnder interferometers.

    图 4  (a) 二维无序光子晶格中的安德森局域化现象[76]; (b) 一维准周期飞秒激光直写光波导阵列[85]; (c) 飞秒激光直写螺旋式波导阵列结构实现Floquet拓扑绝缘体[25]; (d) 弯曲波导阵列实现等效磁场, 模拟Aharonov-Bohm效应[89]; 在耦合环腔阵列结构中产生(e) 拓扑绝缘体激光[90]、(f) 拓扑保护多光子量子光源[91]; (g) 基于谷光子晶体结构设计等比分束器并实现双光子量子干涉[57]; (h) 无序拓扑安德森绝缘体结构[92]; (i) 基于一维SSH模型在硅基结构中产生关联光子对[93]; (j) “含时”哈密顿量系统用于研究拓扑泵浦[87]; (k) 奇偶-时间对称与对称破缺交界面处局域的拓扑边界态[94]; (l) 非厄米SSH模型中非线性对奇偶-时间对称相变过程的影响[22]

    Figure 4.  (a) Anderson localization in a two-dimensional photonic lattice[76]; (b) simulation of one-dimensional quasicrystals in femtosecond-laser-written (FLW) optical waveguides[85]; (c) realization of photonic Floquet topological insulators in a FLW helical waveguide array[25]; (d) realization of an effective magnetic field and simulation of Aharonov-Bohm effect using curved waveguide arrays[89]; generation of (e) topological insulator laser[90] and (f) multiphoton quantum source[91] in coupled resonator arrays; (g) design of a 1∶1 topological beam splitter in valley photonic crystals and realize the two-photon quantum interference[57]; (h) photonic topological Anderson insulator[92]; (i) generation of biphoton state in a SSH photonic lattice[93]; (j) topological pumping in a system described by a time-varying Hamiltonian[87]; (k) topological edge state in a photonic lattice at the interface between the structures with and without parity-time symmetry[94]; (l) nonlinear tuning of PT symmetry and non-Hermitian topological states[22].

  • [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Modern Phys. 86 153Google Scholar

    [3]

    Monroe C, Campbell W C, Duan L M, Gong Z X, Gorshkov A V, Hess P W, Islam R, Kim K, Linke N M, Pagano G, Richerme P, Senko C, Yao N Y 2021 Rev. Modern Phys. 93 025001Google Scholar

    [4]

    Houck A A, Tureci H E, Koch J 2012 Nat. Phys. 8 292Google Scholar

    [5]

    Schäfer F, Fukuhara T, Sugawa S, Takasu Y, Takahashi Y 2020 Nat. Rev. Phys. 2 411Google Scholar

    [6]

    Wang J W, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273Google Scholar

    [7]

    Elshaari A W, Pernice W, Srinivasan K, Benson O, Zwiller V 2020 Nat. Photonics 14 285Google Scholar

    [8]

    Politi A, Matthews J C F, Thompson M G, O'Brien J L 2009 IEEE J. Quantum Electron. 15 1673Google Scholar

    [9]

    Feng L, Zhang M, Wang J, Zhou X, Qiang X, Guo G, Ren X 2022 Photonics Res. 10 A135Google Scholar

    [10]

    Tang H, Lin X F, Feng Z, Chen J Y, Gao J, Sun K, Wang C Y, Lai P C, Xu X Y, Wang Y, Qiao L F, Yang A L, Jin X M 2018 Sci. Adv. 4 eaat3174Google Scholar

    [11]

    Perets H B, Lahini Y, Pozzi F, Sorel M, Morandotti R, Silberberg Y 2008 Phys. Rev. Lett. 100 170506Google Scholar

    [12]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108 010502Google Scholar

    [13]

    Peruzzo A, Lobino M, Matthews J C, Matsuda N, Politi A, Poulios K, Zhou X Q, Lahini Y, Ismail N, Worhoff K, Bromberg Y, Silberberg Y, Thompson M G, Obrien J L 2010 Science 329 1500Google Scholar

    [14]

    Crespi A, Osellame R, Ramponi R, Giovannetti V, Fazio R, Sansoni L, De Nicola F, Sciarrino F, Mataloni P 2013 Nat. Photonics 7 322Google Scholar

    [15]

    Spring J B, Metcalf B J, Humphreys P C, Kolthammer W S, Jin X M, Barbieri M, Datta A, Thomas-Peter N, Langford N K, Kundys D, Gates J C, Smith B J, Smith P G, Walmsley I A 2013 Science 339 798Google Scholar

    [16]

    Crespi A, Osellame R, Ramponi R, Brod D J, Galvao E F, Spagnolo N, Vitelli C, Maiorino E, Mataloni P, Sciarrino F 2013 Nat. Photonics 7 545Google Scholar

    [17]

    Tillmann M, Dakic B, Heilmann R, Nolte S, Szameit A, Walther P 2013 Nat. Photonics 7 540Google Scholar

    [18]

    Spagnolo N, Vitelli C, Bentivegna M, Brod D J, Crespi A, Flamini F, Giacomini S, Milani G, Ramponi R, Mataloni P, Osellame R, Galvao E F, Sciarrino F 2014 Nat. Photonics 8 615Google Scholar

    [19]

    Wang H, Qin J, Ding X, Chen M C, Chen S, You X, He Y M, Jiang X, You L, Wang Z, Schneider C, Renema J J, Hofling S, Lu C Y, Pan J W 2019 Phys. Rev. Lett. 123 250503Google Scholar

    [20]

    Hoch F, Piacentini S, Giordani T, Tian Z N, Iuliano M, Esposito C, Camillini A, Carvacho G, Ceccarelli F, Spagnolo N 2021 arXiv: 2106.08260

    [21]

    Mukherjee S, Rechtsman M C 2020 Science 368 856Google Scholar

    [22]

    Xia S, Kaltsas D, Song D, Komis I, Xu J, Szameit A, Buljan H, Makris K G, Chen Z 2021 Science 372 72Google Scholar

    [23]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O 2019 Rev. Modern Phys. 91 015006Google Scholar

    [24]

    Lu L, Joannopoulos J D, Soljacic M 2016 Nat. Phys. 12 626Google Scholar

    [25]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [26]

    Maczewsky L J, Heinrich M, Kremer M, Ivanov S K, Ehrhardt M, Martinez F, Kartashov Y V, Konotop V V, Torner L, Bauer D, Szameit A 2020 Science 370 701Google Scholar

    [27]

    Sparrow C, Martin-Lopez E, Maraviglia N, Neville A, Harrold C, Carolan J, Joglekar Y N, Hashimoto T, Matsuda N, O'Brien J L, Tew D P, Laing A 2018 Nature 557 660Google Scholar

    [28]

    McArdle S, Endo S, Aspuru-Guzik A, Benjamin S, Yuan X 2020 Rev. Modern Phys. 92 015003Google Scholar

    [29]

    Cao Y, Romero J, Olson J P, Degroote M, Johnson P D, Kieferova M, Kivlichan I D, Menke T, Peropadre B, Sawaya N P D, Sim S, Veis L, Aspuru-Guzik A 2019 Chem. Rev. 119 10856Google Scholar

    [30]

    Bogdanov S, Shalaginov M Y, Boltasseva A, Shalaev V M 2017 Opt. Mater. Express 7 111Google Scholar

    [31]

    Corrielli G, Crespi A, Osellame R 2021 Nanophotonics 10 3789Google Scholar

    [32]

    Ramakrishnan R K, Ravichandran A B, Mishra A, Kaushalram A, Hegde G, Talabattula S, Rohde P P 2022 arXiv: 2206.15383

    [33]

    Feng L T, Guo G C, Ren X F 2020 Adv. Quantum Technol. 3 1900058Google Scholar

    [34]

    Feng L T, Zhang M, Xiong X, Chen Y, Wu H, Li M, Guo G P, Guo G C, Dai D X, Ren X F 2019 NPJ Quantum Inf. 5 2Google Scholar

    [35]

    Feng L T, Zhang M, Zhou Z Y, Chen Y, Li M, Dai D X, Ren H L, Guo G P, Guo G C, Tame M, Ren X F 2019 NPJ Quantum Inf. 5 90Google Scholar

    [36]

    Wang Y, Lu Y H, Mei F, Gao J, Li Z M, Tang H, Zhu S L, Jia S, Jin X M 2019 Phys. Rev. Lett. 122 193903Google Scholar

    [37]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [38]

    Zhang M, Feng L T, Zhou Z Y, Chen Y, Wu H, Li M, Gao S M, Guo G P, Guo G C, Dai D X, Ren X F 2019 Light Sci. Appl. 8 41Google Scholar

    [39]

    Engin E, Bonneau D, Natarajan C M, Clark A S, Tanner M G, Hadfield R H, Dorenbos S N, Zwiller V, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, O'Brien J L, Thompson M G 2013 Opt. Express 21 27826Google Scholar

    [40]

    Lu X Y, Li Q, Westly D A, Moille G, Singh A, Anant V, Srinivasan K 2019 Nat. Phys. 15 373Google Scholar

    [41]

    Xu B Y, Chen L K, Lin J T, Feng L T, Niu R, Zhou Z Y, Gao R H, Dong C H, Guo G C, Gong Q H, Cheng Y, Xiao Y F, Ren X F 2022 Sci. China Phys. Mech. 65 294262Google Scholar

    [42]

    Jin H, Liu F M, Xu P, Xia J L, Zhong M L, Yuan Y, Zhou J W, Gong Y X, Wang W, Zhu S N 2014 Phys. Rev. Lett. 113 103601Google Scholar

    [43]

    Guo X, Zou C L, Schuck C, Jung H, Cheng R, Tang H X 2017 Light Sci. Appl. 6 e16249Google Scholar

    [44]

    Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N, Silberberg Y 2008 Phys. Rev. Lett. 100 013906Google Scholar

    [45]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photonics 7 1001Google Scholar

    [46]

    Longhi S 2009 Laser Photonics Rev. 3 243Google Scholar

    [47]

    Chen Y, Chen X M, Ren X F, Gong M, Guo G C 2021 Phys. Rev. A 104 023501Google Scholar

    [48]

    Christodoulides D N, Lederer F, Silberberg Y 2003 Nature 424 817Google Scholar

    [49]

    Jones A L 1965 JOSA 55 261Google Scholar

    [50]

    Somekh S, Garmire E, Yariv A, Garvin H L, Hunsperger R G 1973 Appl. Phys. Lett. 22 46Google Scholar

    [51]

    Jamois C, Wehrspohn R, Andreani L, Hermann C, Hess O, Gösele U 2003 Photonic. Nanostruct. Appl. 1 1Google Scholar

    [52]

    Tanaka Y, Nakamura H, Sugimoto Y, Ikeda N, Asakawa K, Inoue K 2005 IEEE J. Quantum Electron. 41 76Google Scholar

    [53]

    Johnson S G, Villeneuve P R, Fan S H, Joannopoulos J D 2000 Phys. Rev. B 62 8212

    [54]

    He L, Addison Z, Mele E J, Zhen B 2020 Nat. Commun. 11 3119Google Scholar

    [55]

    Xie B, Su G, Wang H F, Liu F, Hu L, Yu S Y, Zhan P, Lu M H, Wang Z, Chen Y F 2020 Nat. Commun. 11 3768Google Scholar

    [56]

    Jin M C, Gao Y F, Ma Q L, Zhang W, Song H, Sun J P 2021 Phys. Rev. Mater. 5 024204Google Scholar

    [57]

    Chen Y, He X T, Cheng Y J, Qiu H Y, Feng L T, Zhang M, Dai D X, Guo G C, Dong J W, Ren X F 2021 Phys. Rev. Lett. 126 230503Google Scholar

    [58]

    Yariv A, Xu Y, Lee R K, Scherer A 1999 Opt. Lett. 24 711Google Scholar

    [59]

    Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907Google Scholar

    [60]

    Liang G Q, Chong Y D 2013 Phys. Rev. Lett. 110 203904Google Scholar

    [61]

    Pasek M, Chong Y D 2014 Phys. Rev. B 89 075113Google Scholar

    [62]

    Afzal S, Zimmerling T J, Ren Y, Perron D, Van V 2020 Phys. Rev. Lett. 124 253601Google Scholar

    [63]

    Leykam D, Mittal S, Hafezi M, Chong Y D 2018 Phys. Rev. Lett. 121 023901Google Scholar

    [64]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [65]

    Mittal S, Orre V V, Leykam D, Chong Y D, Hafezi M 2019 Phys. Rev. Lett. 123 043201Google Scholar

    [66]

    Reck M, Zeilinger A, Bernstein H J, Bertani P 1994 Phys. Rev. Lett. 73 58Google Scholar

    [67]

    Clements W R, Humphreys P C, Metcalf B J, Kolthammer W S, Walmsley I A 2016 Optica 3 1460Google Scholar

    [68]

    Harris N C, Bunandar D, Pant M, Steinbrecher G R, Mower J, Prabhu M, Baehr-Jones T, Hochberg M, Englund D 2016 Nanophotonics 5 456Google Scholar

    [69]

    Yu S, Qiu C W, Chong Y, Torquato S, Park N 2021 Nat. Rev. Mater. 6 226Google Scholar

    [70]

    Lagendijk A, van Tiggelen B, Wiersma D S 2009 Phys. Today 62 24

    [71]

    Segev M, Silberberg Y, Christodoulides D N 2013 Nat. Photonics 7 197Google Scholar

    [72]

    Rothammer M, Zollfrank C, Busch K, von Freymann G 2021 Adv. Opt. Mater. 9 2100787Google Scholar

    [73]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [74]

    Mott N 1967 Adv. Phys. 16 49Google Scholar

    [75]

    De Raedt H, Lagendijk A, de Vries P 1989 Phys. Rev. Lett. 62 47Google Scholar

    [76]

    Schwartz T, Bartal G, Fishman S, Segev M 2007 Nature 446 52Google Scholar

    [77]

    Eisenberg H S, Silberberg Y, Morandotti R, Boyd A R, Aitchison J S 1998 Phys. Rev. Lett. 81 3383Google Scholar

    [78]

    Martin L, Di Giuseppe G, Perez-Leija A, Keil R, Dreisow F, Heinrich M, Nolte S, Szameit A, Abouraddy A F, Christodoulides D N, Saleh B E 2011 Opt. Express 19 13636Google Scholar

    [79]

    Geraldi A, Laneve A, Bonavena L D, Sansoni L, Ferraz J, Fratalocchi A, Sciarrino F, Cuevas Á, Mataloni P 2019 Phys. Rev. Lett. 123 140501Google Scholar

    [80]

    Levi L, Krivolapov Y, Fishman S, Segev M 2012 Nat. Phys. 8 912Google Scholar

    [81]

    Vasco J P, Hughes S 2018 Acs Photonics 5 1262Google Scholar

    [82]

    Hsieh P, Chung C, McMillan J F, Tsai M, Lu M, Panoiu N C, Wong C W 2015 Nat. Phys. 11 268Google Scholar

    [83]

    Ni X, Chen K, Weiner M, Apigo D J, Prodan C, Alu A, Prodan E, Khanikaev A B 2019 Commun. Phys. 2 55Google Scholar

    [84]

    Kraus Y E, Zilberberg O 2012 Phys. Rev. Lett. 109 116404Google Scholar

    [85]

    Verbin M, Zilberberg O, Kraus Y E, Lahini Y, Silberberg Y 2013 Phys. Rev. Lett. 110 076403Google Scholar

    [86]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Silberberg Y 2009 Phys. Rev. Lett. 103 013901Google Scholar

    [87]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109 106402Google Scholar

    [88]

    Levi L, Rechtsman M, Freedman B, Schwartz T, Manela O, Segev M 2011 Science 332 1541Google Scholar

    [89]

    Mukherjee S, Di Liberto M, Ohberg P, Thomson R R, Goldman N 2018 Phys. Rev. Lett. 121 075502Google Scholar

    [90]

    Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N, Khajavikhan M 2018 Science 359 eaar4005Google Scholar

    [91]

    Dai T X, Ao Y T, Bao J M, Mao J, Chi Y L, Fu Z R, You Y L, Chen X J, Zhai C H, Tang B, Yang Y, Li Z H, Yuan L Q, Gao F, Lino X, Thompson M G, O'Brien J L, Li Y, Hu X Y, Gong Q H, Wang J W 2022 Nat. Photonics 16 248Google Scholar

    [92]

    Stutzer S, Plotnik Y, Lumer Y, Titum P, Lindner N H, Segev M, Rechtsman M C, Szameit A 2018 Nature 560 461Google Scholar

    [93]

    Blanco-Redondo A, Bell B, Oren D, Eggleton B J, Segev M 2018 Science 362 568Google Scholar

    [94]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar

    [95]

    Hasan M Z, Kane C L 2010 Rev. Modern Phys. 82 3045Google Scholar

    [96]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [97]

    Haldane F D, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [98]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772Google Scholar

    [99]

    Longhi S 2014 Opt. Lett. 39 5892Google Scholar

    [100]

    Keil R, Poli C, Heinrich M, Arkinstall J, Weihs G, Schomerus H, Szameit A 2016 Phys. Rev. Lett. 116 213901Google Scholar

    [101]

    Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O, Szameit A 2020 Nat. Commun. 11 907Google Scholar

    [102]

    Mittal S, Goldschmidt E A, Hafezi M 2018 Nature 561 502Google Scholar

    [103]

    Mittal S, Orre V V, Goldschmidt E A, Hafezi M 2021 Nat. Photonics 15 542Google Scholar

    [104]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809Google Scholar

    [105]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar

    [106]

    Noh J, Huang S, Chen K P, Rechtsman M C 2018 Phys. Rev. Lett. 120 063902Google Scholar

    [107]

    He X T, Liang E T, Yuan J J, Qiu H Y, Chen X D, Zhao F L, Dong J W 2019 Nat. Commun. 10 872Google Scholar

    [108]

    Shalaev M I, Walasik W, Tsukernik A, Xu Y, Litchinitser N M 2019 Nat. Nanotechnol. 14 31Google Scholar

    [109]

    Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E 2018 Science 359 666Google Scholar

    [110]

    Zeng Y, Chattopadhyay U, Zhu B, Qiang B, Li J, Jin Y, Li L, Davies A G, Linfield E H, Zhang B, Chong Y, Wang Q J 2020 Nature 578 246Google Scholar

    [111]

    Shen S Q 2012 Topological Insulators (Vol. 174) (Berlin, Heidelberg: Springer)

    [112]

    Malkova N, Hromada I, Wang X, Bryant G, Chen Z 2009 Opt. Lett. 34 1633Google Scholar

    [113]

    Blanco-Redondo A, Andonegui I, Collins M J, Harari G, Lumer Y, Rechtsman M C, Eggleton B J, Segev M 2016 Phys. Rev. Lett. 116 163901Google Scholar

    [114]

    Wang Y, Pang X L, Lu Y H, Gao J, Chang Y J, Qiao L F, Jiao Z Q, Tang H, Jin X M 2019 Optica 6 955Google Scholar

    [115]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2019 Phys. Rev. Lett. 122 233902Google Scholar

    [116]

    Wang Y, Ke Y, Chang Y J, Lu Y H, Gao J, Lee C, Jin X M 2021 Phys. Rev. B 104 224303Google Scholar

    [117]

    El Hassan A, Kunst F K, Moritz A, Andler G, Bergholtz E J, Bourennane M 2019 Nat. Photonics 13 697Google Scholar

    [118]

    Parto M, Wittek S, Hodaei H, Harari G, Bandres M A, Ren J, Rechtsman M C, Segev M, Christodoulides D N, Khajavikhan M 2018 Phys. Rev. Lett. 120 113901Google Scholar

    [119]

    St-Jean P, Goblot V, Galopin E, Lemaitre A, Ozawa T, Le Gratiet L, Sagnes I, Bloch J, Amo A 2017 Nat. Photonics 11 651Google Scholar

    [120]

    Lustig E, Weimann S, Plotnik Y, Lumer Y, Bandres M A, Szameit A, Segev M 2019 Nature 567 356Google Scholar

    [121]

    Zilberberg O, Huang S, Guglielmon J, Wang M H, Chen K P, Kraus Y E, Rechtsman M C 2018 Nature 553 59Google Scholar

    [122]

    Jurgensen M, Mukherjee S, Rechtsman M C 2021 Nature 596 63Google Scholar

    [123]

    Cerjan A, Wang M, Huang S, Chen K P, Rechtsman M C 2020 Light Sci. Appl. 9 178Google Scholar

    [124]

    Christodoulides D N, Joseph R I 1988 Opt. Lett. 13 794Google Scholar

    [125]

    Fleischer J W, Segev M, Efremidis N K, Christodoulides D N 2003 Nature 422 147Google Scholar

    [126]

    Lederer F L, Stegeman G I, Christodoulides D N, Assanto G, Segev M, Silberberg Y R 2008 Phys. Rep. 463 1Google Scholar

    [127]

    Smirnova D, Leykam D, Chong Y D, Kivshar Y 2020 Appl. Phys. Rev. 7 021306Google Scholar

    [128]

    Dobrykh D A, Yulin A V, Slobozhanyuk A P, Poddubny A N, Kivshar Y S 2018 Phys. Rev. Lett. 121 163901Google Scholar

    [129]

    Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Modern Phys. 93 015005Google Scholar

    [130]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [131]

    Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311Google Scholar

    [132]

    Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192Google Scholar

    [133]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Nat. Phys. 14 11Google Scholar

    [134]

    Pitsios I, Banchi L, Rab A S, Bentivegna M, Caprara D, Crespi A, Spagnolo N, Bose S, Mataloni P, Osellame R, Sciarrino F 2017 Nat. Commun. 8 1569Google Scholar

    [135]

    Wu Y L, Bao W S, Cao S R, Chen F S, Chen M C, Chen X W, Chung T H, Deng H, Du Y J, Fan D J, Gong M, Guo C, Guo C, Guo S J, Han L C, Hong L Y, Huang H L, Huo Y H, Li L P, Li N, Li S W, Li Y, Liang F T, Lin C, Lin J, Qian H R, Qiao D, Rong H, Su H, Sun L H, Wang L Y, Wang S Y, Wu D C, Xu Y, Yan K, Yang W F, Yang Y, Ye Y S, Yin J H, Ying C, Yu J L, Zha C, Zhang C, Zhang H B, Zhang K L, Zhang Y M, Zhao H, Zhao Y W, Zhou L, Zhu Q L, Lu C Y, Peng C Z, Zhu X B, Pan J W 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [136]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [137]

    Zhu Q L, Cao S R, Chen F S, Chen M C, Chen X W, Chung T H, Deng H, Du Y J, Fan D J, Gong M, Guo C, Guo C, Guo S J, Han L C, Hong L Y, Huang H L, Huo Y H, Li L P, Li N, Li S W, Li Y, Liang F T, Lin C, Lin J, Qian H R, Qiao D, Rong H, Su H, Sun L H, Wang L Y, Wang S Y, Wu D C, Wu Y L, Xu Y, Yan K, Yang W F, Yang Y, Ye Y, Yin J H, Ying C, Yu J L, Zha C, Zhang C, Zhang H B, Zhang K L, Zhang Y M, Zhao H, Zhao Y W, Zhou L, Lu C Y, Peng C Z, Zhu X B, Pan J W 2022 Sci. Bull. 67 240Google Scholar

    [138]

    Paesani S, Gentile A A, Santagati R, Wang J, Wiebe N, Tew D P, O'Brien J L, Thompson M G 2017 Phys. Rev. Lett. 118 100503Google Scholar

    [139]

    黎颖, 韩泽尧, 黎超健, 吕劲, 袁骁, 吴步娇 2021 物理学报 70 210201Google Scholar

    Li Y, Han Z Y, Li J C, Lv J, Yuan X, Wu B J 2021 Acta Phys. Sin. 70 210201Google Scholar

    [140]

    Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A, O'Brien J L 2014 Nat. Commun. 5 4213Google Scholar

    [141]

    Nielsen M A, Chuang I 2002 Quantum Computation and Quantum Information (American Association of Physics Teachers)

    [142]

    Wiebe N, Granade C 2016 Phys. Rev. Lett. 117 010503Google Scholar

    [143]

    Zhao Y, Chen Y, Hou Z S, Han B, Fan H, Lin L H, Ren X F, Sun H B 2022 Opt. Lett. 47 617Google Scholar

    [144]

    Xu Y L, Fegadolli W S, Gan L, Lu M H, Liu X P, Li Z Y, Scherer A, Chen Y F 2016 Nat. Commun. 7 11319Google Scholar

    [145]

    Longhi S 2008 Phys. Rev. Lett. 101 193902Google Scholar

    [146]

    Crespi A, Pepe F V, Facchi P, Sciarrino F, Mataloni P, Nakazato H, Pascazio S, Osellame R 2019 Phys. Rev. Lett. 122 130401Google Scholar

    [147]

    Xu X Y, Wang X W, Chen D Y, Smith C M 2021 Nat. Photonics 15 703Google Scholar

    [148]

    Tang H, Di Franco C, Shi Z Y, He T S, Feng Z, Gao J, Sun K, Li Z M, Jiao Z Q, Wang T Y, Kim M S, Jin X M 2018 Nat. Photonics 12 754Google Scholar

    [149]

    Kim M, Jacob Z, Rho J 2020 Light Sci. Appl. 9 130Google Scholar

    [150]

    Zhang X L, Yu F, Chen Z G, Tian Z N, Chen Q D, Sun H B, Ma G C 2022 Nat. Photonics 16 390Google Scholar

    [151]

    Noh J, Schuster T, Iadecola T, Huang S, Wang M, Chen K P, Chamon C, Rechtsman M C 2020 Nat. Phys. 16 989Google Scholar

  • [1] He Yuan-Yao, Yang Bing. Recent research progress of ultracold-atom quantum simulation of Fermi-Hubbard model. Acta Physica Sinica, 2025, 74(1): 017101. doi: 10.7498/aps.74.20241595
    [2] Zou Yun-Peng, Chan Vincent, Chen Wei. Improvement of critical gradient model and establishment of an energetic particle module for integrated simulation. Acta Physica Sinica, 2023, 72(21): 215206. doi: 10.7498/aps.72.20230681
    [3] Tan Hui, Cao Rui, Li Yong-Qiang. Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory. Acta Physica Sinica, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [4] Xu Da, Wang Yi-Pu, Li Tie-Fu, You Jian-Qiang. Coherent coupling in a driven qubit-magnon hybrid quantum system. Acta Physica Sinica, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [5] Cheng En-Hong, Lang Li-Jun. Electrical circuit simulation of nonreciprocal Aubry-André models. Acta Physica Sinica, 2022, 71(16): 160301. doi: 10.7498/aps.71.20220219
    [6] Gao Xue-Er, Li Dai-Li, Liu Zhi-Hang, Zheng Chao. Recent progress of quantum simulation of non-Hermitian systems. Acta Physica Sinica, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [7] Wang Chen-Xu, He Ran, Li Rui-Rui, Chen Yan, Fang Ding, Cui Jin-Ming, Huang Yun-Feng, Li Chuan-Feng, Guo Guang-Can. Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [8] Luo Yu-Chen, Li Xiao-Peng. Quantum simulation of interacting fermions. Acta Physica Sinica, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [9] Ji Yi-Ru, Chu Yan-Bang, Xian Le-De, Yang Wei, Zhang Guang-Yu. From magic angle twisted bilayer graphene to moiré superlattice quantum simulator. Acta Physica Sinica, 2021, 70(11): 118101. doi: 10.7498/aps.70.20210476
    [10] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [11] Lu Bo, Wang Da-Jun. Ultracold dipolar molecules. Acta Physica Sinica, 2019, 68(4): 043301. doi: 10.7498/aps.68.20182274
    [12] Zhao Xing-Dong, Zhang Ying-Ying, Liu Wu-Ming. Magnetic excitation of ultra-cold atoms trapped in optical lattice. Acta Physica Sinica, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [13] Zhu Yan-Qing, Zhang Dan-Wei, Zhu Shi-Liang. Simulating Dirac, Weyl and Maxwell equations with cold atoms in optical lattices. Acta Physica Sinica, 2019, 68(4): 046701. doi: 10.7498/aps.68.20181929
    [14] Kong Xiang-Yu, Zhu Yuan-Ye, Wen Jing-Wei, Xin Tao, Li Ke-Ren, Long Gui-Lu. New research progress of nuclear magnetic resonance quantum information processing. Acta Physica Sinica, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [15] Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning. Novel superconducting qubits and quantum physics. Acta Physica Sinica, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [16] Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang. Topological quantum material simulated with superconducting quantum circuits. Acta Physica Sinica, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [17] Fan Heng. Quantum computation and quantum simulation. Acta Physica Sinica, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [18] Lu Dan-Feng, Qi Zhi-Mei. Characterization and chemical/biosensing application of a high-sensitivity integrated optical polarimetric interferometer. Acta Physica Sinica, 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [19] Shang Ya-Na, Wang Dong, Yan Zhi-Hui, Wang Wen-Zhe, Jia Xiao-Jun, Peng Kun-Chi. Measurement of entangled state of light with non-degenerate frequency utilizing non-balanced fiber Mach-Zehnder interferometer. Acta Physica Sinica, 2008, 57(6): 3514-3518. doi: 10.7498/aps.57.3514
    [20] LI ZHU-QI, KUAN JING-HUI, WU SHAN-LING, YANG TONG-HUA, HE MIN, LU TING, CHENG ZHI-XU, CHEN GUI-YING, YE CHUN-TANG. A ROTATING CRYSTAL NEUTRON TIME-OF-FLIGHT SPECTRO-METER FOR CONDENSED MATTER INVESTIGATION. Acta Physica Sinica, 1980, 29(11): 1462-1470. doi: 10.7498/aps.29.1462
Metrics
  • Abstract views:  6283
  • PDF Downloads:  276
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2022
  • Accepted Date:  17 November 2022
  • Available Online:  25 November 2022
  • Published Online:  24 December 2022

/

返回文章
返回