Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological nonmediocre nodes on two-leg superconducting quantum circuits

Guan Xin Chen Gang

Citation:

Topological nonmediocre nodes on two-leg superconducting quantum circuits

Guan Xin, Chen Gang
PDF
HTML
Get Citation
  • Topological gapless systems, as the connection of the different topological quantum phases, have received much attention. Topological nonmediocre nodes are typically observed in two- or three-dimensional gapless systems. In this paper, we demonstrate that the topological nonmediocre nodes are existent in a model that lies between one dimension and two dimensions. Superconducting circuits, as essential all-solid state quantum devices, have offered a promising platform for studying the macro-controlling quantum effects. Recently, experimental achievements have enabled the realization of tunable coupling strengths between transmon qubits and the implementation of a one-dimensional Su-Schrieffer-Heeger (SSH) model [Li X et al. 2018 Phys. Rev. Appl. 10 054009]. According to this work, herein we present a two-leg SSH model implemented in superconducting circuits and demonstrate the existence of topological nonmediocre nodes. Firstly, two-leg superconducting circuit with transmon qubits which are coupled with their nearest-neighbor sites by capacitors is designed. To construct the two-leg SSH model, we introduce two alternating-current magnetic fluxes to drive each transmon qubit. We discover two types of phase boundaries in the SSH model and obtain the corresponding energy spectra and phase diagram. We identify two distinct topological insulating phases characterized by winding number ±1, and the corresponding edge states exhibit distinct characteristics. Moreover, we discuss the topological properties of the two phase boundaries. By representing the Bloch states as a vector field in k space, we demonstrate the existence of two kinks of nonmediocre nodes with first-type phase boundaries. These two nonmediocrenodes possess distinct topological charges of 1 and –1, respectively. On the other hand, the nonmediocre nodes with the second-type phase boundaries are topologically trivial. These results open the way for exploring novel topological states, ladder physical systems, and nodal point topological semimetals.
      Corresponding author: Guan Xin, guanxin810712@163.com
    • Funds: Project supported by the Young Scientists Fund of the Natural Science Foundation of Shanxi Province, China (Grant No. 202103021223010)
    [1]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [2]

    Duncan F, Haldane M 2017 Rev. Mod. Phys. 89 040502Google Scholar

    [3]

    Burkov A A 2016 Nat. Mater. 15 1145Google Scholar

    [4]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [5]

    Shi W J, Wieder B J, Meyerheim H L, Sun Y, Zhang Y, Li Y W, Shen L, Qi Y P, Yang L X, Jena J, Werner P, Koepernik K, Parkin S, Chen Y L, Felser C, Bernevig B A, Wang Z J 2021 Nat. Phys. 17 381Google Scholar

    [6]

    Wei Q, Zhang X W, Deng W Y, Lu J Y, Huang X Q, Yan M, Chen G, Liu Zh Y, Jia S T 2021 Nat. Mater. 20 812Google Scholar

    [7]

    Weng H, Wu Q, Dai X, Fang Z, Wang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [8]

    Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677Google Scholar

    [9]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [10]

    Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M, Ding H 2015 Phys. Rev. Lett. 115 217601Google Scholar

    [11]

    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013Google Scholar

    [12]

    Wu S, Yan B, Sun Y 2015 Phys. Rev. B 92 115428Google Scholar

    [13]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [14]

    Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S 2016 Nat. Phys. 12 1105Google Scholar

    [15]

    Huang L, McCormick T M, Ochi M, Zhao Z, Suzuki M, Arita R, Wu Y, Mou D, Cao H, Yan J, Trivedi N, Kaminski A 2016 Nat. Mater. 15 1155Google Scholar

    [16]

    Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S 2017 Nat. Commun. 8 257Google Scholar

    [17]

    Li C, Lin S, Zhang G, Song Z 2017 Phys. Rev. B 96 125418Google Scholar

    [18]

    Tan X Sh, Zhang D W, Liu Q, Xue G M, Yu H F, Zhu Y Q, Yan H, Zhu Sh L, Yu Y 2018 Phys. Rev. Lett. 120 130503Google Scholar

    [19]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [20]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [21]

    Blok M S, Ramasesh V V, Schuster T, O’Brien K, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N Y, Siddiqi I 2021 Phys. Rev. X 11 021010Google Scholar

    [22]

    Goss N, Morvan A, Marinelli B, Mitchell B K, Nguyen L B, Naik R K, Chen L, Jünger C, Kreikebaum J M, Santiago D I, Wallman J J, Siddiqi I 2022 Nat. Commun. 13 7481Google Scholar

    [23]

    Brecht T, Pfaff W, Wang C, Chu Y, Frunzio L, Devoret M H, Schoelkopf R J 2016 npj Quantum Inf. 2 16002Google Scholar

    [24]

    Barends R, Shabani A, Lamata L, Kelly J, Mezzacapo A, Heras U L, Babbush R, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Lucero E, Megrant A, Mutus J Y, Neeley M, Neill C, O’Malley P J J, Quintana C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Solano E, Neven H, Martinis J M 2016 Nature 534 222Google Scholar

    [25]

    Jurcevic P, Abhari A J, Bishop L S, Lauer I, Bogorin D F, Brink M, Capelluto L, Günlük O, Itoko T, Kanazawa N, Kandala A, Keefe G A, Krsulich K, Landers W, Lewandowski E P, McClure D T, Nannicini G, Narasgond A, Nayfeh H M, Pritchett E, Rothwell M B, Srinivasan S, Sundaresan N, Wang C, Wei K X, Wood C J, Yau J B, Zhang E J, Dial O E, Chow J M, Gambetta J M 2021 Quantum Sci. Technol. 6 025020Google Scholar

    [26]

    Chenlu W, Li X, Xu H, Li Z, Wang J, Yang Z, Mi Z, Liang X, Su T, Yang C, Wang G, Wang W, Li Y, Chen M, Li C, Linghu K, Han J, Zhang Y, Feng Y, Song Y, Ma T, Zhang J, Wang R, Zhao P, Liu W, Xue G, Jin Y, Yu H 2022 npj Quantum Inf. 8 3Google Scholar

    [27]

    Xu K, Sun Z H, Liu W, Zhang Y R, Li H K, Dong H, Ren W H, Zhang P F, Nori F, Zheng D N, Fan H, Wang H 2020 Sci. Adv. 6 eaba4935Google Scholar

    [28]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [29]

    Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potočnik A, Mezzacapo A, Heras U L, Lamata L, Solano E, Filipp S, Wallraff A 2015 Phys. Rev. X 5 021027Google Scholar

    [30]

    Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, Gambetta J M 2017 Nature 549 242Google Scholar

    [31]

    Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z Q, Jia S T, Sun L Y 2019 Phys. Rev. Lett. 123 080501Google Scholar

    [32]

    Tan X S, Zhang D W, Yang Z, Chu J, Zhu Y Q, Li D Y, Yang X P, Song S Q, Han Z K, Li Z Y, Dong Y Q, Yu H F, Yan H, Zhu S L, Yu Y 2019 Phys. Rev. Lett. 123 159902Google Scholar

    [33]

    Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J 2019 Nature 566 51Google Scholar

    [34]

    Wang Z, Ge Z Y, Xiang Z, Song X, Huang R Z, Song P, Guo X Y, Su L, Xu K, Zheng D, Fan H 2022 Phys. Rev. Res. 4 L022060Google Scholar

    [35]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [36]

    Gu X, Kockum A F, Miranowicz A, Liu Y, Nori F 2017 Phys. Rep. 718 1Google Scholar

    [37]

    喻祥敏, 谭新生, 于海峰, 于扬 2018 物理学报 67 220302Google Scholar

    Yu X M, Tan X S, Yu H F, Yu Y 2018 Acta Phys. Sin. 67 220302Google Scholar

    [38]

    赵士平, 刘玉玺, 郑东宁 2018 物理学报 67 228501Google Scholar

    Zhao S P, Liu Y X, Zheng D N 2018 Acta Phys. Sin. 67 228501Google Scholar

    [39]

    Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Lin Y, Guo C, Sun L H, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X B, Pan J W 2019 Science 364 753Google Scholar

    [40]

    Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Ming G, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Ma N, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 123 050502Google Scholar

    [41]

    Didier N, Sete E A, Silva M P D, Rigetti C 2018 Phys. Rev. A 97 022330Google Scholar

    [42]

    Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q, Sun L Y 2018 Phys. Rev. Appl. 10 054009Google Scholar

    [43]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [44]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [45]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [46]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

  • 图 1  双链SSH模型 (a) 两条transmon比特链分别标记为AB. 每个transmon比特都与其最近邻比特两两耦合. 这里所有的耦合器均为电容. $ Q_{\nu j} $表示的是第ν条链上的第j个比特. $ C_{\nu j} $$E_{\nu j}^{{\rm{J}}}$分别是第ν条链上, 第j个比特的有效电容和约瑟夫森能. $ C_{\nu ij} $是耦合第ν条链上, 第i和第j个比特的电容. $ C_{ABj} $表示A, B两条链上第j个比特之间耦合的电容. $ \phi _{\nu j} $是第ν条链上, 第j个比特的约瑟夫森结的相位. 本文中transmon比特的约瑟夫森结由超导量子干涉仪(SQUID)形成, $E_{\nu j}^{{\rm{J}}0}$是SQUID中每个约瑟夫森结的能量. 每个比特都受到两个外加磁通$ \varPhi_{\nu j}^{(1)}(t) $$ \varPhi_{\nu j}^{(2)}(t) $的调制. (b) 双链SSH模型示意图, 图中红色和蓝色的实心球表示SSH模型中一个原胞的两种比特

    Figure 1.  Two-leg SSH model: (a) Two-leg (labeled respectively by A and B) superconducting circuits with transmon qubits. The qubits are coupled with their nearest-neighbor sites. All couplers are capacitors. $ C_{\nu j} $ and $E_{\nu j}^{{\rm{J}}}$ are the effective capacitance and the Josephson energy of the qubit at the jth site on the $ \nu {\rm{th}} $ leg. $ C_{\nu ij} $ and $ C_{ABj} $ are the capacitors to couple the qubits at the jth site on the $ \nu {\rm{th}}$ leg with its nearest-neighbor sites along each leg and between the legs, respectively. $ \phi _{\nu j} $ is the phase of the Josephson junction of the qubit at the jth site on the $ \nu {\rm{th}} $ leg. The Josephson junction of the transmon qubit is a superconducting quantum interference device(SQUID). $E_{\nu j}^{{\rm{J}}0}$ is the Josephson energy of SQUID. Each qubit is modulate by two external magnetic fluxes $\varPhi_{\nu j}^{(1)}(t)$ and $\varPhi_{\nu j}^{(2)}(t)$

    图 2  双链SSH模型的能谱图 (a) $ t_{1}=t_{2}=1.5 $; (b) $ t_{1}=-1.5 $$ t_{2}=0.5 $; (c) $ t_{1}=t_{2}=-0.5 $

    Figure 2.  Energy bands of SSH model: (a) $ t_{1}=t_{2}=1.5 $; (b) $ t_{1}=-1.5 $ and $ t_{2}=0.5 $; (c) $ t_{1}=t_{2}=-0.5 $

    图 3  双链SSH模型在参数空间$t_{1}\text-t_{2}$中的拓扑相图. 深绿色的区域是拓扑数$ N=-1 $的区域, 浅咖色的区域是拓扑数$N=1$的区域, 浅绿色的区域是拓扑数$ N=0 $的区域; 红色的线标记的是第一类相边界, 黑色的线标记的是第二类相边界

    Figure 3.  Topological phase diagram in the $t_{1}\text-t_{2}$ plane. The bottle green, light coffee color and pale green areas indicate the areas with $ N=-1 $, $ N=1 $ and $ N=0 $ respectively. N denotes the winding number. The red and black lines indicate the first and second phase boundaries respectively

    图 4  开边界能带和边界态 ($ a_{1} $ )$ t_{1}=1.5 $$ t_{2}=0.5 $; ($ a_{2} $) $ t_{1}=0.5 $$ t_{2}=1.5 $; ($ a_{3} $) $ t_{1}=0.5 $$ t_{2}=0.3 $. ($ b_{1} $)—($ b_{3} $)是($ a_{1} $)—($ a_{3} $)中第20个能带的波函数

    Figure 4.  Energy bands with open boundary condition with ($ a_{1} $) $ t_{1}=1.5 $ and $ t_{2}=0.5 $; ($ a_{2} $) $ t_{1}=0.5 $ and $ t_{2}=1.5 $; ($ a_{3} $) $ t_{1}= $$ 0.5 $ and $ t_{2}=0.3 $. The wave functions corresponding with the 20th energy bands of ($ a_{1} $), ($ a_{2} $), and ($ a_{3} $) are plotted in ($ b_{1} $), ($ b_{2} $), and ($ b_{3} $), respectively

    图 5  不同参数下$ {\boldsymbol{\varepsilon}} $在布洛赫球的$x\text{-}y$平面上的轨迹 (a)拓扑数$ N=1 $$ {\boldsymbol{\varepsilon}} $的轨迹, 参数设定为$ t_{1}=1.5 $$ t_{2}=0.5 $; (b)拓扑数$ N=-1 $$ {\boldsymbol{\varepsilon}} $的轨迹, 参数设定为$ t_{1}=0.5 $$ t_{2}=1.5 $; (c)拓扑数$ N=0 $$ {\boldsymbol{\varepsilon}} $的轨迹, 参数设定为$ t_{1}=1 $$ t_{2}=-0.7 $; (d)参数满足第一类相边界$ t_{1}=t_{2} $$ {\boldsymbol{\varepsilon}} $的轨迹, 参数设定为$ t_{1}=t_{2}=1 $; (e)参数满足第二类相边界$ t_{1}+t_{2}=1 $$ {\boldsymbol{\varepsilon}} $的轨迹, 参数设定为$ t_{1}=0.8 $$ t_{2}=0.2 $; (f)参数满足第二类相边界$ t_{1}+t_{2}=-1 $$ {\boldsymbol{\varepsilon}} $的轨迹, 参数设定为$ t_{1}=-1.3 $$ t_{2}=0.3 $. 图中红点表示原点, 箭头表示轨迹的运动方向

    Figure 5.  The curve of the vector $ {\boldsymbol{\varepsilon}} $ in $x\text{-}y$ plane of the Bloch sphere with (a) $ t_{1}=1.5 $ and $ t_{2}=0.5 $; (b) $ t_{1}=0.5 $ and $ t_{2}=1.5 $; (c) $ t_{1}=1 $ and $ t_{2}=-0.7 $; (d) $ t_{1}=t_{2}=1 $; (e) $ t_{1}=0.8 $ and $ t_{2}=0.2 $; (f) $ t_{1}=-1.3 $ and $ t_{2}=0.3 $. The red points and arrows indicate the origin points and direction of the curve respectively

    图 6  参数设定为$ t_{1}=t_{2}=1 $(第一类相边界上)时矢量$ {\boldsymbol{F}}(k) $随波矢k的变化. 图中箭头表示自旋的方向, $ k_{\rm{c}} $为能级简并点处的波矢

    Figure 6.  The variation of the vector $ {\boldsymbol{F}}(k) $ as k changes with $ t_{1}=t_{2}=1 $. The arrows and $ k_c $ indicate the direction of the spin and degenerate energy point respectively

  • [1]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [2]

    Duncan F, Haldane M 2017 Rev. Mod. Phys. 89 040502Google Scholar

    [3]

    Burkov A A 2016 Nat. Mater. 15 1145Google Scholar

    [4]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [5]

    Shi W J, Wieder B J, Meyerheim H L, Sun Y, Zhang Y, Li Y W, Shen L, Qi Y P, Yang L X, Jena J, Werner P, Koepernik K, Parkin S, Chen Y L, Felser C, Bernevig B A, Wang Z J 2021 Nat. Phys. 17 381Google Scholar

    [6]

    Wei Q, Zhang X W, Deng W Y, Lu J Y, Huang X Q, Yan M, Chen G, Liu Zh Y, Jia S T 2021 Nat. Mater. 20 812Google Scholar

    [7]

    Weng H, Wu Q, Dai X, Fang Z, Wang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [8]

    Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677Google Scholar

    [9]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [10]

    Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M, Ding H 2015 Phys. Rev. Lett. 115 217601Google Scholar

    [11]

    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013Google Scholar

    [12]

    Wu S, Yan B, Sun Y 2015 Phys. Rev. B 92 115428Google Scholar

    [13]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [14]

    Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S 2016 Nat. Phys. 12 1105Google Scholar

    [15]

    Huang L, McCormick T M, Ochi M, Zhao Z, Suzuki M, Arita R, Wu Y, Mou D, Cao H, Yan J, Trivedi N, Kaminski A 2016 Nat. Mater. 15 1155Google Scholar

    [16]

    Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S 2017 Nat. Commun. 8 257Google Scholar

    [17]

    Li C, Lin S, Zhang G, Song Z 2017 Phys. Rev. B 96 125418Google Scholar

    [18]

    Tan X Sh, Zhang D W, Liu Q, Xue G M, Yu H F, Zhu Y Q, Yan H, Zhu Sh L, Yu Y 2018 Phys. Rev. Lett. 120 130503Google Scholar

    [19]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [20]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [21]

    Blok M S, Ramasesh V V, Schuster T, O’Brien K, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N Y, Siddiqi I 2021 Phys. Rev. X 11 021010Google Scholar

    [22]

    Goss N, Morvan A, Marinelli B, Mitchell B K, Nguyen L B, Naik R K, Chen L, Jünger C, Kreikebaum J M, Santiago D I, Wallman J J, Siddiqi I 2022 Nat. Commun. 13 7481Google Scholar

    [23]

    Brecht T, Pfaff W, Wang C, Chu Y, Frunzio L, Devoret M H, Schoelkopf R J 2016 npj Quantum Inf. 2 16002Google Scholar

    [24]

    Barends R, Shabani A, Lamata L, Kelly J, Mezzacapo A, Heras U L, Babbush R, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Lucero E, Megrant A, Mutus J Y, Neeley M, Neill C, O’Malley P J J, Quintana C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Solano E, Neven H, Martinis J M 2016 Nature 534 222Google Scholar

    [25]

    Jurcevic P, Abhari A J, Bishop L S, Lauer I, Bogorin D F, Brink M, Capelluto L, Günlük O, Itoko T, Kanazawa N, Kandala A, Keefe G A, Krsulich K, Landers W, Lewandowski E P, McClure D T, Nannicini G, Narasgond A, Nayfeh H M, Pritchett E, Rothwell M B, Srinivasan S, Sundaresan N, Wang C, Wei K X, Wood C J, Yau J B, Zhang E J, Dial O E, Chow J M, Gambetta J M 2021 Quantum Sci. Technol. 6 025020Google Scholar

    [26]

    Chenlu W, Li X, Xu H, Li Z, Wang J, Yang Z, Mi Z, Liang X, Su T, Yang C, Wang G, Wang W, Li Y, Chen M, Li C, Linghu K, Han J, Zhang Y, Feng Y, Song Y, Ma T, Zhang J, Wang R, Zhao P, Liu W, Xue G, Jin Y, Yu H 2022 npj Quantum Inf. 8 3Google Scholar

    [27]

    Xu K, Sun Z H, Liu W, Zhang Y R, Li H K, Dong H, Ren W H, Zhang P F, Nori F, Zheng D N, Fan H, Wang H 2020 Sci. Adv. 6 eaba4935Google Scholar

    [28]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [29]

    Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potočnik A, Mezzacapo A, Heras U L, Lamata L, Solano E, Filipp S, Wallraff A 2015 Phys. Rev. X 5 021027Google Scholar

    [30]

    Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, Gambetta J M 2017 Nature 549 242Google Scholar

    [31]

    Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z Q, Jia S T, Sun L Y 2019 Phys. Rev. Lett. 123 080501Google Scholar

    [32]

    Tan X S, Zhang D W, Yang Z, Chu J, Zhu Y Q, Li D Y, Yang X P, Song S Q, Han Z K, Li Z Y, Dong Y Q, Yu H F, Yan H, Zhu S L, Yu Y 2019 Phys. Rev. Lett. 123 159902Google Scholar

    [33]

    Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J 2019 Nature 566 51Google Scholar

    [34]

    Wang Z, Ge Z Y, Xiang Z, Song X, Huang R Z, Song P, Guo X Y, Su L, Xu K, Zheng D, Fan H 2022 Phys. Rev. Res. 4 L022060Google Scholar

    [35]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [36]

    Gu X, Kockum A F, Miranowicz A, Liu Y, Nori F 2017 Phys. Rep. 718 1Google Scholar

    [37]

    喻祥敏, 谭新生, 于海峰, 于扬 2018 物理学报 67 220302Google Scholar

    Yu X M, Tan X S, Yu H F, Yu Y 2018 Acta Phys. Sin. 67 220302Google Scholar

    [38]

    赵士平, 刘玉玺, 郑东宁 2018 物理学报 67 228501Google Scholar

    Zhao S P, Liu Y X, Zheng D N 2018 Acta Phys. Sin. 67 228501Google Scholar

    [39]

    Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Lin Y, Guo C, Sun L H, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X B, Pan J W 2019 Science 364 753Google Scholar

    [40]

    Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Ming G, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Ma N, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 123 050502Google Scholar

    [41]

    Didier N, Sete E A, Silva M P D, Rigetti C 2018 Phys. Rev. A 97 022330Google Scholar

    [42]

    Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q, Sun L Y 2018 Phys. Rev. Appl. 10 054009Google Scholar

    [43]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [44]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [45]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [46]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

  • [1] Yang Yan-Li, Duan Zhi-Lei, Xue Hai-Bin. Edge states and skin effect dependent electron transport properties of non-Hermitian Su-Schrieffer-Heeger chain. Acta Physica Sinica, 2023, 72(24): 247301. doi: 10.7498/aps.72.20231286
    [2] Zheng Zhi-Yong, Chen Li-Jie, Xiang Lü, Wang He, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states by counter-rotating wave effect in one-dimensional superconducting microwave cavity lattice. Acta Physica Sinica, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [3] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [4] Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling. Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger. Acta Physica Sinica, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [5] Guan Xin, Chen Gang, Pan Jing, You Xiu-Fen, Gui Zhi-Guo. Ground-state chiral currents in the synthetic Hall tube. Acta Physica Sinica, 2022, 71(16): 160303. doi: 10.7498/aps.71.20220293
    [6] Wang Wei, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states in one-dimensional superconducting transmission line cavities lattice. Acta Physica Sinica, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [7] Xue Hai-Bin, Duan Zhi-Lei, Chen Bin, Chen Jian-Bin, Xing Li-Li. Electron transport through Su-Schrieffer-Heeger chain with spin-orbit coupling. Acta Physica Sinica, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [8] Zhang Lan-Yun, Xue Hai-Bin, Chen Bin, Chen Jian-Bin, Xing Li-Li. Electron transport through a quantum-dot-Su-Schrieffer-Heeger-chain system. Acta Physica Sinica, 2020, 69(7): 077301. doi: 10.7498/aps.69.20191871
    [9] Liu Yan-Hong, Wu Liang, Yan Zhi-Hui, Jia Xiao-Jun, Peng Kun-Chi. Deterministic quantum entanglement among multiple quantum nodes. Acta Physica Sinica, 2019, 68(3): 034202. doi: 10.7498/aps.68.20181614
    [10] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [11] Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang. Topological quantum material simulated with superconducting quantum circuits. Acta Physica Sinica, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [12] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [13] Zhang Xiao-Shun, Zhang Ding-Guo, Chen Si-Jia, Hong Jia-Zhen. Several dynamic models of a large deformation flexible beam based on the absolute nodal coordinate formulation. Acta Physica Sinica, 2016, 65(9): 094501. doi: 10.7498/aps.65.094501
    [14] Nie Min, Liu Guang-Teng, Yang Guang, Pei Chang-Xing. Voice over quantum IP routing based on least relay node constrained optimization strategy. Acta Physica Sinica, 2016, 65(12): 120302. doi: 10.7498/aps.65.120302
    [15] Yang Xiong, Huang De-Cai, Zhang Zi-Ke. Recommendation of important nodes in deployment optimization model of defense strategy. Acta Physica Sinica, 2015, 64(5): 050502. doi: 10.7498/aps.64.050502
    [16] Hu Zhao-Long, Liu Jian-Guo, Ren Zhuo-Ming. Analysis of voluntary vaccination model based on the node degree information. Acta Physica Sinica, 2013, 62(21): 218901. doi: 10.7498/aps.62.218901
    [17] Zhang Yi, Sun Wei-Guo, Fu Jia, Fan Qun-Chao, Feng Hao, Li Hui-Dong. Investigations of vibrational levels and dissociation energies of diatomic systems using a variational algebraic method. Acta Physica Sinica, 2012, 61(13): 133301. doi: 10.7498/aps.61.133301
    [18] Xiong Fei, Liu Yun, Si Xia-Meng, Ding Fei. Network model with synchronously increasing nodes and edges based on Web 2.0. Acta Physica Sinica, 2010, 59(10): 6889-6895. doi: 10.7498/aps.59.6889
    [19] Wang Jun-Ping, Hao Yue. Efficient WCA algorithm for 65—90 nm processes. Acta Physica Sinica, 2009, 58(6): 4267-4273. doi: 10.7498/aps.58.4267
    [20] Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu. Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
Metrics
  • Abstract views:  3642
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  07 February 2023
  • Accepted Date:  13 May 2023
  • Available Online:  22 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回