-
Efficiently identifying multiple influential nodes is crucial for maximizing information diffusion and minimizing rumor spread in complex networks. Selecting multiple influential seed nodes requires consideration of both their individual influence potential and their spatial dispersion within the network topology to avoid overlapping propagation ranges ("rich-club effect"). Traditional VoteRank method suffer from two key limitations: (1) they assume uniform voting contributions from a node to all its neighbors, neglecting the impact of topological similarity (structural homophily) on voting preferences observed in real-world scenarios, and (2) they employ a homogeneous voting attenuation strategy which inadequately suppresses the propagation range overlap among selected seed nodes. To address these shortcomings, this paper proposes IMVoteRank, an improved VoteRank algorithm featuring dual innovations. First, we introduce a Structural Similarity-Driven Voting Contribution Mechanism. Recognizing that voters (nodes) are more likely to support candidates (neighbors) with whom they share stronger topological ties, we decompose a neighbor's voting contribution into two components: a Direct Connection Contribution and a Structural Similarity Contribution (quantified using common neighbors). A dynamic weight parameter θ, adjusted based on the candidate node's degree, balances these components, significantly refining vote allocation accuracy. Second, we devise a Dynamic Group Isolation Strategy. During each iteration, after selecting the highest-scoring seed node vmax, we identify and isolate a tightly-knit group (OG) centered around it. This involves: (i) forming an initial group based on shared neighbor density with vmax, (ii) expanding it by incorporating nodes with more connections inside the group than outside, and (iii) isolating this group by setting the voting capacity (Va) of all its members to zero and virtually removing their connections from the adjacency matrix. Neighbors of vmax not in OG have their Va halved. This strategy proactively enforces spatial dispersion among seeds. Extensive simulations using the Susceptible-Infected-Recovered (SIR) propagation model on nine diverse real-world networks (ECON-WM3, Facebook-SZ, USAir, Celegans, ASOIAF, Dnc-corecipient, ERIS1176, DNC-emails, Facebook-combined) demonstrate the superior performance of IMVoteRank. Compared to seven benchmark methods (Degree, K-shell, VoteRank, NCVoteRank, VoteRank++, AIGCrank, EWV), IMVoteRank consistently achieves significantly larger final propagation coverage (infected scale) for a given number of seed nodes and transmission probability (β=0.1). Furthermore, seeds selected by IMVoteRank exhibit a consistently larger average shortest path length (Ls) among themselves across most networks, confirming their effective topological dispersion. This combination of high individual influence potential (optimized voting) and low redundancy (group isolation) directly translates to more efficient global information spread, as evidenced by the SIR results. Tests on LFR benchmark networks further validate these advantages, particularly at transmission rates above the epidemic threshold. IMVoteRank effectively overcomes the limitations of traditional voting models by integrating structural similarity into the voting process and employing dynamic group isolation to ensure seed dispersion. It provides a highly effective and physically well-grounded approach for identifying multiple influential nodes in complex networks, optimizing the trade-off between influence strength and spatial coverage. Future work will focus on enhancing computational efficiency for large-scale networks and exploring the impact of meso-scale community structures.
-
Keywords:
- complex network /
- multiple influential nodes /
- voting model /
- isolation strategy
-
[1] Watts D J, Strogatz S H 1998 Nature 393 440
[2] Barabasi A L, Albert R 1999 Science 286 509
[3] Liu Y Y, Slotine J J, Barabasi A L 2011 Nature 473 167
[4] Yang Z, Li Y, Liu J 2021 Proceedings of the 15th EAI International Conference on Communications and Networking (ChinaCom 2020) Shanghai, China, November 20-21, 2020 p766
[5] Li Y G, Xiao Z L, Gao A, Wu W N, Pei E R 2025 Knowl.-Based Syst. 317 113434
[6] Lin Y G, Wang X M, Hao F, Jiang Y C, Wu Y L, Min G Y, He D J, Zhu S C, Zhao W 2019 IEEE Trans. Syst., Man, Cybern., Syst. 51 3725
[7] Olasupo T O, Otero C E 2017 IEEE Trans. Syst., Man, Cybern., Syst. 50 256
[8] Laitila P, Virtanen K 2018 IEEE Trans. Syst., Man, Cybern., Syst. 50 1943
[9] Yang J, Yao C, Ma W, Chen G 2010 Physica A 389 859
[10] Morone F, Makse H A 2015 Nature 524 65
[11] Guo C, Li W M, Liu F F, Zhong K X, Wu X, Zhao Y G, Jin Q 2024 Neurocomputing 564 126936
[12] Kempe D, Kleinberg J, Tardos É 2003 Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Washington, DC, USA, August 24–27, 2003 p137
[13] Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N 2007 Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Jose, CA, USA, August 12–15, 2007 p420
[14] Ou Z, Wang S 2024 Swarm Evol. Comput. 87 101542
[15] Kumar S, Mallik A, Panda B S 2023 Expert Syst. Appl. 212 118770
[16] Berahmand K, Bouyer A, Samadi N 2019 Computing 101 1711
[17] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888
[18] Lü L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168
[19] Hage P, Harary F 1995 Soc. Netw. 17 57
[20] Dolev S, Elovici Y, Puzis R 2010 J. ACM 57 1
[21] Freeman L C 2002 Soc. Netw.: Crit. Concepts Sociol. 1 238
[22] Katz L 1953 Psychometrika 18 39
[23] Wang Y, Zheng Y N, Shi X L, Liu Y G 2022 Physica A 588 126535
[24] Zhao Z L, Liu X P, Sun Y, Zhao N N, Hu A H, Wang S L, Tu Y Y 2025 Chaos Soliton. Fract. 193 116078
[25] Chen W, Wang Y J, Yang S Y 2009 Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, Paris, France, June 28- July 1
[26] Berahmand K, Bouyer A, Samadi N 2019 Computing 101 1711
[27] Salavati C, Abdollahpouri A, Manbari Z 2019 Neurocomputing 336 36
[28] Wen T, Deng Y 2020 Inf. Sci. 512 549
[29] Yang P L, Zhao L J, Dong C, Xu G Q, Zhou L X 2023 Chin. Phys. B 32 058901.
[30] Zhang J X, Chen D B, Dong Q, Zhao Z D 2016 Sci. Rep. 6 27823
[31] Li H Y, Wang X, Chen Y, Cheng S Y 2025 Sci. Rep. 15 1693.
[32] Sun H L, Chen D B, He J L,Ch’ng E 2019 Physica A 519 303
[33] Kumar S, Panda B S 2020 Physica A 553 124215
[34] Bae J H, Kim S W 2014 Physica A 395 549
[35] Liu P, Li L, Fang S, Yao Y K 2021 Chaos Soliton. Fract. 152 111309
[36] Wang, G. Alias S B, Sun Z J, Wang F F, Fan A W, Hu H F 2023 Heliyon 9 e16112
[37] Li H Y, Wang X, Chen Y, Chen S Y, Lu D J Sci. Rep. 2025 15 1693
[38] Yang P L, Zhao L J, Dong C, Xu G Q, Zhou L X 2023 Chin. Phys. B 32 058901.
[39] Jeh G, Widom J 2002 Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Edmonton, Canada, July 23–26, 2002 p538
[40] Chi K, Yin G S, Dong Y X, Dong H B 2019 Knowl.-Based Syst. 181 104792
[41] Rossi R, Ahmed N 2015 Proceedings of the 29th AAAI Conference on Artificial Intelligence Austin, TX, USA, January 25–30, 2015
[42] Batagelj V, Mrvar A 1998 Connections 21 47
[43] Blagus N, Šubelj L, Bajec M 2012 Physica A 391 2794
[44] Jeong H, Tombor B, Albert R, Oltvai Z N, Barabási A L 2000 Nature 407 651
[45] Kunegis J 2013 Proceedings of the 22nd International Conference on World Wide Web Rio de Janeiro, Brazil, May 13-17, 2013 p1343
[46] McAuley J, Leskovec J 2012 Advances in Neural Information Processing Systems(Lake Tahoe, USA: NIPS) p539
[47] Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200
[48] Ruan Y R, Liu S Z, Tang J,Guo Y M, Yu T Y 2025 Expert Syst. Appl. 268 126292
[49] Yu E Y, Wang Y P, Fu Y, Chen D B, Xie M 2020 Knowl-Based Syst. 198 105893 24
[50] Zhang M, Wang X J, Jin L, Song M, Li Z Y 2022 Neurocomputing 497 13
Metrics
- Abstract views: 4
- PDF Downloads: 1
- Cited By: 0