Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IMVoteRank: Identifying multiple influential nodes in complex networks based on an improved voting model

LI Shangjie LEI Hongtao ZHANG MengMeng ZHU Cheng RUAN Yirun

Citation:

IMVoteRank: Identifying multiple influential nodes in complex networks based on an improved voting model

LI Shangjie, LEI Hongtao, ZHANG MengMeng, ZHU Cheng, RUAN Yirun
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Efficiently identifying multiple influential nodes is crucial for maximizing information diffusion and minimizing rumor spread in complex networks. Selecting multiple influential seed nodes requires consideration of both their individual influence potential and their spatial dispersion within the network topology to avoid overlapping propagation ranges ("rich-club effect"). Traditional VoteRank method suffer from two key limitations: (1) they assume uniform voting contributions from a node to all its neighbors, neglecting the impact of topological similarity (structural homophily) on voting preferences observed in real-world scenarios, and (2) they employ a homogeneous voting attenuation strategy which inadequately suppresses the propagation range overlap among selected seed nodes. To address these shortcomings, this paper proposes IMVoteRank, an improved VoteRank algorithm featuring dual innovations. First, we introduce a Structural Similarity-Driven Voting Contribution Mechanism. Recognizing that voters (nodes) are more likely to support candidates (neighbors) with whom they share stronger topological ties, we decompose a neighbor's voting contribution into two components: a Direct Connection Contribution and a Structural Similarity Contribution (quantified using common neighbors). A dynamic weight parameter θ, adjusted based on the candidate node's degree, balances these components, significantly refining vote allocation accuracy. Second, we devise a Dynamic Group Isolation Strategy. During each iteration, after selecting the highest-scoring seed node vmax, we identify and isolate a tightly-knit group (OG) centered around it. This involves: (i) forming an initial group based on shared neighbor density with vmax, (ii) expanding it by incorporating nodes with more connections inside the group than outside, and (iii) isolating this group by setting the voting capacity (Va) of all its members to zero and virtually removing their connections from the adjacency matrix. Neighbors of vmax not in OG have their Va halved. This strategy proactively enforces spatial dispersion among seeds. Extensive simulations using the Susceptible-Infected-Recovered (SIR) propagation model on nine diverse real-world networks (ECON-WM3, Facebook-SZ, USAir, Celegans, ASOIAF, Dnc-corecipient, ERIS1176, DNC-emails, Facebook-combined) demonstrate the superior performance of IMVoteRank. Compared to seven benchmark methods (Degree, K-shell, VoteRank, NCVoteRank, VoteRank++, AIGCrank, EWV), IMVoteRank consistently achieves significantly larger final propagation coverage (infected scale) for a given number of seed nodes and transmission probability (β=0.1). Furthermore, seeds selected by IMVoteRank exhibit a consistently larger average shortest path length (Ls) among themselves across most networks, confirming their effective topological dispersion. This combination of high individual influence potential (optimized voting) and low redundancy (group isolation) directly translates to more efficient global information spread, as evidenced by the SIR results. Tests on LFR benchmark networks further validate these advantages, particularly at transmission rates above the epidemic threshold. IMVoteRank effectively overcomes the limitations of traditional voting models by integrating structural similarity into the voting process and employing dynamic group isolation to ensure seed dispersion. It provides a highly effective and physically well-grounded approach for identifying multiple influential nodes in complex networks, optimizing the trade-off between influence strength and spatial coverage. Future work will focus on enhancing computational efficiency for large-scale networks and exploring the impact of meso-scale community structures.
  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabasi A L, Albert R 1999 Science 286 509

    [3]

    Liu Y Y, Slotine J J, Barabasi A L 2011 Nature 473 167

    [4]

    Yang Z, Li Y, Liu J 2021 Proceedings of the 15th EAI International Conference on Communications and Networking (ChinaCom 2020) Shanghai, China, November 20-21, 2020 p766

    [5]

    Li Y G, Xiao Z L, Gao A, Wu W N, Pei E R 2025 Knowl.-Based Syst. 317 113434

    [6]

    Lin Y G, Wang X M, Hao F, Jiang Y C, Wu Y L, Min G Y, He D J, Zhu S C, Zhao W 2019 IEEE Trans. Syst., Man, Cybern., Syst. 51 3725

    [7]

    Olasupo T O, Otero C E 2017 IEEE Trans. Syst., Man, Cybern., Syst. 50 256

    [8]

    Laitila P, Virtanen K 2018 IEEE Trans. Syst., Man, Cybern., Syst. 50 1943

    [9]

    Yang J, Yao C, Ma W, Chen G 2010 Physica A 389 859

    [10]

    Morone F, Makse H A 2015 Nature 524 65

    [11]

    Guo C, Li W M, Liu F F, Zhong K X, Wu X, Zhao Y G, Jin Q 2024 Neurocomputing 564 126936

    [12]

    Kempe D, Kleinberg J, Tardos É 2003 Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Washington, DC, USA, August 24–27, 2003 p137

    [13]

    Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N 2007 Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Jose, CA, USA, August 12–15, 2007 p420

    [14]

    Ou Z, Wang S 2024 Swarm Evol. Comput. 87 101542

    [15]

    Kumar S, Mallik A, Panda B S 2023 Expert Syst. Appl. 212 118770

    [16]

    Berahmand K, Bouyer A, Samadi N 2019 Computing 101 1711

    [17]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [18]

    Lü L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168

    [19]

    Hage P, Harary F 1995 Soc. Netw. 17 57

    [20]

    Dolev S, Elovici Y, Puzis R 2010 J. ACM 57 1

    [21]

    Freeman L C 2002 Soc. Netw.: Crit. Concepts Sociol. 1 238

    [22]

    Katz L 1953 Psychometrika 18 39

    [23]

    Wang Y, Zheng Y N, Shi X L, Liu Y G 2022 Physica A 588 126535

    [24]

    Zhao Z L, Liu X P, Sun Y, Zhao N N, Hu A H, Wang S L, Tu Y Y 2025 Chaos Soliton. Fract. 193 116078

    [25]

    Chen W, Wang Y J, Yang S Y 2009 Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, Paris, France, June 28- July 1

    [26]

    Berahmand K, Bouyer A, Samadi N 2019 Computing 101 1711

    [27]

    Salavati C, Abdollahpouri A, Manbari Z 2019 Neurocomputing 336 36

    [28]

    Wen T, Deng Y 2020 Inf. Sci. 512 549

    [29]

    Yang P L, Zhao L J, Dong C, Xu G Q, Zhou L X 2023 Chin. Phys. B 32 058901.

    [30]

    Zhang J X, Chen D B, Dong Q, Zhao Z D 2016 Sci. Rep. 6 27823

    [31]

    Li H Y, Wang X, Chen Y, Cheng S Y 2025 Sci. Rep. 15 1693.

    [32]

    Sun H L, Chen D B, He J L,Ch’ng E 2019 Physica A 519 303

    [33]

    Kumar S, Panda B S 2020 Physica A 553 124215

    [34]

    Bae J H, Kim S W 2014 Physica A 395 549

    [35]

    Liu P, Li L, Fang S, Yao Y K 2021 Chaos Soliton. Fract. 152 111309

    [36]

    Wang, G. Alias S B, Sun Z J, Wang F F, Fan A W, Hu H F 2023 Heliyon 9 e16112

    [37]

    Li H Y, Wang X, Chen Y, Chen S Y, Lu D J Sci. Rep. 2025 15 1693

    [38]

    Yang P L, Zhao L J, Dong C, Xu G Q, Zhou L X 2023 Chin. Phys. B 32 058901.

    [39]

    Jeh G, Widom J 2002 Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Edmonton, Canada, July 23–26, 2002 p538

    [40]

    Chi K, Yin G S, Dong Y X, Dong H B 2019 Knowl.-Based Syst. 181 104792

    [41]

    Rossi R, Ahmed N 2015 Proceedings of the 29th AAAI Conference on Artificial Intelligence Austin, TX, USA, January 25–30, 2015

    [42]

    Batagelj V, Mrvar A 1998 Connections 21 47

    [43]

    Blagus N, Šubelj L, Bajec M 2012 Physica A 391 2794

    [44]

    Jeong H, Tombor B, Albert R, Oltvai Z N, Barabási A L 2000 Nature 407 651

    [45]

    Kunegis J 2013 Proceedings of the 22nd International Conference on World Wide Web Rio de Janeiro, Brazil, May 13-17, 2013 p1343

    [46]

    McAuley J, Leskovec J 2012 Advances in Neural Information Processing Systems(Lake Tahoe, USA: NIPS) p539

    [47]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200

    [48]

    Ruan Y R, Liu S Z, Tang J,Guo Y M, Yu T Y 2025 Expert Syst. Appl. 268 126292

    [49]

    Yu E Y, Wang Y P, Fu Y, Chen D B, Xie M 2020 Knowl-Based Syst. 198 105893 24

    [50]

    Zhang M, Wang X J, Jin L, Song M, Li Z Y 2022 Neurocomputing 497 13

  • [1] Chen Yi-Duo, Yun Yu-Ting, Guan Jian-Yue, Wu Zhi-Xi. Majority-vote model with collective influence of hierarchical structures. Acta Physica Sinica, doi: 10.7498/aps.73.20231164
    [2] Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming. Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, doi: 10.7498/aps.71.20220565
    [3] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, doi: 10.7498/aps.67.20172295
    [4] Kang Ling, Xiang Bing-Bing, Zhai Su-Lan, Bao Zhong-Kui, Zhang Hai-Feng. Identifying multiple influential nodes based on region density curve in complex networks. Acta Physica Sinica, doi: 10.7498/aps.67.20181000
    [5] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Hou Lü-Lin. An improved evaluating method of node spreading influence in complex network based on information spreading probability. Acta Physica Sinica, doi: 10.7498/aps.66.208901
    [6] Han Zhong-Ming, Chen Yan, Li Meng-Qi, Liu Wen, Yang Wei-Jie. An efficient node influence metric based on triangle in complex networks. Acta Physica Sinica, doi: 10.7498/aps.65.168901
    [7] Han Zhong-Ming, Wu Yang, Tan Xu-Sheng, Duan Da-Gao, Yang Wei-Jie. Ranking key nodes in complex networks by considering structural holes. Acta Physica Sinica, doi: 10.7498/aps.64.058902
    [8] Hu Qing-Cheng, Zhang Yong, Xu Xin-Hui, Xing Chun-Xiao, Chen Chi, Chen Xin-Hua. A new approach for influence maximization in complex networks. Acta Physica Sinica, doi: 10.7498/aps.64.190101
    [9] Wang Ya-Qi, Wang Jing, Yang Hai-Bin. An evolution model of microblog user relationship networks based on complex network theory. Acta Physica Sinica, doi: 10.7498/aps.63.208902
    [10] Liu Wei-Yan, Liu Bin. Congestion control in complex network based on local routing strategy. Acta Physica Sinica, doi: 10.7498/aps.63.248901
    [11] Liu Jin-Liang. Research on synchronization of complex networks with random nodes. Acta Physica Sinica, doi: 10.7498/aps.62.040503
    [12] Zhou Xuan, Zhang Feng-Ming, Zhou Wei-Ping, Zou Wei, Yang Fan. Evaluating complex network functional robustness by node efficiency. Acta Physica Sinica, doi: 10.7498/aps.61.190201
    [13] LÜ Ling, Liu Shuang, Zhang Xin, Zhu Jia-Bo, Shen Na, Shang Jin-Yu. Spatiotemporal chaos anti-synchronization of a complex network with different nodes. Acta Physica Sinica, doi: 10.7498/aps.61.090504
    [14] Zhou Xuan, Zhang Feng-Ming, Li Ke-Wu, Hui Xiao-Bin, Wu Hu-Sheng. Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, doi: 10.7498/aps.61.050201
    [15] Jiang Zhi-Hong, Wang Hui, Gao Chao. A evolving network model generated by random walk and policy attachment. Acta Physica Sinica, doi: 10.7498/aps.60.058903
    [16] Xiong Fei, Liu Yun, Si Xia-Meng, Ding Fei. Network model with synchronously increasing nodes and edges based on Web 2.0. Acta Physica Sinica, doi: 10.7498/aps.59.6889
    [17] Lü Ling, Zhang Chao. Chaos synchronization of a complex network with different nodes. Acta Physica Sinica, doi: 10.7498/aps.58.1462
    [18] Li Tao, Pei Wen-Jiang, Wang Shao-Ping. Optimal traffic routing strategy on scale-free complex networks. Acta Physica Sinica, doi: 10.7498/aps.58.5903
    [19] Chen Hua-Liang, Liu Zhong-Xin, Chen Zeng-Qiang, Yuan Zhu-Zhi. Research on one weighted routing strategy for complex networks. Acta Physica Sinica, doi: 10.7498/aps.58.6068
    [20] Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu. Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica, doi: 10.7498/aps.55.4051
Metrics
  • Abstract views:  4
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  19 July 2025
  • /

    返回文章
    返回