Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An efficient node influence metric based on triangle in complex networks

Han Zhong-Ming Chen Yan Li Meng-Qi Liu Wen Yang Wei-Jie

Citation:

An efficient node influence metric based on triangle in complex networks

Han Zhong-Ming, Chen Yan, Li Meng-Qi, Liu Wen, Yang Wei-Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Influential nodes in large-scale complex networks are very important for accelerating information propagation, understanding hierarchical community structure and controlling rumors spreading. Classic centralities such as degree, betweenness and closeness, can be used to measure the node influence. Other systemic metrics, such as k-shell and H-index, take network structure into account to identify influential nodes. However, these methods suffer some drawbacks. For example, betweenness is an effective index to identify influential nodes. However, computing betweenness is a high time complexity task and some nodes with high degree are not highly influential nodes. Presented in this paper is a simple and effective node influence measure index model based on a triangular structure between a node and its neighbor nodes (local triangle centrality (LTC)). The model considers not only the triangle structure between nodes, but also the degree of the surrounding neighbor nodes. However, in complex networks the numbers of triangles for a pair of nodes are extremely unbalanced, a sigmoid function is introduced to bound the number of triangles for each pair of nodes between 0 and 1. The LTC model is very flexible and can be used to measure the node influence on weighted complex networks. We detailedly compare the influential nodes produced by different approaches in Karata network. Results show that LTC can effectively identify the influential nodes. Comprehensive experiments are conducted based on six real complex networks with different network scales. We select highly influential nodes produced by five benchmark approaches and LTC model to run spreading processes by the SIR model, thus we can evaluate the efficacies of different approaches. The experimental results of the SIR model show that LTC metric can more accurately identify highly influential nodes in most real complex networks than other indicators. We also conduct network robustness experiment on four selected networks by computing the ratio of nodes in giant component to remaining nodes after removing highly influential nodes. The experimental results also show that LTC model outperforms other methods.
      Corresponding author: Han Zhong-Ming, hanzm@th.btbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61170112), the Research Fund Project of the Ministry of Education of Humanities and Social Science, China (Grant No. 13YJC860006), and the Scientific Research Common Program of Beijing Municipal Commission of Education, China (Grant No. KM201410011005).
    [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabsi A L, Albert R 1999 Science 286 509

    [3]

    Newman M E J, Girvan M 2004 Phys. Rev. E 69 026113

    [4]

    Klemm K, Serrano M , Eguluz V M, Miguel M S 2012 Sci. Rep. 2 292

    [5]

    Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102

    [6]

    L L Y, Zhang Y C, Yeung C H, Zhou T 2011 PloS One 6 e21202

    [7]

    Pei S, Makse H A 2013 J. Stat. Mech. Theory Exp. 2013 P12002

    [8]

    Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 036104

    [9]

    Morone F, Makse H A 2015 Nature 524 65

    [10]

    Bonacich P 1972 J. Math. Sociol. 2 113

    [11]

    Chen D, L L, Shang M S, Zhou T 2012 Physica A: Stat. Mech. Appl. 391 1777

    [12]

    Min L, Liu Z, Tang X Y, Chen M, Liu S Y 2015 Acta Phys. Sin. 64 088901 (in Chinese) [闵磊, 刘智, 唐向阳, 陈矛, 刘三(女牙) 2015 物理学报 64 088901]

    [13]

    Fowler J H, Christakis N A 2008 BMJ 337 a2338

    [14]

    Newman M E J 2005 Social Networks 27 39

    [15]

    Sabidussi G 1966 Psychometrika 31 581

    [16]

    Palla G, Barabsi A L, Vicsek T 2007 Nature 446 664

    [17]

    Chen D B, Gao H, L L Y, Zhou T 2012 PloS One 8 e77455

    [18]

    Zhao Z Y, Yu H, Zhu Z L, Wang X F 2014 Chin. J. Comput. 37 753 (in Chinese) [赵之滢, 于海, 朱志良, 汪小帆 2014 计算机学报 37 753]

    [19]

    Su X P, Song Y R 2015 Acta Phys. Sin. 64 020101 (in Chinese) [苏晓萍, 宋玉蓉 2015 物理学报 64 020101]

    [20]

    Han Z M, Wu Y, Tan X S, Duan D G, Yang W J 2015 Acta Phys. Sin. 64 058902 (in Chinese) [韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰 2015 物理学报 64 058902]

    [21]

    Zhang J X, Chen D B, Dong Q, Zhao D B 2016 arXiv 1602 00070

    [22]

    Berkhin P 2005 Internet Mathematics 2 73

    [23]

    Kleinberg J M 1999 JACM 46 604

    [24]

    Li Q, Zhou T, L L Y, Chen D B 2014 Physica A: Stat. Mech. Appl. 404 47

    [25]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [26]

    Pei S, Muchnik L, Andrade J J S, Zheng Z M, Hernn A M 2014 Sci. Rep. 4 5547

    [27]

    Liu J G, Ren Z M, Guo Q 2013 Physica A: Stat. Mech. Appl. 392 4154

    [28]

    Zeng A, Zhang C J 2013 Phys. Lett. A 377 1031

    [29]

    L L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168

    [30]

    Hethcote, Herbert W 2000 SIAM Rev. 42 599

    [31]

    Pastor S R, Castellano C, Van M P, Vespignani A 2015 Rev. Mod. Phys. 87 925

    [32]

    Shu P, Wang W, Tang M, Do Y 2015 Chaos 25 063104

    [33]

    Iyer S, Killingback T, Sundaram B, Wang Z 2013 PloS One 8 e59613

  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabsi A L, Albert R 1999 Science 286 509

    [3]

    Newman M E J, Girvan M 2004 Phys. Rev. E 69 026113

    [4]

    Klemm K, Serrano M , Eguluz V M, Miguel M S 2012 Sci. Rep. 2 292

    [5]

    Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102

    [6]

    L L Y, Zhang Y C, Yeung C H, Zhou T 2011 PloS One 6 e21202

    [7]

    Pei S, Makse H A 2013 J. Stat. Mech. Theory Exp. 2013 P12002

    [8]

    Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 036104

    [9]

    Morone F, Makse H A 2015 Nature 524 65

    [10]

    Bonacich P 1972 J. Math. Sociol. 2 113

    [11]

    Chen D, L L, Shang M S, Zhou T 2012 Physica A: Stat. Mech. Appl. 391 1777

    [12]

    Min L, Liu Z, Tang X Y, Chen M, Liu S Y 2015 Acta Phys. Sin. 64 088901 (in Chinese) [闵磊, 刘智, 唐向阳, 陈矛, 刘三(女牙) 2015 物理学报 64 088901]

    [13]

    Fowler J H, Christakis N A 2008 BMJ 337 a2338

    [14]

    Newman M E J 2005 Social Networks 27 39

    [15]

    Sabidussi G 1966 Psychometrika 31 581

    [16]

    Palla G, Barabsi A L, Vicsek T 2007 Nature 446 664

    [17]

    Chen D B, Gao H, L L Y, Zhou T 2012 PloS One 8 e77455

    [18]

    Zhao Z Y, Yu H, Zhu Z L, Wang X F 2014 Chin. J. Comput. 37 753 (in Chinese) [赵之滢, 于海, 朱志良, 汪小帆 2014 计算机学报 37 753]

    [19]

    Su X P, Song Y R 2015 Acta Phys. Sin. 64 020101 (in Chinese) [苏晓萍, 宋玉蓉 2015 物理学报 64 020101]

    [20]

    Han Z M, Wu Y, Tan X S, Duan D G, Yang W J 2015 Acta Phys. Sin. 64 058902 (in Chinese) [韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰 2015 物理学报 64 058902]

    [21]

    Zhang J X, Chen D B, Dong Q, Zhao D B 2016 arXiv 1602 00070

    [22]

    Berkhin P 2005 Internet Mathematics 2 73

    [23]

    Kleinberg J M 1999 JACM 46 604

    [24]

    Li Q, Zhou T, L L Y, Chen D B 2014 Physica A: Stat. Mech. Appl. 404 47

    [25]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [26]

    Pei S, Muchnik L, Andrade J J S, Zheng Z M, Hernn A M 2014 Sci. Rep. 4 5547

    [27]

    Liu J G, Ren Z M, Guo Q 2013 Physica A: Stat. Mech. Appl. 392 4154

    [28]

    Zeng A, Zhang C J 2013 Phys. Lett. A 377 1031

    [29]

    L L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168

    [30]

    Hethcote, Herbert W 2000 SIAM Rev. 42 599

    [31]

    Pastor S R, Castellano C, Van M P, Vespignani A 2015 Rev. Mod. Phys. 87 925

    [32]

    Shu P, Wang W, Tang M, Do Y 2015 Chaos 25 063104

    [33]

    Iyer S, Killingback T, Sundaram B, Wang Z 2013 PloS One 8 e59613

  • [1] Li Jiang, Liu Ying, Wang Wei, Zhou Tao. Identifying influential nodes in spreading process in higher-order networks. Acta Physica Sinica, 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [2] Wang Ting-Ting, Liang Zong-Wen, Zhang Ruo-Xi. Importance evaluation method of complex network nodes based on information entropy and iteration factor. Acta Physica Sinica, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [3] Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming. Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, 2022, 71(17): 176401. doi: 10.7498/aps.71.20220565
    [4] Ren Zhuo-Ming. Node influence of the dynamic networks. Acta Physica Sinica, 2020, 69(4): 048901. doi: 10.7498/aps.69.20190830
    [5] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [6] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Chen Li-Dong. Node importance measurement based on neighborhood similarity in complex network. Acta Physica Sinica, 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [7] Su Zhen, Gao Chao, Li Xiang-Hua. Analysis of the effect of node centrality on diffusion mode in complex networks. Acta Physica Sinica, 2017, 66(12): 120201. doi: 10.7498/aps.66.120201
    [8] Su Xiao-Ping, Song Yu-Rong. Leveraging neighborhood “structural holes” to identifying key spreaders in social networks. Acta Physica Sinica, 2015, 64(2): 020101. doi: 10.7498/aps.64.020101
    [9] Han Zhong-Ming, Wu Yang, Tan Xu-Sheng, Duan Da-Gao, Yang Wei-Jie. Ranking key nodes in complex networks by considering structural holes. Acta Physica Sinica, 2015, 64(5): 058902. doi: 10.7498/aps.64.058902
    [10] Hu Qing-Cheng, Yin Yan-Shen, Ma Peng-Fei, Gao Yang, Zhang Yong, Xing Chun-Xiao. A new approach to identify influential spreaders in complex networks. Acta Physica Sinica, 2013, 62(14): 140101. doi: 10.7498/aps.62.140101
    [11] Liu Jian-Guo, Ren Zhuo-Ming, Guo Qiang, Wang Bing-Hong. Node importance ranking of complex networks. Acta Physica Sinica, 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [12] Ren Zhuo-Ming, Liu Jian-Guo, Shao Feng, Hu Zhao-Long, Guo Qiang. Analysis of the spreading influence of the nodes with minimum K-shell value in complex networks. Acta Physica Sinica, 2013, 62(10): 108902. doi: 10.7498/aps.62.108902
    [13] Yu Hui, Liu Zun, Li Yong-Jun. Key nodes in complex networks identified by multi-attribute decision-making method. Acta Physica Sinica, 2013, 62(2): 020204. doi: 10.7498/aps.62.020204
    [14] Yuan Wei-Guo, Liu Yun, Cheng Jun-Jun, Xiong Fei. Empirical analysis of microblog centrality and spread influence based on Bi-directional connection. Acta Physica Sinica, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [15] Liu Jin-Liang. Research on synchronization of complex networks with random nodes. Acta Physica Sinica, 2013, 62(4): 040503. doi: 10.7498/aps.62.040503
    [16] Zhou Xuan, Zhang Feng-Ming, Zhou Wei-Ping, Zou Wei, Yang Fan. Evaluating complex network functional robustness by node efficiency. Acta Physica Sinica, 2012, 61(19): 190201. doi: 10.7498/aps.61.190201
    [17] LÜ Ling, Liu Shuang, Zhang Xin, Zhu Jia-Bo, Shen Na, Shang Jin-Yu. Spatiotemporal chaos anti-synchronization of a complex network with different nodes. Acta Physica Sinica, 2012, 61(9): 090504. doi: 10.7498/aps.61.090504
    [18] Zhou Xuan, Zhang Feng-Ming, Li Ke-Wu, Hui Xiao-Bin, Wu Hu-Sheng. Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
    [19] Lü Ling, Zhang Chao. Chaos synchronization of a complex network with different nodes. Acta Physica Sinica, 2009, 58(3): 1462-1466. doi: 10.7498/aps.58.1462
    [20] Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu. Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
Metrics
  • Abstract views:  8514
  • PDF Downloads:  694
  • Cited By: 0
Publishing process
  • Received Date:  10 May 2016
  • Accepted Date:  15 June 2016
  • Published Online:  05 August 2016

/

返回文章
返回