Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of the effect of node centrality on diffusion mode in complex networks

Su Zhen Gao Chao Li Xiang-Hua

Citation:

Analysis of the effect of node centrality on diffusion mode in complex networks

Su Zhen, Gao Chao, Li Xiang-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The centrality reflects the importance of a node in a complex network, which plays an important role in the propagation dynamics. Many researches in the field of node ranking estimation have revealed the characteristics of higher centrality in the structural dynamics and propagation dynamics. However, there are few reports about the effect of nodes with a relatively lower centrality on propagation process. In this paper, we focus on the effect of heterogeneous structural characteristics on propagation dynamics. First, we select four centrality measurements (i.e., degree, coreness, betweenness, and eigenvector) and initialize source nodes with the maximum and minimum centralities respectively. Then, based on the email propagation model and the SI model, the massive numbers of elaborate simulations are implemented in twelve scale-free networks. These networks include three networks generated by the Barabsi-Albert model, four synthetic networks compiled by the GLP (generalized linear preference) algorithm, and five benchmark networks. The simulation results contain two parts: one is the crossover phenomenon of two propagation processes, and the other is the correlation between the crossover point and the proportion of the initial source nodes. We present the crossover of two propagations by calculating the total infected nodes, the incremental infected nodes, and the average degree of the incremental infected nodes. The average degrees of the incremental infected nodes in both synthetic networks and benchmark networks show that there exist two kinds of diffusion modes (i.e., fan-shaped type and single-strand type). With the increase of the initial source nodes, the interaction between two modes results in the different dynamic changes of two propagations with respect to propagation speed, which may lead to the crossover of two propagations in terms of propagation scale in the propagation process. Specifically, the increase of the initial source nodes would suppress the propagation process in which nodes with the maximum centralities are portrayed as propagating sources. However, such an effect is not observed in the propagation process in which nodes with the minimum centralities are portrayed as propagating sources. Our further simulation indicates that the crossover points appear earlier as the proportion of the initial source nodes increases. And by employing the discrete-time method, we find that such a phenomenon can be triggered exactly by increasing the initial source nodes. This work reveals that the influence of the nodes with the minimum centralities should be taken into consideration because the initial infected nodes with a lower centrality will lead to a larger propagation scale if the initial proportion is high.
      Corresponding author: Gao Chao, cgao@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61402379, 61403315), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. XDJK2016A008, XDJK2016B029), and the Chongqing Science and Technology R D Base Construction (International Science and Technology Cooperation) Project, China (Grant No. cstc2015gjhz40002).
    [1]

    Zhang H F, Zhang J, Zhou C S, Small M, Wang B H 2010 New J. Phys. 12 023015

    [2]

    Saito K, Kimura M, Ohara K, Motoda H 2016 Inform. Sci. 329 985

    [3]

    Fu C, Min L, Yang J, Xu D L, Liu X Y, Han L S 2015 Proceedings of IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing Liverpool, United Kingdom, October 26-28, 2015 p1725

    [4]

    Ren X L, L L Y 2014 Chin. Sci. Bull. 59 1175 (in Chinese) [任晓龙, 吕琳媛 2014 科学通报 59 1175]

    [5]

    Zhao J, Yu L, Li J R, Zhou P 2015 Chin. Phys. B 24 058904

    [6]

    Song B, Jiang G P, Song Y R, Xia L L 2015 Chin. Phys. B 24 100101

    [7]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese) [刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901]

    [8]

    Freeman L C 1978 Soc. Networks 1 215

    [9]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [10]

    Liu Y Y, Slotine J J, Barabsi A L 2011 Nature 473 167

    [11]

    Borgatti S P 2005 Soc. Networks 27 55

    [12]

    Gao C, Liu J M, Zhong N 2011 Knowl. Inf. Syst. 27 253

    [13]

    Jiang J J, Wen S, Yu S, Xiang Y, Zhou W L 2016 IEEE Trans. Depend. Secure. pp 1

    [14]

    Zhang X Z, Zhang Y B, L T Y, Yin Y 2014 Physica A 442 100

    [15]

    Han X, Shen Z S, Wang W X, Di Z R 2015 Phys. Rev. Lett. 114 028701

    [16]

    Wang X F, Chen G R 2003 IEEE Circ. Syst. Mag. 3 6

    [17]

    Strogatz S H 2001 Nature 410 268

    [18]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [19]

    Barabsi A L, Albert R 1999 Science 286 509

    [20]

    Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Beijing: Higher Education Press) pp270-275 (in Chinese) [汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社) 第270-275页]

    [21]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200

    [22]

    Barthlemy M, Barrat A, Pastor-Satorras R, Vespignani A 2004 Phys. Rev. Lett. 92 178701

    [23]

    Albert R, Barabsi A L 2002 Rev. Mod. Phys. 74 47

    [24]

    Goh K I, Kahng B, Kim D 2001 Phys. Rev. Lett. 87 278701

    [25]

    Estrada E, Rodrguez-Velzquez J A 2006 Physica A 364 581

    [26]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. E 63 066117

    [27]

    Bu T, Towsley D 2002 Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies New York, USA, June 23-27, 2002 p638

    [28]

    Stanford Network Analysis Project, Leskovec J https:// snap.stanford.edu/data/ca-GrQc.html [2017-4-18]

    [29]

    Stanford Network Analysis Project, Leskovec J https://snap.stanford.edu/data/ca-HepTh.html [2017-4-18]

    [30]

    Zou C C, Towsley D, Gong W 2007 IEEE Trans. Depend. Secure. 4 105

    [31]

    Bogu M, Pastor-Satorras R, Vespignani A 2003 Statistical Mechanics of Complex Networks (Berlin: Springer-Verlag) p127

  • [1]

    Zhang H F, Zhang J, Zhou C S, Small M, Wang B H 2010 New J. Phys. 12 023015

    [2]

    Saito K, Kimura M, Ohara K, Motoda H 2016 Inform. Sci. 329 985

    [3]

    Fu C, Min L, Yang J, Xu D L, Liu X Y, Han L S 2015 Proceedings of IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing Liverpool, United Kingdom, October 26-28, 2015 p1725

    [4]

    Ren X L, L L Y 2014 Chin. Sci. Bull. 59 1175 (in Chinese) [任晓龙, 吕琳媛 2014 科学通报 59 1175]

    [5]

    Zhao J, Yu L, Li J R, Zhou P 2015 Chin. Phys. B 24 058904

    [6]

    Song B, Jiang G P, Song Y R, Xia L L 2015 Chin. Phys. B 24 100101

    [7]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese) [刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901]

    [8]

    Freeman L C 1978 Soc. Networks 1 215

    [9]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [10]

    Liu Y Y, Slotine J J, Barabsi A L 2011 Nature 473 167

    [11]

    Borgatti S P 2005 Soc. Networks 27 55

    [12]

    Gao C, Liu J M, Zhong N 2011 Knowl. Inf. Syst. 27 253

    [13]

    Jiang J J, Wen S, Yu S, Xiang Y, Zhou W L 2016 IEEE Trans. Depend. Secure. pp 1

    [14]

    Zhang X Z, Zhang Y B, L T Y, Yin Y 2014 Physica A 442 100

    [15]

    Han X, Shen Z S, Wang W X, Di Z R 2015 Phys. Rev. Lett. 114 028701

    [16]

    Wang X F, Chen G R 2003 IEEE Circ. Syst. Mag. 3 6

    [17]

    Strogatz S H 2001 Nature 410 268

    [18]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [19]

    Barabsi A L, Albert R 1999 Science 286 509

    [20]

    Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Beijing: Higher Education Press) pp270-275 (in Chinese) [汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社) 第270-275页]

    [21]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200

    [22]

    Barthlemy M, Barrat A, Pastor-Satorras R, Vespignani A 2004 Phys. Rev. Lett. 92 178701

    [23]

    Albert R, Barabsi A L 2002 Rev. Mod. Phys. 74 47

    [24]

    Goh K I, Kahng B, Kim D 2001 Phys. Rev. Lett. 87 278701

    [25]

    Estrada E, Rodrguez-Velzquez J A 2006 Physica A 364 581

    [26]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. E 63 066117

    [27]

    Bu T, Towsley D 2002 Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies New York, USA, June 23-27, 2002 p638

    [28]

    Stanford Network Analysis Project, Leskovec J https:// snap.stanford.edu/data/ca-GrQc.html [2017-4-18]

    [29]

    Stanford Network Analysis Project, Leskovec J https://snap.stanford.edu/data/ca-HepTh.html [2017-4-18]

    [30]

    Zou C C, Towsley D, Gong W 2007 IEEE Trans. Depend. Secure. 4 105

    [31]

    Bogu M, Pastor-Satorras R, Vespignani A 2003 Statistical Mechanics of Complex Networks (Berlin: Springer-Verlag) p127

  • [1] Wang Kai-Li, Wu Chun-Xue, Ai Jun, Su Zhan. Complex network centrality method based on multi-order K-shell vector. Acta Physica Sinica, 2019, 68(19): 196402. doi: 10.7498/aps.68.20190662
    [2] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [3] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Hou Lü-Lin. An improved evaluating method of node spreading influence in complex network based on information spreading probability. Acta Physica Sinica, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [4] Han Zhong-Ming, Wu Yang, Tan Xu-Sheng, Duan Da-Gao, Yang Wei-Jie. Ranking key nodes in complex networks by considering structural holes. Acta Physica Sinica, 2015, 64(5): 058902. doi: 10.7498/aps.64.058902
    [5] Hou Lü-Lin, Lao Song-Yang, Xiao Yan-Dong, Bai Liang. Recent progress in controllability of complex network. Acta Physica Sinica, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [6] Ren Zhuo-Ming, Liu Jian-Guo, Shao Feng, Hu Zhao-Long, Guo Qiang. Analysis of the spreading influence of the nodes with minimum K-shell value in complex networks. Acta Physica Sinica, 2013, 62(10): 108902. doi: 10.7498/aps.62.108902
    [7] Liu Jin-Liang. Research on synchronization of complex networks with random nodes. Acta Physica Sinica, 2013, 62(4): 040503. doi: 10.7498/aps.62.040503
    [8] Yuan Wei-Guo, Liu Yun, Cheng Jun-Jun, Xiong Fei. Empirical analysis of microblog centrality and spread influence based on Bi-directional connection. Acta Physica Sinica, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [9] Gao Xiang-Yun, An Hai-Zhong, Fang Wei. Research on fluctuation of bivariate correlation of time series based on complex networks theory. Acta Physica Sinica, 2012, 61(9): 098902. doi: 10.7498/aps.61.098902
    [10] LÜ Ling, Liu Shuang, Zhang Xin, Zhu Jia-Bo, Shen Na, Shang Jin-Yu. Spatiotemporal chaos anti-synchronization of a complex network with different nodes. Acta Physica Sinica, 2012, 61(9): 090504. doi: 10.7498/aps.61.090504
    [11] Zhou Xuan, Zhang Feng-Ming, Zhou Wei-Ping, Zou Wei, Yang Fan. Evaluating complex network functional robustness by node efficiency. Acta Physica Sinica, 2012, 61(19): 190201. doi: 10.7498/aps.61.190201
    [12] Li Ze-Quan, Zhang Rui-Xin, Yang Zhao, Zhao Hong-Ze, Yu Jian-Hao. Influence complex network centrality on disaster spreading. Acta Physica Sinica, 2012, 61(23): 238902. doi: 10.7498/aps.61.238902
    [13] Fu Bai-Bai, Gao Zi-You, Lin Yong, Wu Jian-Jun, Li Shu-Bin. The analysis of traffic congestion and dynamic propagation properties based on complex network. Acta Physica Sinica, 2011, 60(5): 050701. doi: 10.7498/aps.60.050701
    [14] Wang Ya-Qi, Jiang Guo-Ping. Epidemic spreading in complex networks with spreading delay based on cellular automata. Acta Physica Sinica, 2011, 60(8): 080510. doi: 10.7498/aps.60.080510
    [15] Cui Ai-Xiang, Fu Yan, Shang Ming-Sheng, Chen Duan-Bing, Zhou Tao. Emergence of local structures in complex network:common neighborhood drives the network evolution. Acta Physica Sinica, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [16] Wang Ya-Qi, Jiang Guo-Ping. Virus spreading on complex networks with imperfect immunization. Acta Physica Sinica, 2010, 59(10): 6734-6743. doi: 10.7498/aps.59.6734
    [17] Song Yu-Rong, Jiang Guo-Ping. Research of malware propagation in complex networks based on 1-D cellular automata. Acta Physica Sinica, 2009, 58(9): 5911-5918. doi: 10.7498/aps.58.5911
    [18] Lü Ling, Zhang Chao. Chaos synchronization of a complex network with different nodes. Acta Physica Sinica, 2009, 58(3): 1462-1466. doi: 10.7498/aps.58.1462
    [19] Ni Shun-Jiang, Weng Wen-Guo, Fan Wei-Cheng. Spread dynamics of infectious disease in growing scale-free networks. Acta Physica Sinica, 2009, 58(6): 3707-3713. doi: 10.7498/aps.58.3707
    [20] Xu Dan, Li Xiang, Wang Xiao-Fan. An investigation on local area control of virus spreading in complex networks. Acta Physica Sinica, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
  • supplement 120201-20170048suppl.pdf supplement
Metrics
  • Abstract views:  7915
  • PDF Downloads:  530
  • Cited By: 0
Publishing process
  • Received Date:  08 January 2017
  • Accepted Date:  11 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回