Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models

Kong Jiang-Tao Huang Jian Gong Jian-Xing Li Er-Yu

Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Phys. Sin., 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
Citation: Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Phys. Sin., 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295

Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models

Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Identifying the most important nodes is significant for investigating the robustness and vulnerability of complex network. A lot of methods based on network structure have been proposed, such as degree, K-shell and betweenness, etc. In order to identify the important nodes in a more reasonable way, both the network topologies and the characteristics of nodes should be taken into account. Even at the same location, the nodes with different characteristics have different importance. The topological structures and the characteristics of the nodes are considered in the complex network dynamics model. However, such methods are rarely explored and their applications are restricted. In order to identify the important nodes in undirected weighted networks, in this paper we propose a method based on dynamics model. Firstly, we introduce a way to construct the corresponding dynamics model for any undirected weighted network, and the constructed model can be flexibly adjusted according to the actual situation. It is proved that the constructed model is globally asymptotic stable. To measure the changes of the dynamic model state, the mean deviation and the variance are presented, which are the criteria to evaluate the importance of the nodes. Finally, disturbance test and destructive test are proposed for identifying the most important nodes. Each node is tested in turn, and then the important nodes are identified. If the tested node can recover from the damaged state, the disturbance test is used. If the tested node is destroyed completely, the destructive test is used. The method proposed in this paper is based on the dynamics model. The node importance is influenced by the network topologies and the characteristics of nodes in these two methods. In addition, the disturbance test and destructive test are used in different situations, forming a complementary advantage. So the method can be used to analyze the node importance in a more comprehensive way. Experiments are performed on the advanced research project agency networks, the undirected networks with symmetric structures, the social network, the Dobbs-Watts-Sabel networks and the Barrat-Barthelemy-Vespignani networks. If the nodes in the network have the same dynamic model, the network is considered to be the homogeneous network; otherwise, the network is heterogeneous network. And experiments can be divided into four categories, namely, the disturbance test, the destructive test on the homogeneous network, the disturbance test and the destructive test on the heterogeneous network. The experimental results show that the methods proposed in this paper are effective and credible.
      PACS:
      89.75.Fb(Structures and organization in complex systems)
      89.75.Hc(Networks and genealogical trees)
      02.30.Yy(Control theory)
      Corresponding author: Huang Jian, nudtjHuang@hotmail.com
    [1]

    Zhao M, Zhou T, Wang B H, Wang W X 2005 Phys. Rev. E 72 057102

    [2]

    Zemanov L, Zhou C, Kurths J 2006 Physica D 224 202

    [3]

    L L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1

    [4]

    Bonacich P 1972 J. Math. Sociol. 2 113

    [5]

    Estrada E, Rodrguez-Velzquez J A 2005 Phys. Rev. E 71 056103

    [6]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [7]

    L L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168

    [8]

    Chen D B, L L Y, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777

    [9]

    Ruan Y R, Lao S Y, Wang J D, Bai L, Chen L D 2017 Acta Phys. Sin. 66 038902 (in Chinese) [阮逸润, 老松杨, 王竣德, 白亮, 陈立栋 2017 物理学报 66 038902]

    [10]

    Freeman L C, Borgatti S P, White D R 1991 Soc. Networks 13 141

    [11]

    Estrada E, Higham D J, Hatano N 2009 Physica A 388 764

    [12]

    Li Q, Zhou T, L L Y, Chen D B 2014 Physica A 404 47

    [13]

    Zhou Y B, Lei T, Zhou T 2011 Europhys. Lett. 94 48002

    [14]

    Li P X, Ren Y Q, Xi Y M 2004 Systems Eng. 22 13 (in Chinese) [李鹏翔, 任玉晴, 席酉民 2004 系统工程 22 13]

    [15]

    Gao C, Wei D J, Hu Y, Mahadevan S, Deng Y 2013 Physica A 392 5490

    [16]

    Wang Y, Guo J L 2017 Acta Phys. Sin. 66 050201 (in Chinese) [王雨, 郭进利 2017 物理学报 66 050201]

    [17]

    L L, Zhang Y C, Chi H Y, Zhou T 2011 Plos One 6 e21202

    [18]

    Yan G, Zhou T, Wang J, Fu Z Q, Wang B 2005 Chin. Phys. Lett. 22 510

    [19]

    Brummitt C D, DSouza R M, Leicht E A 2012 Proceedings of the National Academy of Sciences of the United States of America 109 E680

    [20]

    Du W J, Yu J L, An X L, Ma C X 2015 Transport Research 1 14 (in Chinese) [杜文举, 俞建宁, 安新磊, 马昌喜 2015 交通运输研究 1 14]

    [21]

    Liu Y Y, Slotine J J, Barabasi A L 2011 Nature 473 167

    [22]

    Jia T, Barabsi A L 2013 Sci. Rep. 3 2354

    [23]

    Chen T P, Lu W L 2013 Theory of Coordination in Complex Networks (Beijing: Higher Education Press) p14 (in Chinese) [陈天平, 卢文联 2013 复杂网络协调性理论 (北京: 高等教育出版社) 第14 页]

    [24]

    Wang E F, Shi S M 2005 Advanced Algebra (3rd Ed.) (Beijing: Higher Education Press) p160 (in Chinese) [王萼芳, 石生明 2005 高等代数 第三版 (北京: 高等教育出版社) 第160页]

    [25]

    Zhong Q H 2004 Modern Control Theory 2004 (Beijing: Higher Education Press) p142 (in Chinese) [钟秋海 2004 现代控制理论 (北京: 高等教育出版社) 第142页]

    [26]

    Liang H L 2015 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [梁海丽 2015 博士学位论文 (上海: 上海交通大学)]

    [27]

    Wang B, Ma R N, Wang G, Chen B 2015 J. Comput. Appl. 35 1820 (in Chinese) [王班, 马润年, 王刚, 陈波 2015 计算机应用 35 1820]

    [28]

    Brin S, Page L 1998 Computer Networks and ISDN Systems 30 107

    [29]

    Yao Z Q, Shang K K, Xu X K 2012 J. Univ. Shanghai Sci. Technol. 34 18 (in Chinese) [姚尊强, 尚可可, 许小可 2012 上海理工大学学报 34 18]

    [30]

    Dodds P S, Watts D J, Sabel C F 2003 PNAS 100 12516

    [31]

    Yuan M 2014 Acta Phys. Sin. 63 220501 (in Chinese) [袁铭 2014 物理学报 63 220501]

    [32]

    Zachary W W 1977 J. Anthropol. Res. 33 452

    [33]

    Pan Z F, Wang X F 2006 Acta Phys. Sin. 55 4058 (in Chinese) [潘灶烽, 汪小帆 2006 物理学报 55 4058]

    [34]

    Latora V, Marchiori M 2007 New J. Phys. 9 188

    期刊类型引用(30)

    1. 张浩博,李科竣,陈鹏,贾楠. 网络谣言危机触发机制与拥塞效应分析. 清华大学学报(自然科学版). 2025(01): 186-199 . 百度学术
    2. 朱芸烽,邹林峰,顾杰,蒋景飞,张路. 稀疏复杂网络邻接拓扑的l_1–正则化辨识方法. 四川大学学报(自然科学版). 2025(01): 38-44 . 百度学术
    3. 吴其,杨田,孙昕,李斌. 复杂网络在电场中的应用现状. 黑龙江科学. 2024(24): 121-123+127 . 百度学术
    4. 韩光松. 基于复杂网络理论的体系关键节点评估. 军事运筹与评估. 2024(06): 5-9 . 百度学术
    5. 曾尖尖,鲍丽娟. 含时变切换的广义时滞反馈控制镇定多旋转周期轨线. 物理学报. 2023(08): 34-42 . 百度学术
    6. 张翠芝,安海岗. 基于复杂网络及其模体的京津冀及周边城市空气污染空间关联与城市协同治理. 环境监控与预警. 2023(04): 30-37 . 百度学术
    7. 杨杰,郭逸豪,郭创新,陈哲,王胜寒. 考虑模型与数据双重驱动的电力信息物理系统动态安全防护研究综述. 电力系统保护与控制. 2022(07): 176-187 . 百度学术
    8. 颜森林. 双星并联光纤激光同步网络研究. 中国激光. 2022(11): 123-132 . 百度学术
    9. 朱敬成,王伦文,吴涛. 一种基于局部特征的节点重要性排序方法. 计算机仿真. 2022(11): 416-421 . 百度学术
    10. 高正,邹艳丽,胡均万,姚高华,刘唐慧美. 基于复杂网络理论的电网耦合强度分配策略. 计算物理. 2022(05): 579-588 . 百度学术
    11. 颜森林. 激光局域网络的混沌控制及并行队列同步. 物理学报. 2021(08): 171-182 . 百度学术
    12. 韩伟,张峰,马伟东,刘超,宋闯. 基于节点重要度和风险因素的保护定值失配点校核研究. 电子器件. 2021(03): 677-683 . 百度学术
    13. 李慧. 融合拓扑势的有向社交网络关键节点识别模型. 小型微型计算机系统. 2021(07): 1492-1499 . 百度学术
    14. 张翠芝,董志良,安海岗,刘森,蒋培祥. 晶质石墨产品国际贸易网络演化特征研究. 中国矿业. 2021(08): 1-9 . 百度学术
    15. 朱敬成,刘辉,王伦文,吴涛. 基于网络拓扑重合度的关键节点识别方法. 计算机应用研究. 2021(12): 3581-3585 . 百度学术
    16. 汪小黎. 不确定性复杂网络节点相似性的数理统计模型构建. 电子设计工程. 2020(03): 89-92 . 百度学术
    17. 刘舒畅,王淑娟. 基于极大似然函数的独立分布网络拓扑结构可靠度评估模型. 科技通报. 2020(03): 80-83+89 . 百度学术
    18. 廖治东,郑国华. 考虑不同节点行为要素特征的供应链演化规律研究. 计算机应用研究. 2020(06): 1679-1682+1692 . 百度学术
    19. 栾鑫,程琳,李梦莹. 考虑成本约束和可靠性的检测器优化布设. 东南大学学报(自然科学版). 2020(03): 580-585 . 百度学术
    20. 梁耀洲,郭强,殷冉冉,杨剑楠,刘建国. 基于排名聚合的时序网络节点重要性研究. 电子科技大学学报. 2020(04): 519-523 . 百度学术
    21. 李献军,孙科学,张少芳,王月春. 关于复杂网络节点的加权融合感知分类算法. 计算机仿真. 2020(08): 224-227+270 . 百度学术
    22. 王超,郭基联,符凌云. 基于拓扑势的作战体系网络节点重要度评估方法. 兵工学报. 2020(08): 1658-1664 . 百度学术
    23. 邹艳丽,高正,梁明月,李志慧,何铭. 基于潮流追踪的电网同步性能优化及鲁棒性分析. 计算物理. 2020(05): 623-630 . 百度学术
    24. 丁连红,孙斌,时鹏. 知识图谱复杂网络特性的实证研究与分析. 物理学报. 2019(12): 324-338 . 百度学术
    25. 邹艳丽,王瑞瑞,吴凌杰,姚飞,汪洋. 基于局部序参数的电网同步性能优化. 计算物理. 2019(04): 498-504 . 百度学术
    26. 邵鹏,胡平. 复杂网络特殊用户对群体观点演化的影响. 电子科技大学学报. 2019(04): 604-612 . 百度学术
    27. 许新忠,王禹,苗甫. 基于生灭过程的域间路由系统相继故障模型. 计算机工程与应用. 2019(17): 125-130 . 百度学术
    28. 陆年生,严广乐. 用于复杂网络节点重要度评估的离心率算法改进研究. 软件导刊. 2019(11): 136-139 . 百度学术
    29. 潘永昊,于洪涛,吴翼腾. 基于复杂网络动力学模型的链路预测方法. 网络与信息安全学报. 2019(06): 67-74 . 百度学术
    30. 刘雁,饶元. 基于多领域复杂网络拓扑结构的节点重要度评价方法. 中国科学技术大学学报. 2019(07): 533-543 . 百度学术

    其他类型引用(53)

  • [1]

    Zhao M, Zhou T, Wang B H, Wang W X 2005 Phys. Rev. E 72 057102

    [2]

    Zemanov L, Zhou C, Kurths J 2006 Physica D 224 202

    [3]

    L L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1

    [4]

    Bonacich P 1972 J. Math. Sociol. 2 113

    [5]

    Estrada E, Rodrguez-Velzquez J A 2005 Phys. Rev. E 71 056103

    [6]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [7]

    L L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168

    [8]

    Chen D B, L L Y, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777

    [9]

    Ruan Y R, Lao S Y, Wang J D, Bai L, Chen L D 2017 Acta Phys. Sin. 66 038902 (in Chinese) [阮逸润, 老松杨, 王竣德, 白亮, 陈立栋 2017 物理学报 66 038902]

    [10]

    Freeman L C, Borgatti S P, White D R 1991 Soc. Networks 13 141

    [11]

    Estrada E, Higham D J, Hatano N 2009 Physica A 388 764

    [12]

    Li Q, Zhou T, L L Y, Chen D B 2014 Physica A 404 47

    [13]

    Zhou Y B, Lei T, Zhou T 2011 Europhys. Lett. 94 48002

    [14]

    Li P X, Ren Y Q, Xi Y M 2004 Systems Eng. 22 13 (in Chinese) [李鹏翔, 任玉晴, 席酉民 2004 系统工程 22 13]

    [15]

    Gao C, Wei D J, Hu Y, Mahadevan S, Deng Y 2013 Physica A 392 5490

    [16]

    Wang Y, Guo J L 2017 Acta Phys. Sin. 66 050201 (in Chinese) [王雨, 郭进利 2017 物理学报 66 050201]

    [17]

    L L, Zhang Y C, Chi H Y, Zhou T 2011 Plos One 6 e21202

    [18]

    Yan G, Zhou T, Wang J, Fu Z Q, Wang B 2005 Chin. Phys. Lett. 22 510

    [19]

    Brummitt C D, DSouza R M, Leicht E A 2012 Proceedings of the National Academy of Sciences of the United States of America 109 E680

    [20]

    Du W J, Yu J L, An X L, Ma C X 2015 Transport Research 1 14 (in Chinese) [杜文举, 俞建宁, 安新磊, 马昌喜 2015 交通运输研究 1 14]

    [21]

    Liu Y Y, Slotine J J, Barabasi A L 2011 Nature 473 167

    [22]

    Jia T, Barabsi A L 2013 Sci. Rep. 3 2354

    [23]

    Chen T P, Lu W L 2013 Theory of Coordination in Complex Networks (Beijing: Higher Education Press) p14 (in Chinese) [陈天平, 卢文联 2013 复杂网络协调性理论 (北京: 高等教育出版社) 第14 页]

    [24]

    Wang E F, Shi S M 2005 Advanced Algebra (3rd Ed.) (Beijing: Higher Education Press) p160 (in Chinese) [王萼芳, 石生明 2005 高等代数 第三版 (北京: 高等教育出版社) 第160页]

    [25]

    Zhong Q H 2004 Modern Control Theory 2004 (Beijing: Higher Education Press) p142 (in Chinese) [钟秋海 2004 现代控制理论 (北京: 高等教育出版社) 第142页]

    [26]

    Liang H L 2015 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [梁海丽 2015 博士学位论文 (上海: 上海交通大学)]

    [27]

    Wang B, Ma R N, Wang G, Chen B 2015 J. Comput. Appl. 35 1820 (in Chinese) [王班, 马润年, 王刚, 陈波 2015 计算机应用 35 1820]

    [28]

    Brin S, Page L 1998 Computer Networks and ISDN Systems 30 107

    [29]

    Yao Z Q, Shang K K, Xu X K 2012 J. Univ. Shanghai Sci. Technol. 34 18 (in Chinese) [姚尊强, 尚可可, 许小可 2012 上海理工大学学报 34 18]

    [30]

    Dodds P S, Watts D J, Sabel C F 2003 PNAS 100 12516

    [31]

    Yuan M 2014 Acta Phys. Sin. 63 220501 (in Chinese) [袁铭 2014 物理学报 63 220501]

    [32]

    Zachary W W 1977 J. Anthropol. Res. 33 452

    [33]

    Pan Z F, Wang X F 2006 Acta Phys. Sin. 55 4058 (in Chinese) [潘灶烽, 汪小帆 2006 物理学报 55 4058]

    [34]

    Latora V, Marchiori M 2007 New J. Phys. 9 188

  • [1] Wang Bo-Ya, Yang Xiao-Chun, Lu Sheng-Rong, Tang Yong-Ping, Hong Shu-Quan, Jiang Hui-Yuan. A multidimensional node importance evaluation method based on graph convolutional networks. Acta Physica Sinica, 2024, 73(22): 226401. doi: 10.7498/aps.73.20240937
    [2] Wang Ting-Ting, Liang Zong-Wen, Zhang Ruo-Xi. Importance evaluation method of complex network nodes based on information entropy and iteration factor. Acta Physica Sinica, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [3] Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming. Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, 2022, 71(17): 176401. doi: 10.7498/aps.71.20220565
    [4] Yang Song-Qing, Jiang Yuan, Tong Tian-Chi, Yan Yu-Wei, Gan Ge-Sheng. A method of evaluating importance of nodes in complex network based on Tsallis entropy. Acta Physica Sinica, 2021, 70(21): 216401. doi: 10.7498/aps.70.20210979
    [5] Huang Li-Ya, Tang Ping-Chuan, Huo You-Liang, Zheng Yi, Cheng Xie-Feng. Node importance based on the weighted K-order propagation number algorithm. Acta Physica Sinica, 2019, 68(12): 128901. doi: 10.7498/aps.68.20190087
    [6] Su Zhen, Gao Chao, Li Xiang-Hua. Analysis of the effect of node centrality on diffusion mode in complex networks. Acta Physica Sinica, 2017, 66(12): 120201. doi: 10.7498/aps.66.120201
    [7] Wang Yu, Guo Jin-Li. Evaluation method of node importance in directed-weighted complex network based on multiple influence matrix. Acta Physica Sinica, 2017, 66(5): 050201. doi: 10.7498/aps.66.050201
    [8] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Chen Li-Dong. Node importance measurement based on neighborhood similarity in complex network. Acta Physica Sinica, 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [9] Li Zhao, Guo Yan-Hui, Xu Guo-Ai, Hu Zheng-Ming. Analysis of cascading dynamics in complex networks with an emergency recovery mechanism. Acta Physica Sinica, 2014, 63(15): 158901. doi: 10.7498/aps.63.158901
    [10] Duan Dong-Li, Zhan Ren-Jun. Evolution mechanism of node importance based on the information about cascading failures in complex networks. Acta Physica Sinica, 2014, 63(6): 068902. doi: 10.7498/aps.63.068902
    [11] Ren Zhuo-Ming, Liu Jian-Guo, Shao Feng, Hu Zhao-Long, Guo Qiang. Analysis of the spreading influence of the nodes with minimum K-shell value in complex networks. Acta Physica Sinica, 2013, 62(10): 108902. doi: 10.7498/aps.62.108902
    [12] Ren Zhuo-Ming, Shao Feng, Liu Jian-Guo, Guo Qiang, Wang Bing-Hong. Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [13] Liu Jian-Guo, Ren Zhuo-Ming, Guo Qiang, Wang Bing-Hong. Node importance ranking of complex networks. Acta Physica Sinica, 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [14] Yu Hui, Liu Zun, Li Yong-Jun. Key nodes in complex networks identified by multi-attribute decision-making method. Acta Physica Sinica, 2013, 62(2): 020204. doi: 10.7498/aps.62.020204
    [15] Gao Zhong-Ke, Jin Ning-De, Yang Dan, Zhai Lu-Sheng, Du Meng. Complex networks from multivariate time series for characterizing nonlinear dynamics of two-phase flow patterns. Acta Physica Sinica, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [16] Zhou Xuan, Zhang Feng-Ming, Zhou Wei-Ping, Zou Wei, Yang Fan. Evaluating complex network functional robustness by node efficiency. Acta Physica Sinica, 2012, 61(19): 190201. doi: 10.7498/aps.61.190201
    [17] Zhou Xuan, Zhang Feng-Ming, Li Ke-Wu, Hui Xiao-Bin, Wu Hu-Sheng. Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
    [18] Fu Bai-Bai, Gao Zi-You, Lin Yong, Wu Jian-Jun, Li Shu-Bin. The analysis of traffic congestion and dynamic propagation properties based on complex network. Acta Physica Sinica, 2011, 60(5): 050701. doi: 10.7498/aps.60.050701
    [19] Sun Qi-Cheng, Zhang Guo-Hua, Wang Bo, Wang Guang-Qian. Shear modulus of semi-flexible networks in two dimensions. Acta Physica Sinica, 2009, 58(9): 6549-6553. doi: 10.7498/aps.58.6549
    [20] Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu. Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
  • 期刊类型引用(30)

    1. 张浩博,李科竣,陈鹏,贾楠. 网络谣言危机触发机制与拥塞效应分析. 清华大学学报(自然科学版). 2025(01): 186-199 . 百度学术
    2. 朱芸烽,邹林峰,顾杰,蒋景飞,张路. 稀疏复杂网络邻接拓扑的l_1–正则化辨识方法. 四川大学学报(自然科学版). 2025(01): 38-44 . 百度学术
    3. 吴其,杨田,孙昕,李斌. 复杂网络在电场中的应用现状. 黑龙江科学. 2024(24): 121-123+127 . 百度学术
    4. 韩光松. 基于复杂网络理论的体系关键节点评估. 军事运筹与评估. 2024(06): 5-9 . 百度学术
    5. 曾尖尖,鲍丽娟. 含时变切换的广义时滞反馈控制镇定多旋转周期轨线. 物理学报. 2023(08): 34-42 . 百度学术
    6. 张翠芝,安海岗. 基于复杂网络及其模体的京津冀及周边城市空气污染空间关联与城市协同治理. 环境监控与预警. 2023(04): 30-37 . 百度学术
    7. 杨杰,郭逸豪,郭创新,陈哲,王胜寒. 考虑模型与数据双重驱动的电力信息物理系统动态安全防护研究综述. 电力系统保护与控制. 2022(07): 176-187 . 百度学术
    8. 颜森林. 双星并联光纤激光同步网络研究. 中国激光. 2022(11): 123-132 . 百度学术
    9. 朱敬成,王伦文,吴涛. 一种基于局部特征的节点重要性排序方法. 计算机仿真. 2022(11): 416-421 . 百度学术
    10. 高正,邹艳丽,胡均万,姚高华,刘唐慧美. 基于复杂网络理论的电网耦合强度分配策略. 计算物理. 2022(05): 579-588 . 百度学术
    11. 颜森林. 激光局域网络的混沌控制及并行队列同步. 物理学报. 2021(08): 171-182 . 百度学术
    12. 韩伟,张峰,马伟东,刘超,宋闯. 基于节点重要度和风险因素的保护定值失配点校核研究. 电子器件. 2021(03): 677-683 . 百度学术
    13. 李慧. 融合拓扑势的有向社交网络关键节点识别模型. 小型微型计算机系统. 2021(07): 1492-1499 . 百度学术
    14. 张翠芝,董志良,安海岗,刘森,蒋培祥. 晶质石墨产品国际贸易网络演化特征研究. 中国矿业. 2021(08): 1-9 . 百度学术
    15. 朱敬成,刘辉,王伦文,吴涛. 基于网络拓扑重合度的关键节点识别方法. 计算机应用研究. 2021(12): 3581-3585 . 百度学术
    16. 汪小黎. 不确定性复杂网络节点相似性的数理统计模型构建. 电子设计工程. 2020(03): 89-92 . 百度学术
    17. 刘舒畅,王淑娟. 基于极大似然函数的独立分布网络拓扑结构可靠度评估模型. 科技通报. 2020(03): 80-83+89 . 百度学术
    18. 廖治东,郑国华. 考虑不同节点行为要素特征的供应链演化规律研究. 计算机应用研究. 2020(06): 1679-1682+1692 . 百度学术
    19. 栾鑫,程琳,李梦莹. 考虑成本约束和可靠性的检测器优化布设. 东南大学学报(自然科学版). 2020(03): 580-585 . 百度学术
    20. 梁耀洲,郭强,殷冉冉,杨剑楠,刘建国. 基于排名聚合的时序网络节点重要性研究. 电子科技大学学报. 2020(04): 519-523 . 百度学术
    21. 李献军,孙科学,张少芳,王月春. 关于复杂网络节点的加权融合感知分类算法. 计算机仿真. 2020(08): 224-227+270 . 百度学术
    22. 王超,郭基联,符凌云. 基于拓扑势的作战体系网络节点重要度评估方法. 兵工学报. 2020(08): 1658-1664 . 百度学术
    23. 邹艳丽,高正,梁明月,李志慧,何铭. 基于潮流追踪的电网同步性能优化及鲁棒性分析. 计算物理. 2020(05): 623-630 . 百度学术
    24. 丁连红,孙斌,时鹏. 知识图谱复杂网络特性的实证研究与分析. 物理学报. 2019(12): 324-338 . 百度学术
    25. 邹艳丽,王瑞瑞,吴凌杰,姚飞,汪洋. 基于局部序参数的电网同步性能优化. 计算物理. 2019(04): 498-504 . 百度学术
    26. 邵鹏,胡平. 复杂网络特殊用户对群体观点演化的影响. 电子科技大学学报. 2019(04): 604-612 . 百度学术
    27. 许新忠,王禹,苗甫. 基于生灭过程的域间路由系统相继故障模型. 计算机工程与应用. 2019(17): 125-130 . 百度学术
    28. 陆年生,严广乐. 用于复杂网络节点重要度评估的离心率算法改进研究. 软件导刊. 2019(11): 136-139 . 百度学术
    29. 潘永昊,于洪涛,吴翼腾. 基于复杂网络动力学模型的链路预测方法. 网络与信息安全学报. 2019(06): 67-74 . 百度学术
    30. 刘雁,饶元. 基于多领域复杂网络拓扑结构的节点重要度评价方法. 中国科学技术大学学报. 2019(07): 533-543 . 百度学术

    其他类型引用(53)

Metrics
  • Abstract views:  11006
  • PDF Downloads:  683
  • Cited By: 83
Publishing process
  • Received Date:  24 October 2017
  • Accepted Date:  12 February 2018
  • Published Online:  05 May 2018

/

返回文章
返回