Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Multi-Dimensional Node Importance Evaluation Method Based on Graph Convolutional Networks

Wang Boya Yang Xiaochun Lu Shengrong Tang Yongping Hong Shuquan Jiang Huiyuan

Citation:

A Multi-Dimensional Node Importance Evaluation Method Based on Graph Convolutional Networks

Wang Boya, Yang Xiaochun, Lu Shengrong, Tang Yongping, Hong Shuquan, Jiang Huiyuan
PDF
Get Citation
  • This paper addresses the problem of identifying, evaluating, and ranking key nodes in complex networks by introducing a novel Multi-Parameter Control Graph Convolutional Network (MPC-GCN) for assessing node importance. Drawing inspiration from the multidimensional and hierarchical interactions between nodes in physical systems, this approach integrates the automatic feature learning capabilities of Graph Convolutional Networks (GCNs) with a comprehensive analysis of nodes’ intrinsic properties, their interactions with neighbors, and their roles within the broader network. The MPC-GCN model offers an innovative framework for key node identification, leveraging GCNs to iteratively aggregate node and neighbor features across layers. This process captures and combines local, global, and positional characteristics, enabling a more nuanced, multidimensional assessment of node importance. Moreover, the model incorporates a flexible parameter adjustment mechanism, allowing the relative weights of different dimensions to be tuned, thereby adapting the evaluation process to various network structures. To validate the model’s effectiveness, we first tested the influence of model parameters on randomly generated small networks. We then conducted extensive simulations on eight large-scale networks using the Susceptible-Infected-Recovered (SIR) model. Evaluation metrics, including the M(R) score, Kendall’s tau correlation, the proportion of infected nodes, and the relative size of the largest connected component, were used to assess the model’s performance. The results demonstrate that MPC-GCN outperforms existing methods in terms of monotonicity, accuracy, applicability, and robustness, providing more precise differentiation of node importance. By addressing the limitations of current methods—such as their reliance on single-dimensional perspectives and lack of adaptability—MPC-GCN offers a more comprehensive and flexible approach to node importance evaluation. This method significantly improves the breadth and applicability of node ranking in complex networks.
  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabási A-L, Albert R 1999 Science 286 509

    [3]

    Xu Y L, Guo T Y, Tang K, Zhang Y Y, Li L W 2024 Acta Armamentarii 45 552(in Chinese) [许怡岚,郭唐仪,唐坤,张滢颖,李林蔚 2024 兵工学报 45 552]

    [4]

    Sun L N, Liang B H, Chen Z W 2022 Fire Control & Command Control 47 119(in Chinese) [孙利娜,梁葆华,陈志伟 2022 火力与指挥控制 47 119]

    [5]

    Li X L, Han Y L, Wu X G, Zhang D Y 2018 Journal of YanShan University 42 444(in Chinese) [李晓龙,韩益亮,吴旭光,张德阳 2018 燕山大学学报 42 444]

    [6]

    Luo H, Yan G H, Zhang M, Bao J B, Li J C, Liu T, Yang B, Wei J 2020 Journal of Computer Research and Development 57 954(in Chinese) [罗浩,闫光辉,张萌,包峻波,李俊成,刘婷,杨波,魏军 2020 计算机研究与发展 57 954]

    [7]

    Klemm K, Serrano M Á, Eguíluz V M, Miguel M S 2012 Scientific Reports 2

    [8]

    Wang L L, Huang M, Gao L 2020 Journal of Transport Information and Safety 38 80(in Chinese) [王灵丽,黄敏,高亮 2020 交通信息安全 38 80]

    [9]

    Lai Q, Zhang H H 2022 Chinese Physics B 31 068905

    [10]

    Howell N 1985 Canadian Journal of Sociology 10 209

    [11]

    Freeman L C 1977 Sociometry 40 35

    [12]

    Sabidussi G 1966 Psychometrika 31 581

    [13]

    Zareie A, Sheikhahmadi A, Khamforoosh K 2018 Expert Systems with Applications 108 96

    [14]

    Li H, Shang Q, Deng Y 2021 Chaos, Solitons & Fractals 143 110456

    [15]

    Zareie A, Sheikhahmadi A 2018 Expert Systems with Applications 93 200

    [16]

    Yu H, Liu Z, Li Y J, Ieee 2013 5th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) Hong Kong, PEOPLES R CHINA, Jan 16-17,2013 p1292-1295

    [17]

    Fan Y N, Liu S Y, Bai Y G 2020 Mathematics in Practice and Theory 50 159 (in Chinese) [樊燕妮,刘三阳,白艺光 2020 数学的实践与认识 50 159]

    [18]

    Ma L L, Ma C, Zhang H F, Wang B H 2016 Physica a-Statistical Mechanics and Its Applications 451 205

    [19]

    Jiang Y, Yang S Q, Yan Y W, Tong T C, Dai J Y 2022 Chinese Physics B 31 058903

    [20]

    Yang X, Xiao FY 2021 Knowledge-Based Systems 227 107198

    [21]

    Shang Q, Deng Y, Cheng K H 2021 Information Sciences 577 162

    [22]

    Ai D, Liu X L, Kang W Z, Li L N, Lv S Q, Liu Y 2022 Chinese Physics B 32 118902

    [23]

    Ullah A, Wang B, Sheng J, Long J, Khan N, Sun Z 2021 Expert Systems with Applications 186 115778

    [24]

    Zhang X L, Tang J X 2021 Computer Engineering 47 139 (in Chinese) [张宪立,唐建新 2021 计算机工程 47 139]

    [25]

    Ruan Y R, Lao S Y, Tang J, Bai L, Guo Y M 2022 Acta Phys. Sin. 71 176401(in Chinese) [阮逸润,老松杨,汤俊,白亮,郭延明 2022 物理学报 71 176401]

    [26]

    Xu K, Hu W, Leskovec Proc 7th International Conference on Learning Representations (ICLR) LA, USA, May 6-9, 2018 p1467-5463

    [27]

    Cao L, Ding C F, Ma L R, Yan Z Y, You H, Hong A Q 2024 Journal of Frontiers of Computer Science and Technology (in Chinese)[曹璐,丁苍峰,马乐荣,延照耀,游浩,洪安琪 2024 计算机科学与探索]

    [28]

    Kipf, T N, Welling, M 2017 5th International Conference on Learning Representations Toulon, France, April 24-26, 2017

    [29]

    Maurya S K, Liu X, Murata T 2019 Proceedings of the 28th ACM International Conference on Information and Knowledge Management Beijing, China, November 3-7, 2019 p2149-2152

    [30]

    Kumar M S, Liu X, Murata T 2021 ACM Trans. 15 1

    [31]

    Goel D, Shen H, Tian H, Guo M Y 2024 Expert Systems with Applications 249 123636

    [32]

    Qu H, Song Y, Li R, Li M 2023 Physica A 632 129339

    [33]

    Ramachandran K, Rj T 2022 The 2022 Intelligent Computing for Sustainable Energy and Environment Hobart, Australia, February 18-20, 2022 p1-10

    [34]

    Sun C, Li C, Lim X, Zheng T, Meng F, Rui X, Wanf Z 2023 Artificial Intelligence Review. 56 2263

    [35]

    Xiong C, Li W, Liu Y, Wang M 2021 IEEE Signal Processing Letters 28 573

    [36]

    Li Z, Xing Y Y, Huang J M, Wang H B, Gao J L, Yu G X 2021 Future Generation Computer Systems 116 145

    [37]

    Zhao G, Jia P, Zhou A, Zhang B 2020 Neurocomputing 414 18

    [38]

    Liu C, Cao T, Zhou L 2022 Knowledge-Based Systems 251 109220

    [39]

    Chen W, Feng F, Wang Q, He X, Song C, Ling G, Zhang Y 2023 IEEE Transactions on Knowledge and Data Engineering 35 3500

    [40]

    Li W, Li T, Nikougoftar E 2024 Chaos, Solitons & Fractals 187 0960

    [41]

    Yu E Y, Wang Y P, Fu Y, Chen D B, Xie M 2020 Knowledge-Based Systems 198 105893

    [42]

    Zhang L, Song H, Aletras N, Lu H 2022 Pattern Recognition 128 108661

    [43]

    Han B, Wei Y, Kang L, Wang Q, Yang Y 2022 Frontiers in Physics 9 2296

    [44]

    Yang X, Xiao FY 2021 Knowledge-Based Systems 227 107198

    [45]

    Ullah A, Wang B, Sheng J, Long J, Khan N, Sun Z 2021 Expert Systems with Applications 186 115778

    [46]

    Zhu S, Zhan J, Li X 2023 Scientific Reports 13 16404

    [47]

    Shang Q, Deng Y, Cheng K H 2021 Information Sciences 577 162

    [48]

    Yang S Q, Jiang Y, Tong T C, Yan Y W, Gan G S 2021 Acta Phys. Sin. 70 216401 (in Chinese) [杨松青,蒋沅,童天驰,严玉为,淦各升 2021 物理学报 70 216401]

  • [1] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, doi: 10.7498/aps.73.20240156
    [2] Wang Ting-Ting, Liang Zong-Wen, Zhang Ruo-Xi. Importance evaluation method of complex network nodes based on information entropy and iteration factor. Acta Physica Sinica, doi: 10.7498/aps.72.20221878
    [3] Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming. Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, doi: 10.7498/aps.71.20220565
    [4] Huang Ying, Gu Chang-Gui, Yang Hui-Jie. Junk-neuron-deletion strategy for hyperparameter optimization of neural networks. Acta Physica Sinica, doi: 10.7498/aps.71.20220436
    [5] Zhu Qi, Xu Duo, Zhang Yuan-Jun, Li Yu-Juan, Wang Wen, Zhang Hai-Yan. Ultrasonic detection of white etching defect based on convolution neural network. Acta Physica Sinica, doi: 10.7498/aps.71.20221504
    [6] Liu Hui, Wang Bing-Jun, Lu Jun-An, Li Zeng-Yang. Node-set importance and optimization algorithm of nodes selection in complex networks based on pinning control. Acta Physica Sinica, doi: 10.7498/aps.70.20200872
    [7] Yang Song-Qing, Jiang Yuan, Tong Tian-Chi, Yan Yu-Wei, Gan Ge-Sheng. A method of evaluating importance of nodes in complex network based on Tsallis entropy. Acta Physica Sinica, doi: 10.7498/aps.70.20210979
    [8] Xu Qi-Wei, Wang Pei-Pei, Zeng Zhen-Jia, Huang Ze-Bin, Zhou Xin-Xing, Liu Jun-Min, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Extracting atmospheric turbulence phase using deep convolutional neural network. Acta Physica Sinica, doi: 10.7498/aps.69.20190982
    [9] Peng Xiang-Kai, Ji Jing-Wei, Li Lin, Ren Wei, Xiang Jing-Feng, Liu Kang-Kang, Cheng He-Nan, Zhang Zhen, Qu Qiu-Zhi, Li Tang, Liu Liang, Lü De-Sheng. Online learning method based on artificial neural network to optimize magnetic shielding characteristic parameters. Acta Physica Sinica, doi: 10.7498/aps.68.20190234
    [10] Huang Li-Ya, Tang Ping-Chuan, Huo You-Liang, Zheng Yi, Cheng Xie-Feng. Node importance based on the weighted K-order propagation number algorithm. Acta Physica Sinica, doi: 10.7498/aps.68.20190087
    [11] Yang Jian-Nan, Liu Jian-Guo, Guo Qiang. Node importance idenfication for temporal network based on inter-layer similarity. Acta Physica Sinica, doi: 10.7498/aps.67.20172255
    [12] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, doi: 10.7498/aps.67.20172295
    [13] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Chen Li-Dong. Node importance measurement based on neighborhood similarity in complex network. Acta Physica Sinica, doi: 10.7498/aps.66.038902
    [14] Wang Yu, Guo Jin-Li. Evaluation method of node importance in directed-weighted complex network based on multiple influence matrix. Acta Physica Sinica, doi: 10.7498/aps.66.050201
    [15] Ren Zhuo-Ming, Shao Feng, Liu Jian-Guo, Guo Qiang, Wang Bing-Hong. Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica, doi: 10.7498/aps.62.128901
    [16] Liu Jian-Guo, Ren Zhuo-Ming, Guo Qiang, Wang Bing-Hong. Node importance ranking of complex networks. Acta Physica Sinica, doi: 10.7498/aps.62.178901
    [17] Yu Hui, Liu Zun, Li Yong-Jun. Key nodes in complex networks identified by multi-attribute decision-making method. Acta Physica Sinica, doi: 10.7498/aps.62.020204
    [18] Zhou Xuan, Zhang Feng-Ming, Li Ke-Wu, Hui Xiao-Bin, Wu Hu-Sheng. Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, doi: 10.7498/aps.61.050201
    [19] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, doi: 10.7498/aps.57.6120
    [20] PENG HWAN-WU. IMPORTANCE OF LIFE TIME CORRELATION EXPERIMENTS. Acta Physica Sinica, doi: 10.7498/aps.18.165
Metrics
  • Abstract views:  24
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  18 October 2024

/

返回文章
返回